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Abstract

Alcoholic liver disease (ALD) remains to be a worldwide health problem. It is generally accepted that oxidative stress
plays critical roles in the pathogenesis of ALD, and antioxidant therapy represents a logical strategy for the prevention and
treatment of ALD. Nuclear factor erythroid-derived 2-like 2 (NFE2L2 or Nrf-2) is essential for the antioxidant responsive
element (ARE)-mediated induction of endogenous antioxidant enzymes such as heme oxygenase 1 (HO-1) and glutamate—
cysteine ligase [GCL, the rate-limiting enzyme in the synthesis of glutathione (GSH)]. Activation of Nrf-2 pathway by
genetic manipulation or pharmacological agents has been demonstrated to provide protection against ALD, which suggests
that targeting Nrf-2 may be a promising approach for the prevention and treatment of ALD. Herein, we review the relevant
literature about the potential hepatoprotective roles of Nrf-2 activation against ALD.
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Introduction

Excessive ethanol consumption can cause a progressively
aggravated liver disease, namely alcoholic liver disease
(ALD). ALD presents as a broad spectrum of disorders,
ranging from simple fatty liver (steatosis) to alcoholic hepa-
titis (AH), alcoholic fibrosis (AF), alcoholic cirrhosis (AC),
and the superimposed hepatocellular carcinoma (HCC)
[1]. ALD is highly prevalent and is listed among the top 20
causes of death worldwide [2]. In Europe, it is estimated that
more than 2,370,000 years of life are lost from liver diseases
before the age of 50, and about 60-80% of these deaths are
ethanol related [3]. In the USA, ethanol abuse is also the
leading cause of death from liver diseases [4]. Although the
number of newly hepatitis B virus (HBV)-infected patients
in China is significantly declined due to the establishment of
the expanded program on immunization in 1992, the number
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of ALD patients is rising at an alarming rate with the preva-
lence of ALD ranging from 2.3 to 6.1% in different local
areas [5]. Thus, ALD has been becoming a worldwide health
problem. Unfortunately, in contrast to the steady progress
in the clarification of the pathogenic mechanisms of ALD,
no significant advance has been made in the management
of ALD, especially in the field of long-term treatments [6].
Currently, abstinence remains to be the cornerstone of ALD
treatment which is largely dependent on patient’s willing-
ness and compliance [7]. Due to the increasing prevalence
of ALD and the lack of effective therapeutic agents, there is
an urgent need to develop effective and safe pharmacological
interventions for patients with ALD [8].

Nuclear factor erythroid-derived 2-like 2 (NFE2L2 or
Nrf-2) is a transcription factor that plays a key role in the
activation of cellular antioxidant enzymes in response to oxi-
dative stress. Nrf-2 belongs to the Cap*“n”Collar (CNC)-bZip
(basic leucine zipper) family, which includes Nrf-1, Nrf-2,
Nrf-3, and p45 NFE2 [9, 10]. After heterodimerization with
one of three small Maf proteins, the indispensable partners
of CNC-bZip transcription factors, Nrf-2 binds to the Maf
recognition element-related sequence, namely antioxidant or
electrophile response element (ARE/EpRE) [11, 12]. ARE
has been identified in the transcriptional regulatory regions
of antioxidant and xenobiotic-metabolizing enzyme genes
including glutamate—cysteine ligase (GCL), the rate-limiting
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enzyme in the synthesis of glutathione (GSH), heme oxyge-
nase-1 (HO-1), glutathione S-transferase (GST) family, and
NAD(P)H quinone oxidoreductase 1 (NQO-1). Nrf-2 has
been suggested to be a potential target for new therapeutics
in various liver diseases [13, 14]. Activation of Nrf-2 signal-
ing by pharmacological agents is considered as a promising
strategy for protecting against liver injury induced by vari-
ous chemicals including ethanol [15].

