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Introduction

Almost all tumors have an inflammatory component that 
contributes a significant portion of the cellularity to the 
growing mass. This inflammatory component consists 
of resident and/or infiltrating immune cells and has been 
categorized as a bonafide “hallmark” of cancer [68]. The 
activity of these immune cells can either promote cancer 
growth, e.g., “cancer related inflammation” or inhibit can-
cer progression, e.g., “cancer immune surveillance”. Given 
these disparate activities of immunity on cancer progres-
sion, it is important to understand the characteristics of 
cancer cells that regulate the inflammatory constituents 
that inhabit almost all cancers. Indeed, the field of cancer 
immune therapy, heralded as a “Breakthrough of the Year” 
[33], critically relies on mobilizing anti-tumor immune 
effectors while diminishing the activity of pro-tumor 
inflammation. In this review, we provide a summary of 
how intrinsic cellular stress modulates immune cell infiltra-
tion or activity. We focus on oxidative stress, proteotoxic 
stress, mitotic stress, DNA damage and metabolic stress 
as key cancer intrinsic hallmarks [101] that can impact on 
cancer’s extrinsic hallmark of immunity and inflammation. 
Figure 1 shows that the stresses that cancer cells experience 
and sense can result in both pro- or anti-tumor outcomes. 
All of these stress pathways are closely interrelated and can 
directly cause or be caused by one another (Fig.  2). This 
review focuses largely on the downstream effects of these 
five stressors, and we acknowledge that the transformed 
state, chemotherapies, and radiotherapies all can induce 
some form of cellular stress. 
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Oxidative stress

Oxidative stress occurs in cancer when the balance between 
reactive oxygen species (ROS) and the ability of the cell 
and its microenvironment to detoxify them is disturbed, 
resulting in the accumulation of free oxygen radicals such 
as hydrogen peroxide (H2O2), the superoxide radical (O2

−) 
or the hydroxyl radical (OH). Due to the toxic effects of 

ROS on different components of a cell, oxidative stress is 
closely related to each of the other four forms of stress dis-
cussed in this review (DNA damage, proteotoxic, mitotic, 
and metabolic). For example, it can directly cause DNA 
and protein damage or cause and be caused by metabolic 
stress (Fig. 2). On the other hand, ROS are important sec-
ond messengers during cell signaling and homeostasis, and 
a tightly regulated balance of their production and their 
scavenging is needed for transformation-free cell survival.

Because of ROS’ cytotoxic and DNA-damaging effects, 
they are closely associated with tumorigenesis, which has 
been reviewed elsewhere [129, 148, 149]. However, the 
overall impact of ROS on cancer progression is difficult to 
predict, as ROS can exert both pro- and anti-tumor effects. 
Moreover, ROS also impact positively and negatively on 
immune function, and thus can indirectly affect cancer pro-
gression via their control of cancer immune surveillance. 
In this section, we focus on the impact of ROS on immune 
cells and will interpret these effects in the context of cancer 
progression.

Although ROS are abundant in the tumor microenvi-
ronment, their origin has not been completely dissected. 
Phagocytes such as neutrophils and macrophages are a 
major source of ROS, but excessive ROS production by 
tumor cells has also been widely accepted and may even be 
regarded as a hallmark of cancer [129]. ROS from tumor 
cells can influence the immune microenvironment and the 
ROS status of surrounding immune cells because increased 
intracellular ROS in the T cells from tumor-bearing hosts 
has been described [14]. Cytokines that are abundant in 
the tumor microenvironment such as tumor necrosis factor 
(TNF), interleukin (IL)-1β, interferon (IFN)-γ, transform-
ing growth factor (TGF)-β and IL-6 have been shown to 

Fig. 1   Regulation of immune 
surveillance by intrinsic stress 
pathways in cancer. Shown are 
the five unique stress pathways 
that occur in cancer cells (inner 
circle) and the effects of each 
stress on immunity (outer 
circle). These effects are broad 
reaching and can promote (red 
font) and/or inhibit (blue font) 
anti-tumor immunity, or both 
(black font). Adapted from Luo 
et al. [101]
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Fig. 2   Interrelation of stress pathways. The five stress pathways that 
occur in cancer cells are highly interrelated and can each directly 
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onstrate direct (rather than indirect) interconnections between each 
of the five stress pathways, and the text next to each arrow describes 
how each direct effect is mediated
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increase both intracellular and extracellular ROS produc-
tion from epithelial, smooth muscle and pancreatic cells 
[38, 165, 194]. Thus, strategies to treat cancer via oxidative 
or antioxidative drugs should take into account the wide 
panoply of both positive and negative effects of ROS on 
immunity and cancer progression.

Multiple studies have found a significant role for ROS 
to control leukocyte recruitment by serving as direct che-
moattractants. ROS can directly recruit immune cells in 
inflamed zebrafish tissue [122] or induce proteins such as 
thioredoxin that are chemotactic for monocytes, neutrophils 
and T cells [13]. However, neither of these works used can-
cer immune surveillance models. Our group has recently 
linked oxidative stress pathways directly to leukocyte 
recruitment in cancer [141]. In a study using transplant-
able melanoma and sarcoma mouse models, we found that 
activating the antioxidant transcription factor nuclear fac-
tor (erythroid-derived 2)-like 2 (Nrf2) induced the cytokine 
IL-17D, which mediated the recruitment of cancer-elimi-
nating natural killer (NK) cells. Indeed, treatment of cancer 
cells with Nrf2 agonists led to secretion of IL-17D, NK cell 
recruitment, and cancer elimination. To our knowledge, 
this is the first study showing that intrinsic oxidative stress 
of the tumor cell itself activates mechanisms that lead to 
immune cell recruitment and immune cell-mediated can-
cer elimination [141]. Thus, it is possible that cancer cells 
initiate mechanisms (such as transcriptional activation of 
antioxidant genes) to overcome oxidative stress, but that 
the same mechanisms lead eventually to their elimination 
by the immune system. It is interesting to speculate that the 
Nrf2/IL-17D pathway may have evolved as the immune 
system’s refutation to the cancer’s increased defense mech-
anisms against oxidative stress. Moreover, ROS might not 
only influence immune cell infiltration, but also retention 
and survival at the site of inflammation or cancer, since 
ROS derived from myeloperoxidase activity can promote 
paracrine neutrophil survival [86, 156].

