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Abstract
Alcoholic liver disease (ALD) remains to be a worldwide health problem. It is generally accepted that oxidative stress 
plays critical roles in the pathogenesis of ALD, and antioxidant therapy represents a logical strategy for the prevention and 
treatment of ALD. Nuclear factor erythroid-derived 2-like 2 (NFE2L2 or Nrf-2) is essential for the antioxidant responsive 
element (ARE)-mediated induction of endogenous antioxidant enzymes such as heme oxygenase 1 (HO-1) and glutamate–
cysteine ligase [GCL, the rate-limiting enzyme in the synthesis of glutathione (GSH)]. Activation of Nrf-2 pathway by 
genetic manipulation or pharmacological agents has been demonstrated to provide protection against ALD, which suggests 
that targeting Nrf-2 may be a promising approach for the prevention and treatment of ALD. Herein, we review the relevant 
literature about the potential hepatoprotective roles of Nrf-2 activation against ALD.
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Introduction

Excessive ethanol consumption can cause a progressively 
aggravated liver disease, namely alcoholic liver disease 
(ALD). ALD presents as a broad spectrum of disorders, 
ranging from simple fatty liver (steatosis) to alcoholic hepa-
titis (AH), alcoholic fibrosis (AF), alcoholic cirrhosis (AC), 
and the superimposed hepatocellular carcinoma (HCC) 
[1]. ALD is highly prevalent and is listed among the top 20 
causes of death worldwide [2]. In Europe, it is estimated that 
more than 2,370,000 years of life are lost from liver diseases 
before the age of 50, and about 60–80% of these deaths are 
ethanol related [3]. In the USA, ethanol abuse is also the 
leading cause of death from liver diseases [4]. Although the 
number of newly hepatitis B virus (HBV)-infected patients 
in China is significantly declined due to the establishment of 
the expanded program on immunization in 1992, the number 

of ALD patients is rising at an alarming rate with the preva-
lence of ALD ranging from 2.3 to 6.1% in different local 
areas [5]. Thus, ALD has been becoming a worldwide health 
problem. Unfortunately, in contrast to the steady progress 
in the clarification of the pathogenic mechanisms of ALD, 
no significant advance has been made in the management 
of ALD, especially in the field of long-term treatments [6]. 
Currently, abstinence remains to be the cornerstone of ALD 
treatment which is largely dependent on patient’s willing-
ness and compliance [7]. Due to the increasing prevalence 
of ALD and the lack of effective therapeutic agents, there is 
an urgent need to develop effective and safe pharmacological 
interventions for patients with ALD [8].

Nuclear factor erythroid-derived 2-like 2 (NFE2L2 or 
Nrf-2) is a transcription factor that plays a key role in the 
activation of cellular antioxidant enzymes in response to oxi-
dative stress. Nrf-2 belongs to the Cap“n”Collar (CNC)-bZip 
(basic leucine zipper) family, which includes Nrf-1, Nrf-2, 
Nrf-3, and p45 NFE2 [9, 10]. After heterodimerization with 
one of three small Maf proteins, the indispensable partners 
of CNC-bZip transcription factors, Nrf-2 binds to the Maf 
recognition element-related sequence, namely antioxidant or 
electrophile response element (ARE/EpRE) [11, 12]. ARE 
has been identified in the transcriptional regulatory regions 
of antioxidant and xenobiotic-metabolizing enzyme genes 
including glutamate–cysteine ligase (GCL), the rate-limiting 
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enzyme in the synthesis of glutathione (GSH), heme oxyge-
nase-1 (HO-1), glutathione S-transferase (GST) family, and 
NAD(P)H quinone oxidoreductase 1 (NQO-1). Nrf-2 has 
been suggested to be a potential target for new therapeutics 
in various liver diseases [13, 14]. Activation of Nrf-2 signal-
ing by pharmacological agents is considered as a promising 
strategy for protecting against liver injury induced by vari-
ous chemicals including ethanol [15].