Critical roles of oxidative stress in the pathogenesis
of ALD

ALD is a multifactorial disease involving complicated mech-
anisms, among which oxidative stress has been demonstrated
to play critical roles [16]. As early as 1964, the pioneer study
by Diluzio demonstrated that simultaneous supplementation
of antioxidants could prevent acute ethanol-induced fatty
liver, proposing the possible relationship between ethanol-
induced steatosis and oxidative stress [17]. Using electron
spin resonance (ESR) spectroscopy technique, increasing
production of several reactive oxygen species (ROS) includ-
ing nitroxyl radical, hydroxyl radicals, and hydroxyethyl free
radicals has been detected [18, 19]. In addition, a variety of
studies have provided evidence that both chronic and binge
drinking could result in the enhancement of lipid peroxida-
tion (shown as the elevation of malondialdehyde (MDA)
and 4-hydroxynonenal (4-HNE) levels) and protein carbonyl
formation, and the impairment of the hepatic antioxidant
defense system including reduced GSH level and superoxide
dismutase (SOD) activity [16, 20]. Interestingly, ethanol-
induced liver injury could be significantly attenuated by
various kinds of antioxidants including N-acetyl cysteine
(NAC), resveratrol, silymarin, quercetin, and organosul-
fur compounds derived from garlic [21-26]. Furthermore,
overexpression of the Cu/Zn-SOD or Mn-SOD gene with
adenovirus suppressed alcohol-induced early liver injury
in rats [27, 28], while ethanol-induced liver damage was
aggravated in Cu/Zn-SOD-deficient mice and glutathione
peroxidase (GPX)/catalase double-knockout mice [29-31].
Lastly, cytochrome P4502E1 (CYP2EI) and NADPH oxi-
dase (NOX) have been demonstrated to be the two major
sources of ethanol-generated ROS in ALD models [24, 32,
33]. Collectively, these results provide solid evidence for the
causal roles of oxidative stress in the pathogenesis of ALD.

The canonical and non-canonical activation
of Nrf-2/Keap-1 pathway

Under basal or unstressed conditions, Nrf-2 is kept in the
cytoplasm by a cluster of proteins including Kelch like-
ECH-associated protein 1 (Keap-1) and Cullin 3 (Cul3).
Keap-1 contains three major domains: a N-terminal BTB
(broad complex, tram track, and bric-a-brac) domain, a
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linker region, and a C-terminal Kelch domain. The Kelch
domain contains six conserved Kelch repeat sequences and
binds to the Neh2 domain of Nrf-2, while the BTB domain is
responsible for the homodimerization of the Keap-1 protein.
The linker region is a cysteine-rich domain which is dem-
onstrated to be indispensable for the activity of Keap-1 [10,
34, 35]. Nrf-2 has six Neh (Nrf-2-ECH homology) domains
(Neh1-Neh6). The Neh2 domain has two different motifs
(the ETGE and the DLG motifs) which can bind Keap-1,
resulting in an Nrf-2—Keap-1 complex of 1:2 stoichiometry
with two binding sites [36, 37]. Cul3 ubiquitinates Nrf-2,
while Keap-1 is a substrate adaptor protein for the Cul3 E3
ubiquitin (Ub) ligase complex that facilitates the reaction.
The ubiquitinated Nrf-2 then transports to the proteasome
for degradation, ensuring the low basal levels of Nrf-2 [38].

Two activation models of Nrf-2, the canonical activation
and non-canonical activation, have been proposed (Fig. 1).
Upon attack by ROS or electrophiles, the sensory cysteines
of Keap-1 can be modified, resulting in a conformational
change which could prevent Nrf-2 from ubiquitination. The
newly synthesized Nrf-2 escapes from Keap-1-mediated
repression and translocates to the nucleus, and then binds
to small Maf protein and turns on the transcription of ARE-
controlled genes to maintain cellular redox homeostasis.
This mechanism of Keap-1 cysteine-dependent Nrf-2 acti-
vation is termed canonical activation [10, 38—40]. The non-
canonical activation of Nrf-2 is mediated by the interactions
between Keap-1 and p62 (also known as sequestosome-1,
SQSTM1), which localizes to sites of autophagosome for-
mation and acts as a receptor for ubiquitinated proteins and
organelles in autophagy [41]. p62 is considered to be a pre-
dictor of autophagy flux, as the protein level of p62 is usu-
ally inversely correlated with autophagy activity [42]. p62
is a multifunctional protein, which contains more than ten
domains and putative binding sites including a Keap-1-in-
teracting region in the C terminus [41]. Keap-1 can interact
with p62 via the STGE motif, leading to the stabilization,
nucleus translocation and activation of Nrf-2, namely the
non-canonical activation of Nrf-2 [43, 44]. Although the
STGE motif in the Keap-1-interacting region of p62 has
lower affinity for Keap-1 compared with the Nrf-2 ETGE
motif; however, the affinity could markedly increase by some
post-translational modification of p62 [45, 46]. For example,
it has been demonstrated that the phosphorylation of serine
349 in the STGE motif of p62 by mammalian target of rapa-
mycin (mTOR) and phosphorylation of serine 24 in the PB1
domain of p62 could increase its affinity to Keap-1 [47, 48].
Interestingly, the expression of p62 is regulated in an Nrf-
2-dependent manner during oxidative stress, thus forming a
positive feedback loop [46]. However, it should be noted that
the activation of Nrf-2 by p62-mediated Keap-1 dissocia-
tion may be associated with some negative effects such as
the tumorigenesis and the resistance to chemotherapy [49,
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Fig. 1 The canonical and non-canonical models for the activation of
Nrf-2/Keap-1 system. a Under basal or unstressed conditions, Keap-1
dimer binds Nrf-2 via the DLG and ETGE motifs of Nedh2 domain,
leading to the ubiquitination of the lysine residues located between
the ETGE and DLG motifs and subsequent degradation of Nrf-2 by
proteasome. b The canonical activation of Nrf-2. Oxidants or elec-
trophiles can modify cysteine residues of Keap-1, resulting in a con-

