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Abstract
Recent high-throughput genome-wide sequencing studies have identified recurrent somatic mutations in myeloid neoplasms. 
An epigenetic regulator, Additional sex combs-like 1 (ASXL1), is one of the most frequently mutated genes in all subtypes of 
myeloid malignancies. ASXL1 mutations are also frequently detected in clonal hematopoiesis, which is associated with an 
increased risk of mortality. Therefore, it is important to understand how ASXL1 mutations contribute to clonal expansion and 
myeloid transformation in hematopoietic cells. Studies using ASXL1-depleted human hematopoietic cells and Asxl1 knockout 
mice have shown that deletion of wild-type ASXL1 protein leads to impaired hematopoiesis and accelerates myeloid malig-
nancies via loss of interaction with polycomb repressive complex 2 proteins. On the other hand, ASXL1 mutations in myeloid 
neoplasms typically occur near the last exon and result in the expression of C-terminally truncated mutant ASXL1 protein. 
Biological studies and biochemical analyses of this variant have shed light on its dominant-negative and gain-of-function 
features in myeloid transformation via a variety of epigenetic changes. Based on these results, it would be possible to estab-
lish novel promising therapeutic strategies for myeloid malignancies harboring ASXL1 mutations by blocking interactions 
between ASXL1 and associating epigenetic regulators. Here, we summarize the clinical implications of ASXL1 mutations, 
the role of wild-type ASXL1 in normal hematopoiesis, and oncogenic functions of mutant ASXL1 in myeloid neoplasms.
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Introduction

Myeloid malignancies are characterized by aberrant clonal 
expansion and differentiation defects of hematopoietic stem 
cells (HSCs), hematopoietic stem progenitor cells (HSPCs) 
or myeloid progenitor cells. Most myeloid malignancies are 
associated with high mortality due to limitations of the avail-
able therapeutic agents and high relapse rate. To investigate 
the causative mutations of myeloid malignancies, genome-
wide sequencing studies have been performed and have 
revealed the mutational landscape [1–4].

An epigenetic modulator, Additional sex combs-like 1 
(ASXL1), is one of the most frequently mutated genes in a 
variety of myeloid neoplasms such as myelodysplastic syn-
dromes (MDS) [5–7], acute myeloid leukemia (AML) [7–9], 

myeloproliferative neoplasms (MPN) [10–16] and chronic 
myelomonogenous leukemia (CMML) [14, 17–20], and its 
mutations are always associated with poor prognosis. Addi-
tionally, ASXL1 mutations are frequently found in clonal 
hematopoiesis (CH) [also called clonal hematopoiesis of 
indeterminate potential (CHIP)], precursor states for hema-
tologic neoplasms with somatic mutations in the absence of 
diagnostic criteria for hematologic malignancies [21–23]. 
Therefore, understanding the mechanism by which ASXL1 
mutations contribute to myeloid transformation is clinically 
important. To understand the functions of ASXL1, ASXL1 
knockdown or Asxl1 knockout mice studies have been per-
formed [24–26]. These studies demonstrated that ASXL1 
knockdown promoted the development of MDS/MPN dis-
ease and ASXL1 depletion resulted in impaired hematopoie-
sis due to loss of interaction with polycomb repressive com-
plex 2 (PRC2). On the other hand, most ASXL1 mutations 
exist in the last exon and would produce C-terminally trun-
cated mutant proteins of ASXL1 (hereinafter referred as to 
mutant ASXL1) by escaping from nonsense-mediated-decay 
[8, 27]. Overexpression of mutant ASXL1 impaired myeloid 
differentiation and induced MDS in mouse transplantation 

Cellular and Molecular Life Sciences

 * Toshio Kitamura 
 kitamura@ims.u-tokyo.ac.jp

1 Division of Cellular Therapy, Advanced Clinical Research 
Center, and Division of Stem Cell Signaling, Center 
for Stem Cell Biology and Regenerative Medicine, Institute 
of Medical Science, The University of Tokyo, 4-6-1 
Shirokanedai, Minato-ku, Tokyo 1088639, Japan

http://crossmark.crossref.org/dialog/?doi=10.1007/s00018-019-03084-7&domain=pdf


2512 S. Asada et al.

1 3

models [28]. There is also growing evidence indicating that 
the physiological expression of mutant ASXL1 protein per-
turbs hematopoiesis and promotes myeloid transformation 
by altering histone modifications in both a dominant-neg-
ative and gain-of-function manner [29]. In addition, novel 
promising therapeutic strategies targeting ASXL1 mutated 
malignancies have been investigated [30–33].