ROS can also directly limit tumor progression by aug-
menting the function of phagocytes and antigen-presenting 
cells (APCs), often leading to increased anti-tumor T-cell 
activation. The killing capacity of activated macrophages 
towards tumor cells, for example, largely depends on ROS 
production from macrophages [116, 119], that could be 
further induced if tumor cells were coated with eosino-
phil peroxidase generating H2O2 [118]. H2O2 can increase 
major histocompatibility complex (MHC) class II and co-
stimulatory molecules on human dendritic cells (DCs), 
thereby enhancing T-cell proliferation and activation [140]. 
Moreover, DCs generate ROS during antigen presentation 
to T cells [106], and antigen presentation is also influenced 
by ROS, thus indirectly affecting T-cell stimulation [110]. 
More evidence that APC-mediated T-cell activation is 
influenced by ROS activity came from studies showing that 

macrophages can modulate their secretion of the antioxi-
dant glutathione, which facilitates T-cell activation [5, 55, 
120, 154]. On the other hand, the production of glutathione 
by tumor cells has been suggested as a cancer defense 
mechanism against macrophage-mediated killing [117].

ROS can also directly activate lymphocytes, including 
T, B, and NK cells. Oxidation of human ovarian epithelial 
cancer cells, for example, was shown to enhance T-cell acti-
vation from patients in an MHC class I- and II-restricted 
manner [26]. In line with that, antioxidants directly inhibit 
T-cell activation, proliferation and IL-2 receptor expression 
[24, 25, 123]. Moreover, the oxidative status of antigens 
can modify T-cell receptor (TCR) binding to the antigenic 
peptide [182], and TCR ligation induces ROS production 
from T cells [42]. Oxidative stress has also been suggested 
to promote T-cell polarization into a Th2 phenotype [85]. 
In B cells, ROS are important for B cell receptor (BCR) 
signaling [158].

In other instances, ROS can be immune suppressive by 
their ability to influence or be released from immune sup-
pressive regulatory T cells (TReg) and myeloid-derived sup-
pressor cells (MDSCs). TRegs can be induced by ROS [90] 
and are more resistant to ROS than effector T cells [112], 
which might be a mechanism of cancer immune evasion by 
favoring an immune suppressive tumor microenvironment. 
Although most studies found ROS to induce TRegs, one 
showed that ROS from MDSCs inhibited the maturation of 
TRegs using murine breast and lung carcinoma cancer mod-
els [20]. Some of TReg cell suppressive functions towards 
other T cells are mediated by their secretion of ROS [51] 
or indirectly by their ability to suppress glutathione release 
from DCs [193]. H2O2 has been found to directly inhibit 
nuclear factor κB (NF-κB)-induced cytokine expression 
from activated T cells [95, 104]. ROS can also regulate 
T-cell apoptosis and thereby contribute to T-cell balance 
under homeostatic and disease conditions [172].

MDSCs are another major suppressive cell type produc-
ing and reacting to ROS in the tumor microenvironment. 
Several tumor-derived cytokines trigger ROS production 
from MDSCs, which might account for some of MDSC’s 
immunosuppressive functions [59] and maintain them in an 
undifferentiated state [94]. In a mouse lymphoma model, 
MDSCs were able to suppress T-cell proliferation and IFNγ 
production by disrupting the TCR/CD8 complex, which 
was mediated by overproduction of ROS [113]. MDSCs 
also suppress T cells by depletion of cysteine and arginine 
(which are crucial for T-cell activation and proliferation), 
production of peroxynitrite (which are cytotoxic to T cells), 
and upregulation of the ROS-generating enzyme cyclooxy-
genase (COX)-2 in T cells [17, 59, 84, 164]. Additionally, 
in advanced cancer patients, H2O2 derived from granulo-
cytes is suggested to suppress cytokine release from T cells 
[144].
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Early studies suggest that ROS production from NK 
cells is a necessary event for NK cell cytotoxicity against 
cancer [49, 50, 136, 167]. On the other hand, monocyte-
derived ROS downregulate the expression of activating 
receptors NKG2D and NKp46 on a certain subtype of NK 
cells with high cytotoxic ability [138]. Moreover, H2O2 in 
the cancer microenvironment decreases the recruitment of 
this NK cell subtype [80], suggesting that ROS production 
is a mechanism of cancer cells to evade NK cell-mediated 
immunity. Monocyte-derived ROS can also inhibit acti-
vation, proliferation and IFNγ secretion as well as induce 
apoptosis of NK cells [69, 72, 150]. ROS might also play 
a role in the dysfunction and depletion of NK cells in mye-
logenous leukemia patients [108]. H2O2 from macrophages 
isolated from melanoma-bearing patients was shown to 
downregulate CD3 zeta on T cells and NK cells as well as 
their cytotoxic activity [88]. The documented inhibitory 
activity of ROS on NK cells implies that the role of Nrf2, 
a known master regulator of antioxidant responses and an 
inducer of IL-17D and NK cell recruitment [141], could be 
to remove ROS in order to promote anti-tumor activities of 
NK cells.

Proteotoxic stress

Proteotoxic stress [also referred to as “endoplasmic retic-
ulum (ER) stress”] is characterized by the accumulation 
of misfolded and/or unfolded proteins within the ER of a 
cell [179]. ER stress occurs when the amount of proteins 
entering the ER (input) exceeds the ER’s processing capac-
ity (output), leading to dysregulation of post-translational 
modifications that occur within the ER [16]. Because post-
translational modifications help proteins form tertiary and 
quaternary structures, the lack of appropriate modification 
results in misfolded proteins that accumulate within the 
secretory pathway, leading to proteotoxic stress [147].