50]. More recently, Hu and colleagues demonstrated that
inhibitor of apoptosis stimulating protein of p53 (1ASPP)
could compete with Keap-1 for Nrf-2 binding, leading to
decreased Nrf-2 ubiquitination and increased Nrf-2 accumu-
lation and antioxidative transactivation [51]. Results of this
study expand our understanding of the antioxidant Nrf-2/
Keap-1 pathway, which is needed to be further studied.

In addition to the above two activation models, a number
of studies have provided evidence that Nrf-2 activity could
be modulated by several putative kinases including protein
kinase C (PKC), mitogen-activated protein kinase (MAPK),
and Fyn kinase [52]. It has been demonstrated that PKC
could phosphorylate Nrf-2 at serine 40 which is a critical
signaling event leading to ARE-mediated cellular antioxi-
dant response [53, 54]. p38MAPK could directly phospho-
rylate the recombinant GST-tagged Nrf-2 protein, promoting
the interaction between recombinant protein and endogenous
Keap-1 in vitro [55], whereas results of another study sug-
gested that Nrf-2 phosphorylation by MAPKs might have
minimal effects on Nrf-2 stability or its subcellular localiza-
tion [56]. In addition, Jain and colleagues demonstrated that

formational change in Keap-1 leading to detachment of the weaker
binding DLG motif and the termination of Nrf-2 ubiquitination.
Nrf-2 then translocates to nucleus and activates the transcription of
a battery of antioxidant enzymes and phase II detoxifying enzymes.
¢ The non-canonical activation of Nrf-2. p62 can compete with Nrf-2
to bind Keap-1, resulting in the liberation of Nrf-2 from Keap-1-de-
pendent ubiquitination and degradation in the cytoplasm

Fyn kinase could phosphorylate Nrf-2 protein at tyrosine
568 by glycogen synthase kinase-3 (GSK-3f) and promote
its nuclear export and degradation, thereby contributing to
the suppression of ARE-mediated gene expression [57, 58].

The alteration of Nrf-2 activity in ALD models

Nrf-2 is theoretically to be activated after ethanol exposure
via the canonical activation mechanism, as ethanol could
induce ROS production. Indeed, a couple of studies have
suggested that ethanol exposure led to the activation of Nrf-2
pathway, which might act as a compensatory or adaptive
mechanism to suppress ethanol-induced oxidative injury
[20]. For example, Gong et al. found that the mRNA and
protein levels of Nrf-2 significantly increased in the liver of
liquid diet (ethanol accounting for 35% of the total calories)-
fed male C57BL/6 mice and in the isolated hepatocytes of
ethanol-containing liquid diet-fed rats, which was thought to
be mediated by CYP2E1-generated ROS [59]. The study by
Bardag-Gorce et al. also reported that Nrf-2 mRNA level in
ethanol-fed rats was significantly increased compared with
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that of dextrose-fed animals. However, the authors found that
proteasome inhibitor (PS-341) could protect against ethanol-
induced liver injury in rats via regulating the ARE by acti-
vating transcription factor 4 (ATF-4), but not Nrf-2, as the
combination of proteasome inhibitor and ethanol led to a
significant decrease of Nrf-2 expression [60]. Yeligar et al.
demonstrated that ethanol exposure by intragastric infusion
(9-16 g/kg body weight/day) augmented Nrf-2-mediated
transcription of HO-1 in rat Kupffer cells (KCs) [61]. Simi-
larly, short-term ethanol treatment resulted in the induction
of HO-1 and NQO-1 in liver tissues of mice [62]. Results
of these studies are consistent with the canonical activation
theory: ethanol metabolism-associated ROS may lead to the
modulation of cysteine residues of Keap-1, resulting in the
nucleus translocation and activation of Nrf-2; the activated
Nrf-2 then upregulates important antioxidant genes and
detoxification enzymes, helping to maintain cellular protec-
tive pathways [59].