In this review, we will summarize the clinical signifi-
cance of ASXL1 mutations in myeloid malignancies. We 
will also describe recent findings of ASXL1 functions from 
biochemical and biological perspectives, and will then intro-
duce potential targeted therapies for myeloid malignancies 
harboring ASXL1 mutations.

Members of mammalian ASXL family

Mammalian ASXL family genes (ASXL1, ASXL2 and 
ASXL3) are paralogs of Drosophila Additional sex combs 
(Asx) [34, 35]. Asx was originally identified as an enhancer 
of the trithorax and polycomb group (ETP) genes to regulate 
Hox gene expression [36, 37]. Polycomb group (PcG) genes 
repress [38, 39], while trithorax group (TrxG) genes acti-
vate Hox gene expression [40, 41]. Thus, Drosophila Asx is 
involved in both gene activation and repression. In addition, 
Schermann et al. revealed that Asx and Calypso, the human 
ortholog of BRCA1-associated protein 1 (BAP1), formed 
a Polycomb-repressive deubiquitinase (PR-DUB), which 
removes monoubiquitination of histone H2A at lysine 119 
(H2AK119ub) [42]. Collectively, Drosophila Asx is now 
thought to integrally control gene expression through exert-
ing a variety of epigenetic modifications.

Mammalian ASXL1 is ubiquitously expressed [43]. 
Human ASXL1 gene is located on chromosome 20q11 and 
encodes a 1541 amino acids–protein [44]. ASXL1 has an 
N-terminus ASXN domain, an ASX homology (ASXH) 
domain at the N-terminus region, and a plant homeodomain 
(PHD) finger at the C-terminal region (Fig.  1). ASXN, 
ASXH, and PHD domains are shared among all three mam-
malian ASXL family proteins. The ASXN domain is struc-
turally similar to a forkhead-box domain and predicted to 
be essential for the DNA-binding ability of ASXL family 
proteins [45]. The ASXH domain is highly conserved from 
Drosophila to mammalian and is also called as DEUBAD 
(deubiquitinase adaptor) because this domain binds a deu-
biquitinase BAP1 [42], suggesting the importance of the 
interaction between BAP1 and ASXL1. The PHD domain is 
a histone- or DNA-binding module, and recognizes different 
histone modification subtypes such as unmethylated H3K4 
(H3K4me0) and trimethylated H3K4 (H3K4me3) [46, 47].

Germline mutations of ASXL1 and ASXL3 are identified 
in patients with Bohring–Opitz syndrome, which is charac-
terized by severe developmental disorders [48, 49]. ASXL2 

germline mutations are associated with the Shashi-Pena 
syndrome, which is a neurodevelopmental syndrome [50]. 
ASXL1 and ASXL2 are ubiquitously expressed in a variety 
of tissue, whereas ASXL3 expression is restricted to lymph 
node, eyes, lungs, skin, brain, and pituitary gland [43].

A recent study showed that ASXL2 was essential for 
cardiac development and skeletal or metabolic homeosta-
sis [51]. In myeloid malignancies, ASXL2 mutations are 
frequently found in AML harboring RUNX1-ETO fusion 
gene, whereas the frequency of ASXL2 mutations in other 
myeloid malignancies is much lower than that of ASXL1 
mutations [52]. Interestingly, however, ASXL2 mutations 
are more frequently associated with RUNX1-ETO than 
ASXL1 mutations, making this particular fusion gene unique 
among many fusion genes. Asxl2-deficient mice showed 
more severe impaired hematopoiesis than Asxl1-deficient 
mice and development of MDS-like disease [53–55]. These 
results indicate that wild-type ASXL2 plays crucial roles as 
well as a tumor suppressor role in normal hematopoiesis. 
ASXL3 mutations are mainly detected in prostate cancers and 
pancreatic cancers, whereas the mutations are rarely found 
in hematological malignancies [56]. Although, ASXL2 and 
ASXL3 share conserved critical domains with ASXL1, the 
frequency of ASXL1 mutations are much higher than those 
of ASXL2 and ASXL3 mutations. The diversity of mutation 
frequencies within the ASXL family could be due to the dif-
ferences in their unique binding partners, their binding sites 
on chromatin or histone modifications recognized by the 
PHD domain.