As it relates to cancer, proteotoxic stress can arise from a 
number of different sources. In fact, many of the “hallmarks 
of cancer” directly induce proteotoxic stress. For example, 
aneuploidy induced by mitotic stress can directly contribute 
to proteotoxic stress through the presence of excess copies 
of wild type (WT) proteins, which accumulate within the 
ER and disrupt the organelle’s folding capacity [48]. Fur-
thermore, the presence of abnormal proteins that do not 
fold properly or cannot be modified can also cause proteins 
to build up within the ER and trigger proteotoxic stress. 
Abnormal proteins can arise either directly from genetic 
mutations or indirectly from ROS (oxidative stress) that 
damage WT proteins (Fig. 2). Clearly there are many dif-
ferent stressors present in cancer cells that have the capabil-
ity to over-burden the secretory pathway and directly lead 
to proteotoxic stress.

The accumulation of misfolded proteins and proteo-
toxic stress leads to the activation of the unfolded protein 
response (UPR). Although the UPR signaling network does 
not directly activate immune responses, when the UPR fails 
to restore ER homeostasis, a form of apoptotic cell death 
occurs that is characterized by the release of immune-
stimulating molecules [176]. This phenomenon is referred 
to as immunogenic cell death (ICD), distinct from classi-
cal apoptosis, which is considered tolerogenic. ICD, on 
the other hand, is a powerful stimulator of immune cells 
by causing the release of danger-associated molecular pat-
terns (DAMPs) into the extracellular environment. Exam-
ples of DAMPs include proteins such as calreticulin (CRT) 
and high-mobility group box 1 (HMGB1), and small mol-
ecules, like ATP [175]. DAMPs can directly or indirectly 
stimulate many different types of immune cells, including 
macrophages, DCs, and T cells [176]. The specific mech-
anisms by which each immune cell subset is affected by 
and responds to DAMPs will be discussed throughout this 
section. ICD is induced when the UPR fails to restore ER 
homeostasis, often due to the use of chemotherapeutics, 
such as anthracyclines, oxaliplatin, bortezomib, radiother-
apy, and photodynamic therapy [92]. Thus, at the “basal” 
state, cancer cells can exhibit proteotoxic stress, but when 
cancer cells are exposed to a higher level of proteotoxic 
stress, they can undergo cell death and potently activate the 
immune system through release of DAMPs.

Perhaps the best-explored DAMP is CRT, a normally 
intracellular transmembrane protein that is translocated to 
the cell surface (ecto-CRT) during proteotoxic stress. For 
example, when anthracycline treatment is used to model 
proteotoxic stress, ecto-CRT is exposed at the cell surface 
and leads to phagocytosis of the dying cells by immune 
cells, leading to their activation [124]. In this model sys-
tem ecto-CRT is both sufficient and necessary to promote 
immune surveillance of anthracycline-induced proteotoxic 
stress in colon cancer. These results were corroborated and 
shown to require the UPR system [128]. Ecto-CRT signals 
through low density lipoprotein receptor-related protein 1 
(LRP1, also known as CD91), a pattern recognition recep-
tor (PRR) that is shared with heat shock proteins. CD91 is 
expressed on immune phagocytes, and CRT-CD91 sign-
aling promotes phagocytosis and induces the secretion of 
pro-inflammatory cytokines that ultimately aid in the pres-
entation of tumor antigen [11]. Therefore, this signaling 
pathway is important for eliciting robust T-cell responses 
that are critical for tumor elimination.

HMGB1, a nuclear protein involved in chromatin 
organization, is a DAMP that is released passively into 
the extracellular environment during ICD. HMGB1 can 
signal through toll-like receptor 4 (TLR4) expressed on 
DCs, resulting in MyD88-mediated pro-inflammatory 
cytokine production [6]. In addition, the receptor for 
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advanced glycation end-products (RAGE), expressed by 
macrophages, can also recognize HMGB1 and induce the 
production and secretion of pro-inflammatory cytokines 
[87]. Each of these signaling events is important for elic-
iting anti-tumor immune responses and therefore plays 
important roles in the immune surveillance of cancer cells 
in a manner dependent on antigen-presenting cells. On 
the other hand, HMGB1-RAGE signaling can also induce 
inflammatory responses that promote tumor progression 
and are associated with worse prognosis in certain patients 
[121, 157]. Because it is released by dying cells rather than 
induced by the UPR, HMGB1 presumably could activate 
the immune system when released by stressors other than 
proteotoxic stress.

ATP is another DAMP that is released into the extra-
cellular environment in the event of ICD. During proteo-
toxic stress, ATP is actively secreted from cells, where it 
can either induce local inflammation or act as an “eat me” 
signal. Secreted ATP can be recognized by the puriner-
gic receptor P2X7 that is expressed on DCs. This signal 
induces inflammasome activation and drives the secretion 
of IL-1β, a highly pro-inflammatory cytokine [64]. Further-
more, secreted ATP can also act as a “find me” signal by 
recruiting phagocytic cells [53]. In either case, it is clear 
that secreted ATP acts to promote immune recognition and 
clearance of cells undergoing proteotoxic stress.

In addition to DAMPs, proteotoxic stress can stimulate 
general inflammation through the activation of NF-κB and 
Jun N-terminal kinase (JNK). NF-kB is a master regulator 
of inflammation, and upon activation, induces the produc-
tion of a number of pro-inflammatory genes. Proteotoxic 
stress has been shown to activate NF-kB in several model 
systems. In HeLa cells, 2-deoxyglucose can induce ROS 
and misfolded proteins, leading to proteotoxic stress and 
NF-κB activation [126]. In primary fibroblasts, thapsigar-
gin-induced ER stress can promote NF-κB activation by 
attenuating translation. This increases the ratio of NF-κB 
to IκB (owing to the short half-life of IκB), thereby free-
ing NF-κB to translocate into the nucleus when the UPR 
is activated [40]. Proteotoxic stress also activates JNK 
directly via interaction between JNK and components of 
the UPR [173].