In contrast to the results of above studies, some stud-
ies reported that Nrf-2 expression was not altered [63, 64]
or even decreased in the livers of ethanol-exposed animals/
hepatocytes [65-67]. At present, it remains unclear why
Nrf-2 responded differently in different studies. Anyway, the
difference in the experimental animals (such as the species,
ages, and sexes), mode of ethanol delivery, and diet compo-
sition may be responsible for these contradictory results. For
example, the liquid diet-induced chronic mice model was
used in the study by Gong et al. [59], while binge drinking-
induced acute ALD mice models were used in the study by
Choi et al. and the study by Zhou et al. [63, 65]. Thus, it
may be speculated that Nrf-2 activation in ethanol-treated
mice is time dependent. Although the same strains of rats
(Sprague—-Dawley rats) were used in the studies by Lu et al.
and in the study by Gong et al.; however, the former study
used gavage model (56%, v/v, 10 ml/kg body weight, once
daily) for 9 weeks [66—68], while the study by Gong et al.
used a liquid diet feeding model for 2 months [59]. There-
fore, the discrepancy in ethanol delivery may also account
for these contradictory reports.

Nrf-2 deficiency aggravates ethanol-induced liver
damage

Lamle et al. found that Nrf-2~~ mice displayed dramati-
cally increased mortality, significantly reduced ability in
detoxifying acetaldehyde, marked steatosis, upregulation of
sterol regulatory element binding protein 1c (SREBP-1c),
depletion of total and mitochondrial GSH, and aggravated
inflammatory response, when exposed to ethanol at a dose
which was tolerated by wild-type mice [62]. Wu et al. com-
pared acute ethanol-induced liver toxicity in Nrf-2 null mice,
wild-type mice, Keap-1-knockdown (Keap-1 KD) mice, and
Keap-1-hepatocyte knockout (Keap-1-H-KO) mice [69].
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They found that acute ethanol-induced increase of serum
alanine transaminase (ALT) and lactate dehydrogenase
(LDH) activities, triglyceride (TG) and thiobarbituric acid-
reactive substances (TBARS) contents in Nrf-2-null and
wild-type mice, but not in Nrf-2-enhanced mice (Keap-1-KD
and Keap-1-H-KO mice). Besides, acute ethanol-induced
decrease of mitochondrial GSH level and increase of ROS in
hepatocytes disappeared in Nrf-2-enhanced mice. Further-
more, the basal mRNA and protein levels of SREBP-1c, the
major nuclear transcription factor regulating the transcrip-
tion of a battery of genes involved in fatty acid synthesis,
were decreased with graded Nrf-2 activation. These results
suggest that Nrf-2 activation can prevent acute ethanol-
induced oxidative stress and accumulation of free fatty acids
in liver by increasing genes involved in antioxidant defense
and decreasing genes involved in lipogenesis [69].

Nrf-2 activators significantly attenuate
ethanol-induced liver injury

Over the past few years, many bioactive natural compounds
including sulforaphane, quercetin, curcumin, and diallyl
disulfide have been shown to exhibit hepatoprotective effects
against ALD, which may be related with the induction of
Nrf-2 (Table 1).

Sulforaphane Sulforaphane is a well-known Nrf-2 activa-
tor affecting the cysteine residues in Keap-1 and affecting
the phosphorylation of Nrf-2 [52]. The study by Zhou et al.
demonstrated that sulforaphane could prevent binge drinking
(3 g/kg body weight, twice daily, for 5 days)-induced liver
steatosis by upregulating Nrf-2-mediated antioxidant defense
and increasing autophagy activity in mice [64]. Another
study showed that sulforaphane increased the Nrf-2 nucleus
translocation, the protein and mRNA levels of HO-1, NQO-
1, and GST-P in Hepalclc7 cells, and attenuated chronic
ethanol (5 g/kg boy weight, twice daily, for 27 days)-induced
increase of serum ALT and aspartate transaminase (AST)
activities and improved the hepatic pathological changes
(steatosis, necrosis, lymphocyte infiltration, loss of cellular
boundaries) in male Sprague—Dawley rats [70].