Clinical implications of ASXL1 mutations 
in myeloid malignancies

Somatic ASXL1 mutations are recurrently found in vari-
ous myeloid malignancies including myelodysplastic syn-
dromes (MDS) [5–7], acute myeloid leukemia (AML) [7–9] 
and myeloproliferative neoplasms (MPN) such as chronic 
myelogenous leukemia (CML), chronic neutrophic leukemia 
(CNL) and primary myelofibrosis (pMF) [10–16]. ASXL1 
mutations are most frequently identified in patients with 
MPN/MDS overlap syndrome including chronic myelo-
monocytic leukemia (CMML) (50%) [14, 17–20] and juve-
nile myelomonocytic leukemia (JMML) [57, 58]. ASXL1 
mutations are also detected in other myeloid malignan-
cies such as blastic plasmacytoid dendritic cell neoplasm 
(BPDCN) [59] and systemic mastocytosis [60–62]. Addi-
tionally, ASXL1 mutations are found in aplastic anemia, a 
common cause of acquired bone marrow failure [63, 64]. 
Conversely, ASXL1 mutations are rarely found in lymphoid 
neoplasms [65].

The majority of ASXL1 mutations are frameshift or non-
sense mutations localized at the last exon, exon 12. ASXL1 
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mutations frequently coexist with the following mutations; 
DNA methylation-related genes (TET2 [1], IDH1 [66], IDH2 
[8, 66, 67]), spliceosomes (U2AF1 [68], SRSF2 [69]), tran-
scriptional factors (CEBPA [9], RUNX1 [8, 67, 70, 71], 
GATA2 [72]), signal transducers (NRAS [14], JAK2 [70]), 
STAG2 [70] and SETBP1 [73–76]. However, ASXL1 muta-
tions are mutually exclusive to DNMT3A [8, 67], FLT3-ITD 
[8, 67, 71, 77], NPM1 [8, 71, 77, 78] and SF3B1 [79] muta-
tions. These positive and negative associations of muta-
tions should be considered in functional analyses of these 
mutations.

ASXL1 mutations in acute myeloid leukemia

ASXL1 mutations are found in 5–11% of AML patients [71, 
80] and independently confer poor prognosis [8, 9, 67, 71, 77]. 
ASXL1 mutations in AML are more common in older patients 
[9, 67, 71], in secondary leukemia [67] and in male patients 

[9, 67, 71]. In AML, ASXL1 mutations frequently coexist with 
RUNX1 mutations [8, 67, 71] and IDH2 mutations [67, 81], 
and are positively associated with FAB M0 karyotype [71, 
77], t(8; 21) [52, 71, 82], trisomy 8 [67, 71] and del(7q)/− 7 
chromosomal aberrations [67].

Notably, RUNX1 is the most frequently mutated gene in 
ASXL1-mutated AML. Coexistence of ASXL1 and RUNX1 
mutations is related to poor prognosis in AML patients [67]. 
We previously reported that a RUNX1 frameshift mutation 
(RUNX1 S291fsX) indeed cooperates with an ASXL1 muta-
tion to develop MDS/AML in a mouse model [29]. Further 
studies are required to reveal the precise mechanism by which 
ASXL1 mutation and RUNX1 mutation cooperatively induce 
myeloid malignancies.
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Fig. 1  Schematic representation of the structure of wild-type ASXL1 (ASXL1-WT) and C-terminally truncated mutant ASXL1 (ASXL1-MT). 
Their known interacting partners and post translational modifications are also shown. *Binding sites are not identified
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ASXL1 mutations in myelodysplastic 
syndromes

ASXL1 mutations are found in 11–21% of patients with 
MDS and are also associated with adverse outcomes in MDS 
patients [1, 5, 83]. ASXL1 mutations are more frequently 
detected in patients with high-risk cases of MDS [6, 7]. 
DNA hypomethylating agents (HMA) such as azacitidine 
or decitabine are used for high-risk MDS patients. A recent 
study showed that TET2 mutations confer improved response 
to HMA; however, there was no association between ASXL1 
mutations and response to HMA as there was with TET2 
mutations [84]. Another study demonstrated that ASXL1 
mutations are associated with shorter overall survival in 
MDS patients treated with HMA [85].

In MDS patients ASXL1 mutations frequently coexist with 
SETBP1 mutations [73–76]. SETBP1 mutations are local-
ized in the SKI homologous region, resulting in increased 
stability of the SETBP1 protein [73, 76]. The presence of 
SETBP1 mutations is reported to be associated with quicker 
leukemic transformation of MDS and shorter survivals. 
In fact, Inoue et al. demonstrated that SETBP1 mutations 
rapidly drive leukemic transformation of MDS with ASXL1 
mutations both in patients and in a mouse model [73].