Although the action of tumor-derived proteotoxic stress 
on immune cells is generally considered anti-tumorigenic, 
in certain contexts it has also been shown to promote tumor 
growth. For example, activation of NF-κB is well known 
to promote cancer progression [82] and in some circum-
stances, HMGB1-RAGE signaling can provide “wound 
healing” signals to also facilitate cancer growth. In addi-
tion, several groups have demonstrated a pro-tumorigenic 
role for proteotoxic stress by showing that it acts in a 
cell extrinsic manner on myeloid cells to facilitate tumor 
growth [35, 198]. Evidence for this phenomenon is that 

macrophages cultured in the conditioned medium of ER-
stressed breast, lung, or melanoma cancer cells become 
activated and begin secreting pro-inflammatory/tumori-
genic cytokines and enzymes that suppress T-cell tumori-
cidal activity [103]. Furthermore, DCs cultured in the 
presence of conditioned media of ER-stressed cancer cells 
downregulate cross-presentation of high-affinity antigens 
and fail to effectively cross-prime CD8+ T cells, leading to 
diminished CD8+ T-cell infiltration in vivo [102]. Finally, 
it has also been demonstrated that transmissible ER stress 
is pro-angiogenic, as macrophages cultured in the presence 
of conditioned media of ER-stressed breast cancer cells 
express the angiogenic factor vascular endothelial growth 
factor (VEGF) in  vitro [36]. Together, these results show 
that ER stress within the tumor microenvironment has the 
capacity to reshape myeloid cells to promote tumor growth.

Mitotic stress

Mitotic stress is characterized by the duplication or deletion 
of whole or partial chromosomes from the genome of a cell, 
which can occur through a variety of means. Most com-
monly, mitotic stress is mediated via chromosome instabil-
ity (CIN). CIN refers to the ability of cells to rapidly lose 
or gain chromosomes during cell division [89]. This occurs 
due to mis-segregation of individual chromosomes during 
cellular replication, wherein DNA is distributed unequally 
to daughter cells [48]. As a result, cells are generated that 
possess an abnormal, or “non-diploid” number of chromo-
somes, a state referred to as “aneuploidy”. Other mecha-
nisms that induce aneuploidy include failure in cytokine-
sis (endoreplication), where DNA is duplicated but the cell 
does not undergo cytokinesis, and cell–cell fusion, where 
two cells physically connect their plasma membranes and 
cytosol and combine DNA. Both of these mechanisms give 
rise to daughter cells that contain twice the amount of DNA 
than parental cells and feature mitotic stress [89].

Aneuploidy and CIN are closely related, each being an 
extremely common feature in cancer. It has been estimated 
that greater than 70% of all cancers display aneuploidy 
[111], although whether this is a cause or consequence of 
the disease is highly debated. CIN can occur through three 
major mechanisms: mitotic checkpoint defects (resulting 
in premature chromosome segregation), centrosome over-
duplication (resulting in improper attachments between 
microtubules and the kinetochore and frequent chromo-
some mis-segregation), and faulty sister chromatid cohe-
sion (causing premature separation of sister chromatids) 
[48]. Many genes involved in these processes are direct 
transcriptional targets of E2F and/or p53 [89]. Aberrations 
in these pathways caused by either mutations or overexpres-
sion/gene duplication have the potential to induce mitotic 
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stress and CIN that culminates in aneuploidy, which can be 
sensed by immune cells in a variety of different ways.

A direct consequence of mitotic stress induced by CIN 
and aneuploidy is that it causes imbalances in the composi-
tion of cellular proteins, which affects the folding capacity 
of the ER and leads to proteotoxic stress (Fig.  2). In this 
sense, all of the surveillance mechanisms relevant in pro-
teotoxic stress also occur during mitotic stress (see “Pro-
teotoxic stress”). Specifically, hyperploidy is known to be 
immunogenic by inducing surface expression of the DAMP 
calreticulin (ecto-CRT) [22]. Tetraploid colon, lung, and 
fibrosarcoma cancer cells readily proliferate and maintain 
their increased DNA content and ecto-CRT expression in 
immunodeficient, but not in immunocompetent, mice. In 
immune competent mice, growth of tetraploid cancer cells 
is delayed, and tumors that do grow exhibit reduced DNA 
content and ecto-CRT exposure relative to tumors grown 
from immune-deficient mice [151]. These results sug-
gest an active immunoediting mechanism operates against 
mitotically stressed cells. Furthermore, colon cancer cells 
are susceptible to drug-induced tetraploidization only in 
the absence of the tumor suppressor Tp53, and tetraploid 
Tp53−/− colon cancer cells are only able to form tumors in 
immune deficient, but not immune competent, mice [15]. 
This result suggests that the mitotic stress induced by tetra-
ploidy is particularly oncogenic in the context of deficient 
immune surveillance, and that tetraploidy (and associated 
mitotic stress) is immunogenic. Finally, it has also been 
shown that hyperploid cancer cells stimulate NK cell-medi-
ated anti-cancer immunity. Specifically, hyperploid human 
erythroleukemic, colon and liver cancer cells can activate 
the cytotoxic activity of NK cells via the expression of 
ligands for NK activating receptors such as NKG2D and 
DNAX accessory molecule (DNAM-1) [1]. Together, these 
findings strongly suggest that mitotic stress associated with 
hyperploidy (specifically tetraploidization) is immunogenic 
and induces anti-tumor immune surveillance by NK cells, 
and that this phenomenon is broadly conserved across mul-
tiple cancer types.

Mitotic stress can also promote cancer progression 
through the induction of inflammatory cytokines that sup-
port tumor growth [135]. In a mouse model of colon tumo-
rigenesis whereby mice are haplosufficient for Shugoshin-1 
(Sgo1+/−), a gene involved in the maintenance of chromo-
some cohesion during cellular replication, CIN and DNA 
damage results, leading to the secretion of pro-inflamma-
tory cytokines that promote tumorigenesis. Specifically, 
Sgo1+/− mice display increased expression of the pro-
inflammatory factors COX-2 and IL-6, each of which has 
been shown to have a role in promoting colon cancer for-
mation. This cytokine response is dependent on DNA dam-
age response proteins, supporting the role of mitotic stress 
in mediating this response [191]. Indeed, even in human 

cancers, a similar finding has been reported, whereby CIN-
induced DNA damage signaling leads to the secretion 
of pro-tumor inflammatory cytokines [137]. In a slightly 
different mouse model of CIN-induced tumorigenesis 
whereby the gene flap endonuclease 1 (Fen1) is mutated to 
induce genomic instability, CIN is associated with tumor 
progression through predisposition to chronic inflamma-
tion mediated by NF-kB. Specifically, mice harboring the 
mutant Fen1 showed significantly higher levels of inflam-
matory NF-kB target genes compared to WT mice [201].