Quercetin Quercetin is one of the most abundant dietary
flavonoids, which has been demonstrated to protect against
ethanol-induced oxidative damage in a variety of studies
[21, 71-76]. Mechanism studies revealed that quercetin
increased nucleus translocation of Nrf-2 and the activation
of HO-1, which could be blocked by SB203580 (p38MAPK
inhibitor) and PD98059 (ERK inhibitor), suggesting that
p38MAPK and ERK-mediated Nrf-2/HO-1 activation might
account for the protective effects of quercetin against ALD
[75]. A recent study revealed that quercetin could prevent
ethanol-induced hepatotoxicity by inducing p62-mediated
non-canonical activation of Nrf-2 pathway, as p62 siRNA
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abrogated quercetin-associated hepatoprotection against
ALD [76].

Curcumin Curcumin, extracted from dry rhizome of
Curcuma longa, attenuated chronic ethanol-induced liver
injury by attenuating oxidative stress and suppressing the
expression of nuclear factor kappa-light-chain enhancer of
activated B cells (NF-xB) [77-79]. A series of studies have
been conducted to investigate the roles of Nrf-2 activation
and the hepatoprotective effects of curcumin against ALD
[66, 67, 80]. Lu et al. found that curcumin could suppress
ethanol-induced disturbance of SREBP-1c and peroxisome
proliferator-activated receptor o« (PPAR-a), and simultane-
ously induce the expression of Nrf-2 and farnesoid X recep-
tor (FXR) in liver; the gain- and loss-of-function analyses
in LO2 hepatocytes revealed Nrf-2 and FXR mediated the
effect of curcumin on cellular lipid deposition, and curcumin
modulated the expression of FXR by Nrf-2 [67]. Their fol-
lowing study showed that curcumin dose dependently ame-
liorated ethanol-caused hepatocyte necroptosis, which was
blocked by Nrf-2 knockdown using shRNA lentivirus [66].

Organosulfur compounds from garlic Garlic is one of the
most widely used herbal medicines in the world and is hon-
ored as “nature’s protection against physiological threats”
[81, 82]. Many organosulfur compounds in garlic includ-
ing diallyl sulfide, dially disulfide and diallyl trisulfide have
all been demonstrated to induce Nrf-2 activation and could
protect against ALD [24, 83-90]. In one of our studies, we
found that diallyl disulfide could suppress ethanol-induced
elevation of LDH and AST activities, decrease of GSH level,
and increase of MDA level, and apoptosis in LO2 cell, which
could be blocked by Nrf-2/HO-1 inhibitor, ZnPPIX. The
in vivo study showed that diallyl disulfide dose dependently
increased the protein levels of HO-1 in mice liver [25].

Other phytochemical compounds/extracts A large num-
ber of other phytochemical compounds/extracts including
oleanolic acid, polymethoxy flavonoid-containing citrus
aurantium extract (CAE), tetramethylpyrazine (TMP), etha-
nolic extract of sida cordifolia, hoveniae semen cum fructus
extract, baicalin, polydatin, ligustrazine, triticum aestivum
sprout-derived polysaccharide (TASP), dihydromyricetin,
baccharis trimera, and schisandra sphenanthera extract have
been demonstrated to attenuate binge or chronic ethanol-
induced liver/hepatocytes injury in various ALD models,
which might be associated with the activation of Nrf-2 anti-
oxidant system [63, 65, 68, 70, 91-102]. However, it should
be noted that whether the hepatoprotective effects of these
compounds/extracts are mainly attributed to Nrf-2 activation
remains to be elucidated. As the authors only detected the
activation of Nrf-2 antioxidant system (such as the increased
nucleus translocation of Nrf-2 and the increased mRNA and
protein levels of Nrf-2 targeted genes including HO-1, GCL,
NQO-1) in many studies, the involvement of other mecha-
nisms cannot be completely excluded.