Critical roles of oxidative stress in the pathogenesis 
of ALD

ALD is a multifactorial disease involving complicated mech-
anisms, among which oxidative stress has been demonstrated 
to play critical roles [16]. As early as 1964, the pioneer study 
by Diluzio demonstrated that simultaneous supplementation 
of antioxidants could prevent acute ethanol-induced fatty 
liver, proposing the possible relationship between ethanol-
induced steatosis and oxidative stress [17]. Using electron 
spin resonance (ESR) spectroscopy technique, increasing 
production of several reactive oxygen species (ROS) includ-
ing nitroxyl radical, hydroxyl radicals, and hydroxyethyl free 
radicals has been detected [18, 19]. In addition, a variety of 
studies have provided evidence that both chronic and binge 
drinking could result in the enhancement of lipid peroxida-
tion (shown as the elevation of malondialdehyde (MDA) 
and 4-hydroxynonenal (4-HNE) levels) and protein carbonyl 
formation, and the impairment of the hepatic antioxidant 
defense system including reduced GSH level and superoxide 
dismutase (SOD) activity [16, 20]. Interestingly, ethanol-
induced liver injury could be significantly attenuated by 
various kinds of antioxidants including N-acetyl cysteine 
(NAC), resveratrol, silymarin, quercetin, and organosul-
fur compounds derived from garlic [21–26]. Furthermore, 
overexpression of the Cu/Zn-SOD or Mn-SOD gene with 
adenovirus suppressed alcohol-induced early liver injury 
in rats [27, 28], while ethanol-induced liver damage was 
aggravated in Cu/Zn-SOD-deficient mice and glutathione 
peroxidase (GPX)/catalase double-knockout mice [29–31]. 
Lastly, cytochrome P4502E1 (CYP2E1) and NADPH oxi-
dase (NOX) have been demonstrated to be the two major 
sources of ethanol-generated ROS in ALD models [24, 32, 
33]. Collectively, these results provide solid evidence for the 
causal roles of oxidative stress in the pathogenesis of ALD.

The canonical and non‑canonical activation 
of Nrf‑2/Keap‑1 pathway

Under basal or unstressed conditions, Nrf-2 is kept in the 
cytoplasm by a cluster of proteins including Kelch like-
ECH-associated protein 1 (Keap-1) and Cullin 3 (Cul3). 
Keap-1 contains three major domains: a N-terminal BTB 
(broad complex, tram track, and bric-a-brac) domain, a 

linker region, and a C-terminal Kelch domain. The Kelch 
domain contains six conserved Kelch repeat sequences and 
binds to the Neh2 domain of Nrf-2, while the BTB domain is 
responsible for the homodimerization of the Keap-1 protein. 
The linker region is a cysteine-rich domain which is dem-
onstrated to be indispensable for the activity of Keap-1 [10, 
34, 35]. Nrf-2 has six Neh (Nrf-2-ECH homology) domains 
(Neh1–Neh6). The Neh2 domain has two different motifs 
(the ETGE and the DLG motifs) which can bind Keap-1, 
resulting in an Nrf-2–Keap-1 complex of 1:2 stoichiometry 
with two binding sites [36, 37]. Cul3 ubiquitinates Nrf-2, 
while Keap-1 is a substrate adaptor protein for the Cul3 E3 
ubiquitin (Ub) ligase complex that facilitates the reaction. 
The ubiquitinated Nrf-2 then transports to the proteasome 
for degradation, ensuring the low basal levels of Nrf-2 [38].

Two activation models of Nrf-2, the canonical activation 
and non-canonical activation, have been proposed (Fig. 1). 
Upon attack by ROS or electrophiles, the sensory cysteines 
of Keap-1 can be modified, resulting in a conformational 
change which could prevent Nrf-2 from ubiquitination. The 
newly synthesized Nrf-2 escapes from Keap-1-mediated 
repression and translocates to the nucleus, and then binds 
to small Maf protein and turns on the transcription of ARE-
controlled genes to maintain cellular redox homeostasis. 
This mechanism of Keap-1 cysteine-dependent Nrf-2 acti-
vation is termed canonical activation [10, 38–40]. The non-
canonical activation of Nrf-2 is mediated by the interactions 
between Keap-1 and p62 (also known as sequestosome-1, 
SQSTM1), which localizes to sites of autophagosome for-
mation and acts as a receptor for ubiquitinated proteins and 
organelles in autophagy [41]. p62 is considered to be a pre-
dictor of autophagy flux, as the protein level of p62 is usu-
ally inversely correlated with autophagy activity [42]. p62 
is a multifunctional protein, which contains more than ten 
domains and putative binding sites including a Keap-1-in-
teracting region in the C terminus [41]. Keap-1 can interact 
with p62 via the STGE motif, leading to the stabilization, 
nucleus translocation and activation of Nrf-2, namely the 
non-canonical activation of Nrf-2 [43, 44]. Although the 
STGE motif in the Keap-1-interacting region of p62 has 
lower affinity for Keap-1 compared with the Nrf-2 ETGE 
motif; however, the affinity could markedly increase by some 
post-translational modification of p62 [45, 46]. For example, 
it has been demonstrated that the phosphorylation of serine 
349 in the STGE motif of p62 by mammalian target of rapa-
mycin (mTOR) and phosphorylation of serine 24 in the PB1 
domain of p62 could increase its affinity to Keap-1 [47, 48]. 
Interestingly, the expression of p62 is regulated in an Nrf-
2-dependent manner during oxidative stress, thus forming a 
positive feedback loop [46]. However, it should be noted that 
the activation of Nrf-2 by p62-mediated Keap-1 dissocia-
tion may be associated with some negative effects such as 
the tumorigenesis and the resistance to chemotherapy [49, 
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50]. More recently, Hu and colleagues demonstrated that 
inhibitor of apoptosis stimulating protein of p53 (iASPP) 
could compete with Keap-1 for Nrf-2 binding, leading to 
decreased Nrf-2 ubiquitination and increased Nrf-2 accumu-
lation and antioxidative transactivation [51]. Results of this 
study expand our understanding of the antioxidant Nrf-2/
Keap-1 pathway, which is needed to be further studied.