Mitotic stress can also trigger immune surveillance 
through the induction of cellular senescence, which has 
been shown to be immunogenic in certain circumstances. 
Senescence is a permanent state of cellular growth arrest 
that can be triggered by various stressors. In cancer, senes-
cence acts as a tumor suppressive mechanism by inhibiting 
cellular proliferation and tumor growth, but can also favor 
tumor growth in certain instances by promoting inflamma-
tion [32]. Mitotic stress occurring in cancer cells can induce 
senescence by activating pathways that promote both cell 
cycle arrest and survival [174]. Introducing an oncogenic 
activating H-Ras mutation (H-RasV12) into human fibro-
blasts resulted in enhanced survival of cells with mitotic 
spindle and chromatin defects. These cells also featured 
induction of the key senescence effectors p21 and p16, 
further supporting that mitotic disruption and enhanced 
survival are linked during senescence [46]. As it relates to 
immune surveillance, senescence is immunogenic by caus-
ing the secretion of inflammatory cytokines, which can both 
promote and inhibit tumor progression. This is referred to 
as the senescence-associated secretory phenotype (SASP) 
[29]. The SASP is mediated primarily by the transcription 
factors NF-kB and CCAAT/enhancer binding protein beta 
(C/EBPβ) and consists of a broad range of secreted fac-
tors, including chemokines/cytokines, growth factors, and 
matrix-remodeling enzymes, among many others (reviewed 
in [96]). Together, these secreted factors produce a rich pro-
inflammatory microenvironment that recruits immune cells 
that can either promote or inhibit tumor growth, depending 
on the circumstance. For example, in an oncogene-induced 
model of senescence in murine hepatocytes, senescent cells 
are subject to CD4+ T-cell-mediated immune clearance 
that is also dependent on monocytes/macrophages, and in 
the absence of immune surveillance, pre-malignant hepat-
ocytes develop into hepatocellular carcinomas [81]. NK 
cells also mediate immune surveillance of senescent cells. 
NKG2D-dependent elimination of hepatocellular carcino-
mas can be mediated by p53-dependent chemokine produc-
tion by senescent tumor cells [76]. Alternatively, the SASP 
has also been demonstrated to promote tumor progression. 
Using a model of DNA damage-induced senescence on 
pre-malignant epithelial cells, the SASP induced epithelial-
to-mesenchymal transition and invasiveness, two hallmarks 
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of malignancy. These phenotypic changes were dependent 
on the inflammatory cytokines IL-6 and IL-8 [30]. These 
examples clearly demonstrate how senescence induces 
immune surveillance that ultimately can either promote or 
inhibit tumor progression, depending on the context.

Mitotic stress and CIN are also known to induce immune 
surveillance in invertebrates [152]. Indeed, inducing CIN in 
proliferating Drosophila larval tissue resulted in the activa-
tion of innate cellular signaling in cells with CIN. Included 
in this innate signaling was the activation of matrix met-
alloproteinase 1, which is responsible for recruiting hemo-
cytes (innate insect immune cells) to the site of CIN and 
providing the necessary signals for effective elimination 
of CIN cells [99]. This pathway appears to be mediated by 
JNK, as knockdown of JNK signaling resulted in death of 
CIN cells [187]. These studies demonstrate a cell-intrinsic 
role for mitotic stress and CIN in inducing innate immunity 
in insects, suggesting a conserved mechanism for eukary-
otic organisms for responding to mitotically stressed cells.

DNA damage

DNA damage is a change in DNA structure that can occur 
in cancer cells intrinsically during the “stress” of extensive 
replication or as a direct result of mitotic and/or oxida-
tive stress (Fig. 2). In addition, it can be caused by extrin-
sic stresses such as viral infection, radiation, UV light or 
chemotherapy [98]. Apart from causing mutations that can 
lead to the formation of neoantigens activating the immune 
system, DNA damage can also result in the accumulation 
of ectopic DNA particles that can function as DAMPs [83] 
as well as in the upregulation of stress ligands activating 
immune receptors [62]. This section will focus on the DNA 
damage-induced expression of stress ligands as well as on 
immune surveillance activities induced by DNA damage-
associated DAMPs rather than the well-described forma-
tion of neoantigens that has been reviewed elsewhere [98].

DNA damage can directly alert the immune system by 
inducing MHC class I-like ligands of activating receptors 
present on immune cells [21]. NK cells, γδ T cells, αβ 
CD8+ T cells and NKT cells express the receptor NKG2D 
that can bind to stress ligands [100], which become upregu-
lated after stress signals, especially in cancer cells [161]. 
DNA-damaging conditions such as ionizing radiation (IR), 
damaging agents or synthesis inhibitors can induce the 
expression of several of these ligands, and this depends 
on the DNA damage response (DDR) machinery [62, 63]. 
Similarly, ligands of the activating receptor DNAM-1 
expressed by NK and T cells were found to be upregulated 
by chemotherapeutic treatment of multiple myeloma cells, 
and this was counteracted by inhibiting members of the 
DDR machinery [162, 163]. Recently, it has been suggested 

that fibroblasts can acquire APC-like functions by their 
ability to activate naïve CD8+ T cells in response to DNA 
damage. Treatment of fibroblasts with a DNA-damaging 
agent induced their expression of MHC class I molecules 
as well as multiple NKG2D and DNAM-1 ligands [169]. In 
addition to DNA damage alerting the immune system via 
stress ligands, the damaged DNA itself can be sensed by 
the DDR, leading to a senescent state in which inflamma-
tory cytokines are secreted [137]. Indeed, agents that pro-
mote double stranded (ds) DNA breaks have been shown to 
induce inflammatory genes [18]. Moreover, inhibiting the 
DDR machinery impairs cytokine induction [127] and NK 
and T-cell dependent tumor regression [168].