Nrf-2 activation on the gut-liver axis
and the adipose-liver axis in ALD

In addition to the direct impairment on hepatocytes, the del-
eterious effects of ethanol on adipose tissues and the hepatic
resident macrophages (the Kupffer cells, KCs) have also
been demonstrated to play crucial roles in ethanol-induced
liver injury. Ethanol could stimulate lipolysis in adipose tis-
sues, and the adipose TG then transports and deposits in
liver forming steatosis [103, 104]. Besides, ethanol could
impair the secretion of adiponectin, a 30-kD protein hor-
mone, which has been demonstrated to provide protection
against ALD via adiponectin—sirtuin-1(SIRT1)-AMP-acti-
vated kinase (AMPK) pathway [105, 106]. In addition, etha-
nol exposure could lead to intestinal hyperpermeability of
intestinal mucosa and alter the gut microbiota favoring the
production of pro-inflammatory endotoxin/lipopolysaccha-
ride (LPS) [107, 108]. LPS translocates to liver and activates
the toll-like receptor 4 (TLR-4) signaling pathway in KCs.
The M1-type-polarized KCs can produce a large amount
of ROS and pro-inflammatory cytokines including tumor
necrosis factor o (TNF-a) and interleukin 1p (IL-1p) [109,
110]. Animal studies showed that suppressing LPS-produc-
ing bacteria by probiotics, intestinal sterilization by antibiot-
ics, and knockout of LPS receptor could suppress ethanol-
induced liver injury, which supports that the gut—liver axis
plays critical roles in the pathogenesis of ALD [111-114],
and thus, pharmacological intervention targeting M2 type
polarization of KCs has been considered as an attractive
strategy for the limitation of ethanol-induced inflammation
and hepatocyte injury [115, 116]. Previous studies suggest
that oxidative stress could impair adiponectin secretion and
promote lipolysis in adipose tissues, and is crucial for LPS-
mediated KCs M1 type polarization [117-120]. Therefore,
it appears plausible that the activation of Nrf-2 in adipose
tissues may be beneficial for ALD protection by rescuing the
adiponectin secretion and blocking lipolysis, while the Nrf-2
activation in KCs may suppress the activation of KCs and
the production of pro-inflammatory cytokines. The effects
of Nrf-2 on the deleterious effects of ethanol on adipose
tissues and hepatic KCs need to be further investigated in
future studies (Fig. 2).

The crosstalk between Nrf-2/Keap-1 pathway
and autophagy in ALD

Complementing the Nrf-2/Keap-1 pathway, autophagy
(macrophage) is another important defense mechanism
against cellular oxidative stress [121]. Autophagy is a
highly conserved intracellular catabolic pathway which
is responsible for the degradation of oxidatively modi-
fied proteins, accumulated lipids and damaged organelles
[122, 123]. Interestingly, accumulating evidence indicate a
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crosstalk between autophagy and Nrf-2/Keap-1 pathway. As
described before, p62 could competitively bind with Keap-
1, leading to the non-canonical activation of Nrf-2 [43, 44].
Therefore, autophagy blockage, either via genetic ablation
of key autophagy initiation proteins (Beclin-1, ATGS, or
ATGT7) or exposure to some environmental toxicants such
as arsenate, results in the activation of Nrf-2 [47]. On the
other hand, Nrf-2/Keap-1 pathway may also regulate the
activity of autophagy [124]. p62 and nuclear dot protein
2 (NDP52) have been demonstrated to be targets of Nrf-2
[125, 126]. Furthermore, Keap-1 binding to p62 may be
involved in p62-mediated autophagy of unbiquitinated pro-
teins, as genetic ablation of Keap-1 led to accumulation of
ubiquitin aggregates and defective activation of autophagy
[127]. However, Nrf-2 activity seems to negatively regulate
the autophagy activity, although some opposite results also
exist [124, 128-130]. The negative regulation of Nrf-2 on
autophagy activity may be not unexpected, as both Nrf-2 and
autophagy play similar roles in mitigating oxidative stress.
If the cellular antioxidant system is at a higher level due
to the activation of Nrf-2, then it would be reasonable that
autophagy, another antioxidant pathway, may maintain at a
relatively lower level (Fig. 3).

Similar to the alteration of Nrf-2 activity in ALD, the
activities of autophagy in ALD models remain inconsistent
[131]. However, pharmacological activation of autophagy
could attenuate ethanol-induced liver injury, suggesting that
autophagy plays protective roles against ALD [131, 132].
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Specially, PTEN-induced putative kinase 1 (PINK-1) and
Parkin-associated mitophagy (responsible for degradation
of damaged mitochondria) have been demonstrated to play
critical roles in the protection against ALD by removing
damaged mitochondria, maintaining a healthy mitochondria
population for the efficient f-oxidation in the hepatocytes
[133-136]. Much more works are needed to clarify the inter-
actions between Nrf-2/Keap-1 pathway and PINK—Parkin-
induced mitophagy pathway.

Could Nrf-2 activators be used for the prevention
and therapeutic treatment of human ALD?