In addition to the above two activation models, a number 
of studies have provided evidence that Nrf-2 activity could 
be modulated by several putative kinases including protein 
kinase C (PKC), mitogen-activated protein kinase (MAPK), 
and Fyn kinase [52]. It has been demonstrated that PKC 
could phosphorylate Nrf-2 at serine 40 which is a critical 
signaling event leading to ARE-mediated cellular antioxi-
dant response [53, 54]. p38MAPK could directly phospho-
rylate the recombinant GST-tagged Nrf-2 protein, promoting 
the interaction between recombinant protein and endogenous 
Keap-1 in vitro [55], whereas results of another study sug-
gested that Nrf-2 phosphorylation by MAPKs might have 
minimal effects on Nrf-2 stability or its subcellular localiza-
tion [56]. In addition, Jain and colleagues demonstrated that 

Fyn kinase could phosphorylate Nrf-2 protein at tyrosine 
568 by glycogen synthase kinase-3β (GSK-3β) and promote 
its nuclear export and degradation, thereby contributing to 
the suppression of ARE-mediated gene expression [57, 58].

The alteration of Nrf‑2 activity in ALD models

Nrf-2 is theoretically to be activated after ethanol exposure 
via the canonical activation mechanism, as ethanol could 
induce ROS production. Indeed, a couple of studies have 
suggested that ethanol exposure led to the activation of Nrf-2 
pathway, which might act as a compensatory or adaptive 
mechanism to suppress ethanol-induced oxidative injury 
[20]. For example, Gong et al. found that the mRNA and 
protein levels of Nrf-2 significantly increased in the liver of 
liquid diet (ethanol accounting for 35% of the total calories)-
fed male C57BL/6 mice and in the isolated hepatocytes of 
ethanol-containing liquid diet-fed rats, which was thought to 
be mediated by CYP2E1-generated ROS [59]. The study by 
Bardag-Gorce et al. also reported that Nrf-2 mRNA level in 
ethanol-fed rats was significantly increased compared with 

Fig. 1  The canonical and non-canonical models for the activation of 
Nrf-2/Keap-1 system. a Under basal or unstressed conditions, Keap-1 
dimer binds Nrf-2 via the DLG and ETGE motifs of Nedh2 domain, 
leading to the ubiquitination of the lysine residues located between 
the ETGE and DLG motifs and subsequent degradation of Nrf-2 by 
proteasome. b The canonical activation of Nrf-2. Oxidants or elec-
trophiles can modify cysteine residues of Keap-1, resulting in a con-

formational change in Keap-1 leading to detachment of the weaker 
binding DLG motif and the termination of Nrf-2 ubiquitination. 
Nrf-2 then translocates to nucleus and activates the transcription of 
a battery of antioxidant enzymes and phase II detoxifying enzymes. 
c The non-canonical activation of Nrf-2. p62 can compete with Nrf-2 
to bind Keap-1, resulting in the liberation of Nrf-2 from Keap-1-de-
pendent ubiquitination and degradation in the cytoplasm
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that of dextrose-fed animals. However, the authors found that 
proteasome inhibitor (PS-341) could protect against ethanol-
induced liver injury in rats via regulating the ARE by acti-
vating transcription factor 4 (ATF-4), but not Nrf-2, as the 
combination of proteasome inhibitor and ethanol led to a 
significant decrease of Nrf-2 expression [60]. Yeligar et al. 
demonstrated that ethanol exposure by intragastric infusion 
(9–16 g/kg body weight/day) augmented Nrf-2-mediated 
transcription of HO-1 in rat Kupffer cells (KCs) [61]. Simi-
larly, short-term ethanol treatment resulted in the induction 
of HO-1 and NQO-1 in liver tissues of mice [62]. Results 
of these studies are consistent with the canonical activation 
theory: ethanol metabolism-associated ROS may lead to the 
modulation of cysteine residues of Keap-1, resulting in the 
nucleus translocation and activation of Nrf-2; the activated 
Nrf-2 then upregulates important antioxidant genes and 
detoxification enzymes, helping to maintain cellular protec-
tive pathways [59].