If enough damage occurs, DNA can undergo fragmen-
tation and leak into the cytosol or extracellular milieu. 
In this scenario, DNA itself is a DAMP that is sensed by 
PRRs resulting in the downstream production of cytokines 
such as type I IFNs that normally act to initiate anti-viral 
responses [77]. In typical anti-viral immune responses, 
PRRs recognize viral nucleic acids, leading to the produc-
tion of type I IFNs and activation of T-cell responses. It is 
now believed that the same responses can also be initiated 
from sensing of endogenous DNA particles that are found 
in ectopic locations (extranuclear or extracellular), which 
can occur during cancer as a result of DNA damage. Cyto-
solic DNA resulting from extensive replication or defects 
in the DDR in the cancer cell itself can bind to cancer 
cell-expressed receptors that activate immune surveillance 
pathways. Extracellular DNA resulting from DNA dam-
age-induced apoptosis, necrosis or leakage can be sensed 
by receptors on immune cells or non-immune cells in the 
tumor microenvironment, inducing innate and subsequent 
adaptive immunity. Type I IFNs produced by either malig-
nant cells or DCs in the tumor microenvironment are there-
fore mediators of the pathways underlying cancer immune 
surveillance in response to DNA damage, underlined by 
their requirement for an optimal anti-cancer response after 
radiation or chemotherapy [160]. In contrast, induction 
of type I IFNs by DNA damage might also favor tumor 
growth because of IFN’s known ability to upregulate tumor 
programmed cell death ligand 1 (PD-L1), an immune sup-
pressive molecule [12, 196].

Since DNA is sensed by PRRs, the role of DNA damage 
in controlling immune responses in cancer has been studied 
by examining the role of specific PRRs or their signaling 
pathways in cancer progression. We review below the fol-
lowing PRRs/signaling pathways: endosomal receptors—
TLR3, TLR7, TLR8, and TLR9; cytosolic receptors—
cyclic GMP–AMP synthase (cGAS)/stimulator of IFN 
genes (STING), absent in melanoma (AIM) 2, and retinoic 
acid-inducible gene (RIG) I-like receptors (RLRs).

TLR3 binds to endosomal dsRNA and serves to alert 
the immune system to viral infection, but can also promote 
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cancer clearance. For example, signaling through TLR3 in 
DCs and other APCs can activate anti-tumor NK cells, pre-
sumably due to dsRNA released by cancer cells [3, 107]. 
Tlr3−/− mice featured an increased tumor burden in a mouse 
model of prostate cancer, which could be counteracted by 
administration of the TLR3 ligand polyinosinic-polycyti-
dylic acid [poly(I:C)], leading to immune surveillance by 
T and NK cells [27]. Poly(I:C) administration has also been 
shown to reduce lung cancer growth, mediated by Th1 and 
Th17 immunity [57] and is currently investigated in clinical 
trials as a cancer vaccine adjuvant [114]. Chemotherapeutic 
agents can induce the production of type I IFNs in response 
to TLR3 signaling, resulting in chemokine release [160]. 
Moreover, treatment of prostate cancer cell lines in  vitro 
with TLR3 agonists induces inflammatory molecules that 
had the potential to recruit immune cells, suggesting that 
a TLR3-mediated anti-cancer immune response could be 
directly initiated by signaling inside the cancer cell itself 
[60].

The closely related TLRs 7 and 8, which recognize 
single-stranded (ss) RNA, are popular targets for can-
cer immune therapy. Their agonists induce cytokine and 
chemokine secretion, macrophage activation and cellular 
immunity through pathways downstream of the transcrip-
tion factor NF-κB [146]. Although exogenously used in 
cancer immune therapy, TLR7/8-mediated immune surveil-
lance has not been documented. However, TLR7 has been 
suggested to promote chemoresistance when expressed by 
cancer cells instead of antigen-presenting cells, even in 
Tlr7−/− mice [23].

TLR9 binds to endosomal CpG DNA or oligodeoxynu-
cleotides and its expression has been detected in a num-
ber of cancer cell lines and human cancer biopsies. High 
expression of TLR9 in cancer has been associated with 
both poor (glioma, prostate cancer, esophageal adenocar-
cinoma) and good (triple-negative breast cancer, renal cell 
carcinoma) prognosis [142]. The mechanisms of TLR9’s 
opposing roles in cancer cells have not been fully elu-
cidated, and it is unclear if they are completely immune-
related. However, TLR9 agonists are currently investigated 
for use in cancer immune therapy because of their ability to 
directly induce activation and maturation of plasmacytoid 
(p)DCs and subsequent downstream adaptive immunity, 
and to enhance differentiation of B cells into plasma cells 
[91]. On the other hand, one recent study found that TLR9 
signaling in tumor-infiltrating myeloid cells promoted 
tumor re-growth after radiation by inducing tumor-promot-
ing inflammation and re-vascularization [61].

The cGAS/STING pathway detects cytosolic DNA 
accumulated in response to DNA damage [78, 79]. One 
hypothesis for STING-mediated anti-cancer immunity is 
that DNA from necrotic tumor cells is engulfed by DCs 
and triggers STING signaling inside the DCs. Accordingly, 

STING-deficient mice feature defective T-cell responses in 
melanoma [188] and glioma [125], and STING is required 
for type I IFN-mediated anti-tumor effects after radiation 
[41]. Additionally, loss of STING has been suggested as 
an escape mechanism of damaged or pre-malignant cells 
to evade immune surveillance [2, 190, 202]. Moreover, 
STING agonists are proposed to have potential as a cancer 
immune therapy agent through their activation of DCs and 
production of IFNs [97].

Absent in melanoma (AIM) 2 is an intracellular dsDNA 
sensor that is part of a unique multiprotein complex called 
the inflammasome, which mediates the secretion of IL-1β 
and IL-18. Since these two cytokines strongly promote 
inflammatory responses, AIM2 has been studied in the 
context of inflammatory cancers, especially those in the 
gut, where it was shown that Aim2−/− mice develop more 
colitis-associated cancer [105, 186]. As its name implies, 
AIM2 is downregulated in a variety of cancers and cancer 
cell lines [43, 45, 132], presumably because it prevents 
cancer progression, and cancer cells must lose expression 
of AIM2 to survive anti-tumor responses. Indeed, a recent 
study proposes that its expression renders mice less resist-
ant to DNA ds-breaks caused by IR and chemotherapeutic 
agents, which could point towards an inflammasome-medi-
ated role in cancer cell susceptibility to IR and chemother-
apy [73].