The intricacy of the human anatomy, along with the exist-
ence of many other variables in association with alcohol
abuse in humans, makes it extremely difficult to replicate
all facets of human drinking in laboratory models [137].
It is well known that the rodents (rats and mice) are more
resistant to the effects of alcohol as compared with humans
[138]. The currently available ALD animals models using
ethanol-containing liquid diet or by intragastric feeding etha-
nol could only induce the early stages of ALD (e.g., stea-
tosis, steatohepatitis, mild fibrosis), while the late stage of
ALD (e.g., severe fibrosis, cirrhosis and hepatic carcinoma)
could not be induced without the addition of secondary or
multiple insults [137, 139-142]. Therefore, although a sig-
nificant number of studies have illustrated the protective role
of Nrf-2 against ALD in vitro and in animal models, whether
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Fig.3 The crosstalk between

Nrf-2/Keap-1 pathway and (A)
autophagy in ALD. (1) Accu-
mulating evidence demonstrates
that both Nrf-2 activation

and autophagy activation can
significantly alleviate ethanol-
induced oxidative stress and the
subsequent liver damage; (2)
autophagy suppression resulted
in the non-canonical activation
of Nrf-2 via accumulated p62,
while Nrf-2 may negatively
regulate the autophagy activity (B)

Alcohol — - NOX

Autophagy l_’ p62 |

these experimental data can be directly translated to human
beings should be questioned due to the lack of clinical trials.

However, there has been accumulating evidence indicat-
ing the possible causative involvement of oxidative stress in
the pathophysiology of human ALD [20]. For example, etha-
nol consumption increased the oxidative stress biomarkers
including F2-isoprostanes and 4-HNE in the serum and urine
of ALD patients [143, 144]. Besides, alkylation of proteins
by hydroxyethyl radicals was detected in patients with AC
[145]. Unexpectedly, a randomized, double-blind, placebo-
controlled clinical trial found that S-adenosylmethionine
(SAM), a well-characterized antioxidant, was not effective
than placebo in the treatment of ALD [146], although an ear-
lier study showed that SAM could improve survival or delay
liver transplantation in patients with AC, especially in those
with less advanced liver disease [147]. Other antioxidants
including vitamin E and NAC also failed to show their effi-
cacy in improving alcoholic hepatitis [148, 149]. The poor
response of these conventional antioxidants in human ALD
may be related to the reduced efficiency in enhancing the
antioxidant activity in ALD patients. For example, there has
been evidence for the less efficiency of reasonable levels of
supplementation with vitamin E in enhancing the antioxida-
tive status of healthy persons [150, 151]. In addition, clinical
trials usually enrolled ALD patient with severe hepatitis,
fibrosis, and/or cirrhosis. The severely impaired hepatocytes
in patients with advanced ALD may not make full use of
these exogenous antioxidants and thus poorly respond to the
supplementation of antioxidants [146].

Interestingly, several studies have suggested that Nrf-2
activators could induce antioxidant enzymes in humans and
ameliorate several chronic diseases which were associated
with oxidative stress and inflammation. For example, pro-
tandim, a composition consisting of extracts of five widely
studied medicinal plants, has been demonstrated to induce
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endogenous antioxidant enzymes (including SOD and cata-
lase) and lowered oxidative blood markers in runners [152,
153]. Bardoxolone methyl, a novel synthetic Nrf2 activator,
has been demonstrated to improve the kidney function in
patients with advanced chronic kidney disease and type 2
diabetes in a phase II double-blind, randomized, placebo-
controlled clinical trial, although a follow-up phase III trial
was terminated due to undisclosed safety concerns [154,
155]. Another Nrf-2 activator, compound BG-12 (dime-
thyl fumarate), reduced brain magnetic resonance imaging
activity and lesions associated with multiple sclerosis as
compared with patients who received placebo in a phase IIb
clinical trial [156].

Collectively, induction of endogenous Nrf-2-regulated
antioxidant system may represent a promising approach for
the prevention and treatment of human ALD. Considering
the less efficiency of conventional antioxidants such as vita-
min E and other potential therapeutic drugs such as TNF-«
inhibitors (e.g., pentoxifylline, infliximab, and etanercept),
well-designed clinical trials are warranted to investigate
the roles of Nrf-2 activators in ALD patients [109, 153,
157-159].

Nrf-2 and other liver diseases

Non-alcoholic fatty liver disease (NAFLD) shares similar
mechanisms with ALD, and the general consensus is that
the gut microbiota, oxidative stress and mitochondrial dam-
age may play key roles in the pathogenesis of both ALD
and NAFLD [160, 161]. Knockout of Nrf-2 in mice pro-
foundly exacerbated NAFLD, while activation of Nrf-2 by
knockdown of Keap-1 or by pharmacological agents pro-
tected NAFLD [162-168]. However, there are some studies
providing conflicting results. For example, genetic activa-
tion of Nrf-2 in mice by knockdown of Keap-1 aggravated
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NAFLD induced by long-term high-fat diet feeding [169].
A more recent study showed that oxidative stress-induced
Nrf-2 might be responsible for the upregulation of hepatic
very low density lipoprotein (VLDL), which plays an impor-
tant role in the development of hepatic steatosis [170]. Why
Nrf-2 plays different roles in different NAFLD models
remains to be elucidated.