In contrast to the results of above studies, some stud-
ies reported that Nrf-2 expression was not altered [63, 64] 
or even decreased in the livers of ethanol-exposed animals/
hepatocytes [65–67]. At present, it remains unclear why 
Nrf-2 responded differently in different studies. Anyway, the 
difference in the experimental animals (such as the species, 
ages, and sexes), mode of ethanol delivery, and diet compo-
sition may be responsible for these contradictory results. For 
example, the liquid diet-induced chronic mice model was 
used in the study by Gong et al. [59], while binge drinking-
induced acute ALD mice models were used in the study by 
Choi et al. and the study by Zhou et al. [63, 65]. Thus, it 
may be speculated that Nrf-2 activation in ethanol-treated 
mice is time dependent. Although the same strains of rats 
(Sprague–Dawley rats) were used in the studies by Lu et al. 
and in the study by Gong et al.; however, the former study 
used gavage model (56%, v/v, 10 ml/kg body weight, once 
daily) for 9 weeks [66–68], while the study by Gong et al. 
used a liquid diet feeding model for 2 months [59]. There-
fore, the discrepancy in ethanol delivery may also account 
for these contradictory reports.

Nrf‑2 deficiency aggravates ethanol‑induced liver 
damage

Lamle et al. found that Nrf-2−/− mice displayed dramati-
cally increased mortality, significantly reduced ability in 
detoxifying acetaldehyde, marked steatosis, upregulation of 
sterol regulatory element binding protein 1c (SREBP-1c), 
depletion of total and mitochondrial GSH, and aggravated 
inflammatory response, when exposed to ethanol at a dose 
which was tolerated by wild-type mice [62]. Wu et al. com-
pared acute ethanol-induced liver toxicity in Nrf-2 null mice, 
wild-type mice, Keap-1-knockdown (Keap-1 KD) mice, and 
Keap-1-hepatocyte knockout (Keap-1-H-KO) mice [69]. 

They found that acute ethanol-induced increase of serum 
alanine transaminase (ALT) and lactate dehydrogenase 
(LDH) activities, triglyceride (TG) and thiobarbituric acid-
reactive substances (TBARS) contents in Nrf-2-null and 
wild-type mice, but not in Nrf-2-enhanced mice (Keap-1-KD 
and Keap-1-H-KO mice). Besides, acute ethanol-induced 
decrease of mitochondrial GSH level and increase of ROS in 
hepatocytes disappeared in Nrf-2-enhanced mice. Further-
more, the basal mRNA and protein levels of SREBP-1c, the 
major nuclear transcription factor regulating the transcrip-
tion of a battery of genes involved in fatty acid synthesis, 
were decreased with graded Nrf-2 activation. These results 
suggest that Nrf-2 activation can prevent acute ethanol-
induced oxidative stress and accumulation of free fatty acids 
in liver by increasing genes involved in antioxidant defense 
and decreasing genes involved in lipogenesis [69].

Nrf‑2 activators significantly attenuate 
ethanol‑induced liver injury

Over the past few years, many bioactive natural compounds 
including sulforaphane, quercetin, curcumin, and diallyl 
disulfide have been shown to exhibit hepatoprotective effects 
against ALD, which may be related with the induction of 
Nrf-2 (Table 1).

Sulforaphane Sulforaphane is a well-known Nrf-2 activa-
tor affecting the cysteine residues in Keap-1 and affecting 
the phosphorylation of Nrf-2 [52]. The study by Zhou et al. 
demonstrated that sulforaphane could prevent binge drinking 
(3 g/kg body weight, twice daily, for 5 days)-induced liver 
steatosis by upregulating Nrf-2-mediated antioxidant defense 
and increasing autophagy activity in mice [64]. Another 
study showed that sulforaphane increased the Nrf-2 nucleus 
translocation, the protein and mRNA levels of HO-1, NQO-
1, and GST-P in Hepa1c1c7 cells, and attenuated chronic 
ethanol (5 g/kg boy weight, twice daily, for 27 days)-induced 
increase of serum ALT and aspartate transaminase (AST) 
activities and improved the hepatic pathological changes 
(steatosis, necrosis, lymphocyte infiltration, loss of cellular 
boundaries) in male Sprague–Dawley rats [70].

Quercetin Quercetin is one of the most abundant dietary 
flavonoids, which has been demonstrated to protect against 
ethanol-induced oxidative damage in a variety of studies 
[21, 71–76]. Mechanism studies revealed that quercetin 
increased nucleus translocation of Nrf-2 and the activation 
of HO-1, which could be blocked by SB203580 (p38MAPK 
inhibitor) and PD98059 (ERK inhibitor), suggesting that 
p38MAPK and ERK-mediated Nrf-2/HO-1 activation might 
account for the protective effects of quercetin against ALD 
[75]. A recent study revealed that quercetin could prevent 
ethanol-induced hepatotoxicity by inducing p62-mediated 
non-canonical activation of Nrf-2 pathway, as p62 siRNA 
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abrogated quercetin-associated hepatoprotection against 
ALD [76].