RLRs recognize cytoplasmic RNA, increasingly present 
after IR. They include RIG-I, melanoma differentiation-
associated protein (MDA)-5 and laboratory of genetics and 
physiology 2 (LGP2), which is a negative regulator of the 
former two [185]. Their signaling pathways converge on 
the recruitment of NF-κB and IRF3, subsequently activat-
ing type I IFN production. It has been demonstrated that 
RIG-I became activated by binding to tumor-endogenous 
RNA translocating to the cytoplasm after IR and chemo-
therapy, which resulted in IFN production that was blocked 
by LGP2 [134, 185]. Ectopic expression of MDA-5 in pros-
tate cancer cells led to eradication of established tumors 
by activating innate and adaptive immunity via IFN [197]. 
These studies support the use of RLR agonists for cancer 
immune therapy [52, 107, 130, 145] although some of 
the effects are attributed to indirect immune activation by 
cancer cell apoptosis rather than direct activation of the 
immune system [47, 93].

Metabolic stress

Cancer cells feature a number of alterations in their metabo-
lism and on the other hand can also influence the metabolic 
status of their environment. Due to their rapid and exten-
sive replication, cancer cells are in high need for metabolic 
nutrients and oxygen, creating an altered microenvironment 
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of hypoxia, low pH and/or nutrient deprivation. Metabolic 
stress can be defined as any sort of cellular stress caused 
by increased need for ATP, elevated biosynthesis of macro-
molecules or altered redox balance [19]. Thus, it is closely 
correlated with the before-mentioned forms of stress such 
as oxidative, proteotoxic, mitotic or DNA damage stress 
(Fig.  2). One well-characterized metabolic effect occur-
ring in cancer is the Warburg effect, which refers to a shift 
from oxidative phosphorylation to oxygen-independent 
glycolysis, a faster but less efficient way to generate ATP 
under hypoxic conditions [180]. As a result, a tumor cell 
is in abnormally high demand for glucose uptake from the 
surrounding tissue. This section will focus on the control 
of immunity by several key processes resulting from meta-
bolic stress, including hypoxic pathways, autophagy, mito-
chondrial stress, and oncometabolites.

As mentioned above, changes in metabolism can cause 
and be caused by hypoxia in the tumor microenvironment 
of solid cancers, which can influence infiltrated immune 
cells in different, mainly suppressive, ways. Hypoxia can 
directly inhibit the cytotoxic activity of NK cells [143], or 
lead to downregulation of stress ligands on the tumor cell 
surface [155]. It also decreases T-cell survival [166], IL-2 
secretion [203] and increases the expression of the inhibi-
tory ligand PD-L1 on tumor cells [10]. Under hypoxic 
conditions, tumor cells release a number of immune sup-
pressive cytokines such as TGF-β, which inhibits T-cell 
proliferation and activation, promotes suppressive TReg 
development, inhibits antigen presentation by DCs and 
decreases the expression of activating NK cell receptors 
[189]. Together with IL-10 also released in response to 
hypoxia, TGF-β induces the differentiation of macrophages 
into a tumor-promoting M2 phenotype [70]. VEGF induced 
by hypoxia suppresses DC maturation and antigen presen-
tation [58], increases their expression of PD-L1 [37] and 
promotes the accumulation of MDSCs in tumor tissue 
[58]. Moreover, it was shown in an ovarian cancer model 
that tumor cells can secrete the TReg-recruiting chemokine 
CCL28 under hypoxic conditions [54]. COX-2 expression 
is upregulated in cancer cells in response to hypoxia [66], 
resulting in effector T cell and DC suppression as well as in 
TReg and MDSC activation [159, 184, 195]. Hypoxia might 
not only be immune suppressive. Hypoxia-experiencing 
tumor cells release higher amounts of ATP, which can serve 
as a DAMP for inflammasome-induced immune responses 
[70], as described in the section about “DNA damage”.

Another direct result of metabolic stress is autophagy, 
the process in which a cell degrades, reassembles and recy-
cles its components to survive under nutrient and energy 
starvation conditions [7]. Because autophagy modulates 
the cancer cell secretome and surface proteome, it can 
result in the release of immune-activating DAMPs such 
as ATP, ecto-CRT, or HMGB1 [177], and other secreted 

proteins such as cytokines [177] (see “DNA damage” and 
“Proteotoxic stress”). Autophagy can also promote DC and 
T-cell recruitment into the tumor bed and initiate immune 
responses [109]. In immune cells, autophagy can promote 
proliferation, antigen presentation, cell activation and 
cytokine secretion [74, 133, 177]. Cancers can also use 
hypoxia-induced intrinsic autophagy as an immune evasion 
mechanism because increased autophagy suppresses anti-
tumor immune responses [4]. Additionally, it has recently 
been shown that cancer cells use autophagy-mediated deg-
radation of granzyme B secreted from NK cells to evade 
lysis [9].

Metabolic stress can also result in damage of mito-
chondrial (mt) DNA due to hyperactive mitochondria in 
response to increased energetic requirements of cancer 
cells. Compared to nuclear DNA, mtDNA is more suscepti-
ble to damage because it is not associated with histones and 
constantly exposed to high ROS levels [178]. Therefore, 
immune responses similar to the ones activated in response 
to nuclear DNA damage (see “DNA damage”) can also be 
initiated by mtDNA damage, including activation of TLR9 
[181, 199], the NLRP3 inflammasome [115, 153], and 
cGAS/STING [183].

Another result of the unique metabolism observed in 
cancer cells is the production of metabolic byproducts that 
are different from those of normal cells. These “oncome-
tabolites” include lactate (or lactic acid), succinate, and 
2-hydroxyglutarate (2-HG), among others [31]. Oncome-
tabolites accumulate within the tumor microenvironment 
and have the capability to affect healthy host cells resid-
ing there. As described below, oncometabolites have been 
shown to regulate immune-mediated surveillance of cancer 
cells by directly affecting a broad range of immune cells, 
including macrophages, monocytes, NK cells, MDSCs, 
CD8+ T cells, and DCs.