The roles of Nrf-2 in the protection of chemical-induced
liver injury have also been proposed, as oxidative stress
serves as a common and important mechanism for the liver
injury induced by various chemicals. It has been demon-
strated that Nrf-2 activation offered significant protection
against the liver injury caused by carbon tetrachloride
(CCl,), acetaminophen, microcystin, cadmium, and diquat
[171-174]. Furthermore, some recent studies have pro-
vided clues that Nrf-2 may be also involved in the deleteri-
ous effects of HBV and hepatitis C virus (HCV) on liver.
In hepatocytes, HBV could stimulate the expression of
glucose-6-phosphate dehydrogenase (G6PD) by promot-
ing HBV x protein (HBx) expression in an Nrf-2-dependent
manner, which might play important roles in the develop-
ment of HBV-associated hepatocarcinoma [175]. HCV could
interfere with the crosstalk between Nrf-2/Keap-1 pathway,
elevated ROS levels and autophagy, which was required for
the release of infectious viral particles [176].

Conclusions and future research
perspectives

Nrf-2-regulated antioxidant system has been demonstrated
to play core roles in mitigating ethanol-induced oxidative
stress. Nrf-2 activation by genetic manipulation or pharma-
cological compounds could effectively attenuate both binge
and chronic ethanol-induced hepatocytes/liver damage
in vitro and in animal studies, which suggest that Nrf-2 is a
promising targeting molecule for the prevention and treat-
ment of human ALD. However, there are some issues which
should be addressed in future studies.

First, it should be noted that the currently available data
are obtained from animal studies of ethanol-induced early
stage of ALD or from in vitro studies. These results may be
interpreted as Nrf-2 activator could prevent ethanol-induced
early liver disease. Therefore, it remains to study whether
Nrf-2 activator can improve advanced stage of ALD such as
the fibrosis and cirrhosis. It may be necessary to use primate
models to investigate the roles of the Nrf-2 activator in the
pathogenesis of alcoholic fibrosis and cirrhosis, as exces-
sive ethanol consumption alone could result in liver fibrosis
and cirrhosis in baboon [137, 141]. Additionally, hybrid
rats/mice models of fibrosis/cirrhosis induced by ethanol
and other hits such as high-fat diet or hepatotoxicants (e.g.,
CCl4) can be also considered, as both CCl4 and ethanol may
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induce hepatocyte damage through some common mecha-
nisms [142, 177-179].

Second, the roles of Nrf-2 in the hepatoprotection of
many phytochemical compounds/extracts against ALD
need to be further confirmed. Many studies only reported
the increase of Nrf-2 nucleus translocation and increased
expression of Nrf-2 target antioxidant genes. Whether Nrf-2
activation played the major roles for the protection of these
compounds/extract against ALD remained to be clarified,
as other mechanisms such as reducing ROS production,
maintaining the intestinal barrier integrity, and improving
the adipose—liver axis may be also involved. For example,
DADS has been suggested to suppress CYP2E1 activity in
human hepatocytes and also induce the activation of Nrf-2
[84, 180]. Besides, the isolation and preparation of these
hepatoprotective compounds/extracts should be standardized
and the bioavailability of these compounds/extracts must be
evaluated, as uncharacterized crude extracts may lead to the
difficulty in reproducing the results [181]. This is particu-
larly important as there is an increasing public and scientific
interest in this natural-derived substance [182]. In addition,
it will be interesting to investigate the roles of combination
of these Nrf-2 activators and KCs polarizing modulators
in ALD models, as M1-type-polarized KC induced by gut-
sourced LPS has been demonstrated to be another key con-
tributor to ALD. Furthermore, well-designed clinical trials
are urgently needed to evaluate the efficiency of these Nrf-2
activators on ALD patients.

Third, it has been demonstrated that the non-canonical
activation of Nrf-2 may be associated with some negative
outcomes such as tumor progression and chemotherapy
resistance, namely the “dark side” of Nrf-2 [49, 183, 184].
For example, autophagy deficiency led to the formation of
protein aggregates, liver fibrosis, inflammation and tumo-
rigenesis, which could be blocked by knockout of p62 or
Nrf-2 [49, 185]. As such, long-term use of these Nrf-2 non-
canonical activators should be carefully considered.
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