Curcumin Curcumin, extracted from dry rhizome of 
Curcuma longa, attenuated chronic ethanol-induced liver 
injury by attenuating oxidative stress and suppressing the 
expression of nuclear factor kappa-light-chain enhancer of 
activated B cells (NF-κB) [77–79]. A series of studies have 
been conducted to investigate the roles of Nrf-2 activation 
and the hepatoprotective effects of curcumin against ALD 
[66, 67, 80]. Lu et al. found that curcumin could suppress 
ethanol-induced disturbance of SREBP-1c and peroxisome 
proliferator-activated receptor α (PPAR-α), and simultane-
ously induce the expression of Nrf-2 and farnesoid X recep-
tor (FXR) in liver; the gain- and loss-of-function analyses 
in LO2 hepatocytes revealed Nrf-2 and FXR mediated the 
effect of curcumin on cellular lipid deposition, and curcumin 
modulated the expression of FXR by Nrf-2 [67]. Their fol-
lowing study showed that curcumin dose dependently ame-
liorated ethanol-caused hepatocyte necroptosis, which was 
blocked by Nrf-2 knockdown using shRNA lentivirus [66].

Organosulfur compounds from garlic Garlic is one of the 
most widely used herbal medicines in the world and is hon-
ored as “nature’s protection against physiological threats” 
[81, 82]. Many organosulfur compounds in garlic includ-
ing diallyl sulfide, dially disulfide and diallyl trisulfide have 
all been demonstrated to induce Nrf-2 activation and could 
protect against ALD [24, 83–90]. In one of our studies, we 
found that diallyl disulfide could suppress ethanol-induced 
elevation of LDH and AST activities, decrease of GSH level, 
and increase of MDA level, and apoptosis in LO2 cell, which 
could be blocked by Nrf-2/HO-1 inhibitor, ZnPPIX. The 
in vivo study showed that diallyl disulfide dose dependently 
increased the protein levels of HO-1 in mice liver [25].

Other phytochemical compounds/extracts A large num-
ber of other phytochemical compounds/extracts including 
oleanolic acid, polymethoxy flavonoid-containing citrus 
aurantium extract (CAE), tetramethylpyrazine (TMP), etha-
nolic extract of sida cordifolia, hoveniae semen cum fructus 
extract, baicalin, polydatin, ligustrazine, triticum aestivum 
sprout-derived polysaccharide (TASP), dihydromyricetin, 
baccharis trimera, and schisandra sphenanthera extract have 
been demonstrated to attenuate binge or chronic ethanol-
induced liver/hepatocytes injury in various ALD models, 
which might be associated with the activation of Nrf-2 anti-
oxidant system [63, 65, 68, 70, 91–102]. However, it should 
be noted that whether the hepatoprotective effects of these 
compounds/extracts are mainly attributed to Nrf-2 activation 
remains to be elucidated. As the authors only detected the 
activation of Nrf-2 antioxidant system (such as the increased 
nucleus translocation of Nrf-2 and the increased mRNA and 
protein levels of Nrf-2 targeted genes including HO-1, GCL, 
NQO-1) in many studies, the involvement of other mecha-
nisms cannot be completely excluded.

Nrf‑2 activation on the gut–liver axis 
and the adipose–liver axis in ALD

In addition to the direct impairment on hepatocytes, the del-
eterious effects of ethanol on adipose tissues and the hepatic 
resident macrophages (the Kupffer cells, KCs) have also 
been demonstrated to play crucial roles in ethanol-induced 
liver injury. Ethanol could stimulate lipolysis in adipose tis-
sues, and the adipose TG then transports and deposits in 
liver forming steatosis [103, 104]. Besides, ethanol could 
impair the secretion of adiponectin, a 30-kD protein hor-
mone, which has been demonstrated to provide protection 
against ALD via adiponectin–sirtuin-1(SIRT1)–AMP-acti-
vated kinase (AMPK) pathway [105, 106]. In addition, etha-
nol exposure could lead to intestinal hyperpermeability of 
intestinal mucosa and alter the gut microbiota favoring the 
production of pro-inflammatory endotoxin/lipopolysaccha-
ride (LPS) [107, 108]. LPS translocates to liver and activates 
the toll-like receptor 4 (TLR-4) signaling pathway in KCs. 
The M1-type-polarized KCs can produce a large amount 
of ROS and pro-inflammatory cytokines including tumor 
necrosis factor α (TNF-α) and interleukin 1β (IL-1β) [109, 
110]. Animal studies showed that suppressing LPS-produc-
ing bacteria by probiotics, intestinal sterilization by antibiot-
ics, and knockout of LPS receptor could suppress ethanol-
induced liver injury, which supports that the gut–liver axis 
plays critical roles in the pathogenesis of ALD [111–114], 
and thus, pharmacological intervention targeting M2 type 
polarization of KCs has been considered as an attractive 
strategy for the limitation of ethanol-induced inflammation 
and hepatocyte injury [115, 116]. Previous studies suggest 
that oxidative stress could impair adiponectin secretion and 
promote lipolysis in adipose tissues, and is crucial for LPS-
mediated KCs M1 type polarization [117–120]. Therefore, 
it appears plausible that the activation of Nrf-2 in adipose 
tissues may be beneficial for ALD protection by rescuing the 
adiponectin secretion and blocking lipolysis, while the Nrf-2 
activation in KCs may suppress the activation of KCs and 
the production of pro-inflammatory cytokines. The effects 
of Nrf-2 on the deleterious effects of ethanol on adipose 
tissues and hepatic KCs need to be further investigated in 
future studies (Fig. 2).