One prominent effect of the altered metabolic state of 
cancer cells is the production and accumulation of lac-
tate. This depends on lactate dehydrogenase (LDH), the 
enzyme responsible for catalyzing the formation of lactate 
from pyruvate in the final step of the glycolytic pathway 
[8]. LDH is frequently upregulated in various cancers and 
acts as an important control point for metabolic regulation 
in cancer cells. Lactate has been shown to promote tumor 
growth by negatively affecting immune surveillance in a 
number of different contexts. For example, tumor-associ-
ated macrophages can be functionally polarized toward a 
pro-tumor M2 phenotype by lactate derived from murine 
lung cancer cells [28]. This phenotypic change is mediated 
through HIF1α and appears to be critical for tumor growth, 
as lung tumors grown in mice lacking pro-tumor M2 mac-
rophages grew significantly slower than tumors in WT 
mice [28]. This is in line with similar reports showing that 
during wound healing, extracellular lactate stimulates the 
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production of the immunosuppressive M2 factors VEGF 
and TGF-β from macrophages [171]. Lactate also sup-
presses production of the pro-inflammatory cytokine TNF. 
Co-culturing monocytes with melanoma cells reduced the 
ability of monocytes to produce TNF, but this effect was 
not observed if the melanoma cells were pre-treated with 
oxamic acid, an LDH inhibitor that prevents the production 
of lactate [44].

NK cells are also negatively affected by tumor-derived 
lactate, both directly and indirectly via MDSCs [75]. In 
murine pancreatic cancer cells, knockdown of LdhA (and 
subsequent lack of lactate production) delays tumor growth 
relative to WT tumors, and NK cells from knockdown 
tumors have improved cytolytic function compared to NK 
cells from WT tumors. Matching this result, in vitro treat-
ment of NK cells with lactate inhibits cytolytic function 
and decreases expression of cytolytic granules and the acti-
vating receptor NKp46. Furthermore, lactate appears to 
stimulate the development of MDSCs, a cell type capable 
of directly inhibiting NK cytotoxicity. MDSCs are present 
in higher abundance in mice bearing WT pancreatic tumors 
compared to mice bearing tumors that cannot produce lac-
tate, and in vitro lactate treatment increases the generation 
of MDSCs [75]. These data show how tumor growth can be 
promoted by lactate through the functional impairment of 
NK cells and induction of MDSCs.

Tumor-derived lactate can also inhibit the function 
of CD8+ T cells. Co-culturing human CD8+ T cells with 
lactate-producing melanoma cells reduces T-cell prolifera-
tion and production of pro-inflammatory cytokines, but this 
effect is not observed using melanoma cells that have been 
pre-treated with oxamic acid and cannot produce lactate. 
Similarly, in human cancer patients, serum lactate levels 
and tumor burden are positively correlated, suggesting that 
lactate provides a positive signal for tumor growth [56]. 
Together, these results support that tumor-derived lactate 
induces inhibitory effects on adaptive immune cells and 
acts to suppress immune surveillance and promote tumor 
growth.

LDH, the enzyme responsible for producing lactate 
in tumor cells, has also been implicated in regulating 
immune–cancer interactions [8]. Indeed, glioma-derived 
LDH isoform 5 induces the expression of NKG2D ligands 
on myeloid cells, which subsequently decreases the expres-
sion of NKG2D on NK cells themselves. As a result of 
these interactions, NK cell-mediated killing of glioma cells 
is decreased [34]. Clearly tumor-derived lactate can have 
broad-reaching effects on many different types of immune 
cells and generally acts to inhibit immune-mediated cancer 
surveillance.

The oncometabolite 2-HG can promote tumor growth 
by acting cell-intrinsically to induce epigenetic repro-
gramming in cancer cells that can affect their ability to be 

recognized by immune cells. In gliomas, these epigenetic 
changes influence genes that regulate immune surveillance. 
The majority (~80%) of gliomas feature gain-of-function 
mutations in the enzyme IDH1 or 2, which causes the 
enzymes to produce the oncometabolite 2-HG instead of 
NADPH [192]. In gliomas harboring this activating muta-
tion, NKG2D ligands are down regulated via epigenetic 
silencing, and these cancers thereby acquire resistance to 
NK cells in a manner dependent on 2-HG [200].

Not all oncometabolites are immune suppressive like 
lactate and 2-HG. Succinate, an intermediate in the citric 
acid cycle, has been shown to stimulate immune cells and 
could potentially induce immune surveillance. The accu-
mulation of succinate occurs in rare cancers with muta-
tions in genes coding for succinate dehydrogenase, such 
as paragangliomas and pheochromocytomas [39, 65]. In 
these cancers, levels of succinate are elevated, and so are 
HIF-1α and HIF-1α-related genes, suggesting that hypoxic 
pathways are also activated in these cancers [131]. Suc-
cinate is a known inflammatory signal that induces IL-1β 
secretion from macrophages in the context of LPS-induced 
activation [170]. Succinate can also act cell-extrinsically by 
signaling through its receptor GPR91 [71], leading to pro-
duction of pro-inflammatory cytokines in DCs [139]. While 
it has not yet been empirically tested if these effects pro-
mote or inhibit cancer progression, one could speculate that 
the immune stimulatory effects of succinate would act to 
enhance immune surveillance and inhibit tumor growth. In 
this sense, succinate appears to oppose the immune inhibi-
tory, tumor-promoting effects of lactate and 2-HG.

Concluding remarks

Immune cells make up a surprisingly large component of a 
tumor mass, and the activity of these cells plays an impor-
tant role in dictating the outcome of cancer (i.e., rejection, 
equilibrium, progressive growth, metastasis, etc.). Here, 
we have focused on how the activity of immune cells is 
regulated by intrinsic stress occurring in cancer cells, and 
how this regulation subsequently affects tumor progression. 
We have defined five unique stress pathways that occur in 
cancer and described how each pathway affects immune 
surveillance of cancer. These stress pathways are highly 
interrelated, have broad-reaching effects on many different 
immune cells, and can both promote and inhibit anti-tumor 
immunity, depending on the context (Figs.  1, 2). Clearly, 
the regulation of immune cells by tumor cells is complex 
and can ultimately either inhibit or support tumor pro-
gression. In this sense, it becomes increasingly important 
to fully understand the intricate and sometimes paradoxi-
cal relationship between cancer and immune cells, since 
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these interactions could become the basis for future cancer 
therapies.
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