The crosstalk between Nrf‑2/Keap‑1 pathway 
and autophagy in ALD

Complementing the Nrf-2/Keap-1 pathway, autophagy 
(macrophage) is another important defense mechanism 
against cellular oxidative stress [121]. Autophagy is a 
highly conserved intracellular catabolic pathway which 
is responsible for the degradation of oxidatively modi-
fied proteins, accumulated lipids and damaged organelles 
[122, 123]. Interestingly, accumulating evidence indicate a 
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crosstalk between autophagy and Nrf-2/Keap-1 pathway. As 
described before, p62 could competitively bind with Keap-
1, leading to the non-canonical activation of Nrf-2 [43, 44]. 
Therefore, autophagy blockage, either via genetic ablation 
of key autophagy initiation proteins (Beclin-1, ATG5, or 
ATG7) or exposure to some environmental toxicants such 
as arsenate, results in the activation of Nrf-2 [47]. On the 
other hand, Nrf-2/Keap-1 pathway may also regulate the 
activity of autophagy [124]. p62 and nuclear dot protein 
2 (NDP52) have been demonstrated to be targets of Nrf-2 
[125, 126]. Furthermore, Keap-1 binding to p62 may be 
involved in p62-mediated autophagy of unbiquitinated pro-
teins, as genetic ablation of Keap-1 led to accumulation of 
ubiquitin aggregates and defective activation of autophagy 
[127]. However, Nrf-2 activity seems to negatively regulate 
the autophagy activity, although some opposite results also 
exist [124, 128–130]. The negative regulation of Nrf-2 on 
autophagy activity may be not unexpected, as both Nrf-2 and 
autophagy play similar roles in mitigating oxidative stress. 
If the cellular antioxidant system is at a higher level due 
to the activation of Nrf-2, then it would be reasonable that 
autophagy, another antioxidant pathway, may maintain at a 
relatively lower level (Fig. 3).

Similar to the alteration of Nrf-2 activity in ALD, the 
activities of autophagy in ALD models remain inconsistent 
[131]. However, pharmacological activation of autophagy 
could attenuate ethanol-induced liver injury, suggesting that 
autophagy plays protective roles against ALD [131, 132]. 

Specially, PTEN-induced putative kinase 1 (PINK-1) and 
Parkin-associated mitophagy (responsible for degradation 
of damaged mitochondria) have been demonstrated to play 
critical roles in the protection against ALD by removing 
damaged mitochondria, maintaining a healthy mitochondria 
population for the efficient β-oxidation in the hepatocytes 
[133–136]. Much more works are needed to clarify the inter-
actions between Nrf-2/Keap-1 pathway and PINK–Parkin-
induced mitophagy pathway.

Could Nrf‑2 activators be used for the prevention 
and therapeutic treatment of human ALD?

The intricacy of the human anatomy, along with the exist-
ence of many other variables in association with alcohol 
abuse in humans, makes it extremely difficult to replicate 
all facets of human drinking in laboratory models [137]. 
It is well known that the rodents (rats and mice) are more 
resistant to the effects of alcohol as compared with humans 
[138]. The currently available ALD animals models using 
ethanol-containing liquid diet or by intragastric feeding etha-
nol could only induce the early stages of ALD (e.g., stea-
tosis, steatohepatitis, mild fibrosis), while the late stage of 
ALD (e.g., severe fibrosis, cirrhosis and hepatic carcinoma) 
could not be induced without the addition of secondary or 
multiple insults [137, 139–142]. Therefore, although a sig-
nificant number of studies have illustrated the protective role 
of Nrf-2 against ALD in vitro and in animal models, whether 

Fig. 2  Potential molecular 
targets for the hepatoprotection 
of Nrf-2 activators against alco-
holic liver disease (ALD). (1) 
Nrf-2 activation in hepatocytes 
could eliminate ethanol-induced 
reactive oxygen species (ROS) 
and mitigate the subsequent 
deleterious effects of ROS in 
hepatocytes; (2) Nrf-2 activa-
tion in adipose tissues may 
block ethanol-induced lipolysis 
and the decreased secretion of 
adiponectin; (3) Nrf-2 activa-
tion in intestine may suppress 
ethanol-induced intestinal 
damage, and thus reduce the 
translocation of gut-sourced 
lipopolysaccharide (LPS) to 
liver; (4) garlic may suppress 
LPS-induced Kupffer cells 
(KCs) activation and reduce the 
production of pro-inflammatory 
cytokines such as tumor necro-
sis factor α (TNF-α)
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these experimental data can be directly translated to human 
beings should be questioned due to the lack of clinical trials.

However, there has been accumulating evidence indicat-
ing the possible causative involvement of oxidative stress in 
the pathophysiology of human ALD [20]. For example, etha-
nol consumption increased the oxidative stress biomarkers 
including F2-isoprostanes and 4-HNE in the serum and urine 
of ALD patients [143, 144]. Besides, alkylation of proteins 
by hydroxyethyl radicals was detected in patients with AC 
[145]. Unexpectedly, a randomized, double-blind, placebo-
controlled clinical trial found that S-adenosylmethionine 
(SAM), a well-characterized antioxidant, was not effective 
than placebo in the treatment of ALD [146], although an ear-
lier study showed that SAM could improve survival or delay 
liver transplantation in patients with AC, especially in those 
with less advanced liver disease [147]. Other antioxidants 
including vitamin E and NAC also failed to show their effi-
cacy in improving alcoholic hepatitis [148, 149]. The poor 
response of these conventional antioxidants in human ALD 
may be related to the reduced efficiency in enhancing the 
antioxidant activity in ALD patients. For example, there has 
been evidence for the less efficiency of reasonable levels of 
supplementation with vitamin E in enhancing the antioxida-
tive status of healthy persons [150, 151]. In addition, clinical 
trials usually enrolled ALD patient with severe hepatitis, 
fibrosis, and/or cirrhosis. The severely impaired hepatocytes 
in patients with advanced ALD may not make full use of 
these exogenous antioxidants and thus poorly respond to the 
supplementation of antioxidants [146].

Interestingly, several studies have suggested that Nrf-2 
activators could induce antioxidant enzymes in humans and 
ameliorate several chronic diseases which were associated 
with oxidative stress and inflammation. For example, pro-
tandim, a composition consisting of extracts of five widely 
studied medicinal plants, has been demonstrated to induce 

endogenous antioxidant enzymes (including SOD and cata-
lase) and lowered oxidative blood markers in runners [152, 
153]. Bardoxolone methyl, a novel synthetic Nrf2 activator, 
has been demonstrated to improve the kidney function in 
patients with advanced chronic kidney disease and type 2 
diabetes in a phase II double-blind, randomized, placebo-
controlled clinical trial, although a follow-up phase III trial 
was terminated due to undisclosed safety concerns [154, 
155]. Another Nrf-2 activator, compound BG-12 (dime-
thyl fumarate), reduced brain magnetic resonance imaging 
activity and lesions associated with multiple sclerosis as 
compared with patients who received placebo in a phase IIb 
clinical trial [156].

Collectively, induction of endogenous Nrf-2-regulated 
antioxidant system may represent a promising approach for 
the prevention and treatment of human ALD. Considering 
the less efficiency of conventional antioxidants such as vita-
min E and other potential therapeutic drugs such as TNF-α 
inhibitors (e.g., pentoxifylline, infliximab, and etanercept), 
well-designed clinical trials are warranted to investigate 
the roles of Nrf-2 activators in ALD patients [109, 153, 
157–159].

Nrf‑2 and other liver diseases

Non-alcoholic fatty liver disease (NAFLD) shares similar 
mechanisms with ALD, and the general consensus is that 
the gut microbiota, oxidative stress and mitochondrial dam-
age may play key roles in the pathogenesis of both ALD 
and NAFLD [160, 161]. Knockout of Nrf-2 in mice pro-
foundly exacerbated NAFLD, while activation of Nrf-2 by 
knockdown of Keap-1 or by pharmacological agents pro-
tected NAFLD [162–168]. However, there are some studies 
providing conflicting results. For example, genetic activa-
tion of Nrf-2 in mice by knockdown of Keap-1 aggravated 

Fig. 3  The crosstalk between 
Nrf-2/Keap-1 pathway and 
autophagy in ALD. (1) Accu-
mulating evidence demonstrates 
that both Nrf-2 activation 
and autophagy activation can 
significantly alleviate ethanol-
induced oxidative stress and the 
subsequent liver damage; (2) 
autophagy suppression resulted 
in the non-canonical activation 
of Nrf-2 via accumulated p62, 
while Nrf-2 may negatively 
regulate the autophagy activity
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NAFLD induced by long-term high-fat diet feeding [169]. 
A more recent study showed that oxidative stress-induced 
Nrf-2 might be responsible for the upregulation of hepatic 
very low density lipoprotein (VLDL), which plays an impor-
tant role in the development of hepatic steatosis [170]. Why 
Nrf-2 plays different roles in different NAFLD models 
remains to be elucidated.

The roles of Nrf-2 in the protection of chemical-induced 
liver injury have also been proposed, as oxidative stress 
serves as a common and important mechanism for the liver 
injury induced by various chemicals. It has been demon-
strated that Nrf-2 activation offered significant protection 
against the liver injury caused by carbon tetrachloride 
 (CCl4), acetaminophen, microcystin, cadmium, and diquat 
[171–174]. Furthermore, some recent studies have pro-
vided clues that Nrf-2 may be also involved in the deleteri-
ous effects of HBV and hepatitis C virus (HCV) on liver. 
In hepatocytes, HBV could stimulate the expression of 
glucose-6-phosphate dehydrogenase (G6PD) by promot-
ing HBV x protein (HBx) expression in an Nrf-2-dependent 
manner, which might play important roles in the develop-
ment of HBV-associated hepatocarcinoma [175]. HCV could 
interfere with the crosstalk between Nrf-2/Keap-1 pathway, 
elevated ROS levels and autophagy, which was required for 
the release of infectious viral particles [176].

Conclusions and future research 
perspectives

Nrf-2-regulated antioxidant system has been demonstrated 
to play core roles in mitigating ethanol-induced oxidative 
stress. Nrf-2 activation by genetic manipulation or pharma-
cological compounds could effectively attenuate both binge 
and chronic ethanol-induced hepatocytes/liver damage 
in vitro and in animal studies, which suggest that Nrf-2 is a 
promising targeting molecule for the prevention and treat-
ment of human ALD. However, there are some issues which 
should be addressed in future studies.

First, it should be noted that the currently available data 
are obtained from animal studies of ethanol-induced early 
stage of ALD or from in vitro studies. These results may be 
interpreted as Nrf-2 activator could prevent ethanol-induced 
early liver disease. Therefore, it remains to study whether 
Nrf-2 activator can improve advanced stage of ALD such as 
the fibrosis and cirrhosis. It may be necessary to use primate 
models to investigate the roles of the Nrf-2 activator in the 
pathogenesis of alcoholic fibrosis and cirrhosis, as exces-
sive ethanol consumption alone could result in liver fibrosis 
and cirrhosis in baboon [137, 141]. Additionally, hybrid 
rats/mice models of fibrosis/cirrhosis induced by ethanol 
and other hits such as high-fat diet or hepatotoxicants (e.g., 
CCl4) can be also considered, as both CCl4 and ethanol may 

induce hepatocyte damage through some common mecha-
nisms [142, 177–179].

Second, the roles of Nrf-2 in the hepatoprotection of 
many phytochemical compounds/extracts against ALD 
need to be further confirmed. Many studies only reported 
the increase of Nrf-2 nucleus translocation and increased 
expression of Nrf-2 target antioxidant genes. Whether Nrf-2 
activation played the major roles for the protection of these 
compounds/extract against ALD remained to be clarified, 
as other mechanisms such as reducing ROS production, 
maintaining the intestinal barrier integrity, and improving 
the adipose–liver axis may be also involved. For example, 
DADS has been suggested to suppress CYP2E1 activity in 
human hepatocytes and also induce the activation of Nrf-2 
[84, 180]. Besides, the isolation and preparation of these 
hepatoprotective compounds/extracts should be standardized 
and the bioavailability of these compounds/extracts must be 
evaluated, as uncharacterized crude extracts may lead to the 
difficulty in reproducing the results [181]. This is particu-
larly important as there is an increasing public and scientific 
interest in this natural-derived substance [182]. In addition, 
it will be interesting to investigate the roles of combination 
of these Nrf-2 activators and KCs polarizing modulators 
in ALD models, as M1-type-polarized KC induced by gut-
sourced LPS has been demonstrated to be another key con-
tributor to ALD. Furthermore, well-designed clinical trials 
are urgently needed to evaluate the efficiency of these Nrf-2 
activators on ALD patients.

Third, it has been demonstrated that the non-canonical 
activation of Nrf-2 may be associated with some negative 
outcomes such as tumor progression and chemotherapy 
resistance, namely the “dark side” of Nrf-2 [49, 183, 184]. 
For example, autophagy deficiency led to the formation of 
protein aggregates, liver fibrosis, inflammation and tumo-
rigenesis, which could be blocked by knockout of p62 or 
Nrf-2 [49, 185]. As such, long-term use of these Nrf-2 non-
canonical activators should be carefully considered.
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