ASXL1 mutations in chronic myelomonocytic 
leukemia

The ASXL1 mutation is the most frequently (40–50%) 
detected mutations in CMML patients. CMML patients 
harboring ASXL1 mutations have poorer prognosis [17, 18, 
86, 87] and are categorized as a high-risk leukemic transfor-
mation group [17, 18]. Prognostic scores, including ASXL1 
mutational status, divides CMML patients into three groups 
with distinct outcomes [17]. In CMML patients, ASXL1 
mutations frequently coexist with TET2 mutations. Addi-
tional TET2 mutations are associated with shorter survival 
in the presence of ASXL1 mutations [88], while patients har-
boring TET2 mutations in the absence of ASXL1 mutations 
are categorized as favorable risk groups [89]. In CMML 
patients, hypomethylating agents are effective, but patients 
harboring ASXL1 mutations present a lower overall response 
rate (ORR) [90].

ASXL1 mutations in clonal hematopoiesis

Along with TET2 and DNMT3A mutations, ASXL1 muta-
tions are frequently detected in clonal hematopoiesis (CH) 
as well [22]. Especially, CH is characterized by the presence 

of a somatic mutation common with hematological neopla-
sia without cytopenia nor dysplasia. CH is an independent 
risk factor in progression of myeloid malignancies [21, 23]. 
CH is also prevalent in aplastic anemia, and clones carrying 
ASXL1 mutations tend to increase in size over time [64].

A recent study revealed that CH carriers with DNMT3A, 
TET2, ASXL1 and JAK2 mutations are associated with ather-
osclerosis and coronary heart disease. Consistent with these 
clinical observations, Tet2-deficient mice showed enhanced 
progression of atherosclerosis than control mice [91, 92]. A 
recent study revealed that lack of Dnmt3a also accelerated 
atherosclerosis in mice [93]. Further studies are required to 
clarify whether CH with ASXL1 mutations also accelerate 
the development of atherosclerosis.

CH is frequently detected in solid tumor patients, par-
ticularly after chemotherapy [94]. The presence of CH in 
solid tumors is associated with higher recurrence ratio and 
adversely affects survival. It seems that chemotherapy pro-
motes CH; PPM1D and TP53 mutations are particularly 
related to prior chemotherapy in CH with solid tumors [94]. 
Recently, there is a series of evidence that PPM1D muta-
tions drive CH and confer resistance to chemotherapy [95, 
96], but ASXL1 mutations that are unassociated with prior 
chemotherapy are frequently found in CH with solid tumors. 
On the other hand, it is also possible that CH enhances the 
growth of solid tumors. It will be interesting to investigate 
whether CH with ASXL1 mutations influence the growth of 
solid tumors.

The role of ASXL1 in normal hematopoiesis

To understand the roles of ASXL1 in normal hematopoie-
sis, several groups engineered and analyzed Asxl1 knock-
out mice (Table 1). Fisher et al. engineered and analyzed a 
constitutive Asxl1 knockout mouse. Constitutive disruption 
of Asxl1 led to partial perinatal lethality. Constitutive loss 
of Asxl1 also showed impaired B and T lymphopoiesis and 
impaired myeloid differentiation [97]. Wang et al. showed 
that heterozygous genetic Asxl1 knockout mice (Asxl1 +/−) 
developed MDS/MPN [26]. Asxl1 loss led to an increase 
in apoptotic and mitotic cells in the bone marrow. Asxl1 
loss also exhibited reduced hematopoietic stem cell (HSC)/
hematopoietic stem progenitor cell (HSPC) populations and 
impaired hematopoietic repopulation ability. In addition, 
Zhang et al. demonstrated that deletion of Asxl1 cooperated 
with Nf1 haplo-insufficiency to activate multiple oncogenic 
pathways such as MYC, NRAS and BRD4, promoting mye-
loid transformation [98].

Abdel-Wahab et al. reported that hematopoietic cell-
specific deletion of Asxl1 induced an MDS-like disease. 
They generated conditional Asxl1 knockout mice by cross-
ing mice bearing floxed Asxl1 alleles with Vav-Cre or 
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IFN-α-inducible Mx1-Cre transgenic mice [25]. Deletion 
of Asxl1 in hematopoietic cells resulted in age-dependent 
leukopenia and anemia with dysplasia. In the bone marrow 
of Asxl1−/− mice, the number of HSC/HSPC was increased, 
but the repopulating ability of these cells were impaired. 
They also showed that Asxl1 and Tet2 double knockout mice 
developed MDS more rapidly than Asxl1−/− or Tet2−/− mice. 
Zhang et al. found that systemic deletion of Asxl1 produced 
more severe hematological phenotypes than conditional 
deletion of Asxl1, implicating an important role for Asxl1 in 
the microenvironment to support hematopoiesis. They fur-
ther showed that bone marrow stromal cells derived from 
CMML patients had decreased expression of ASXL1, and 
that loss of Asxl1 in the bone marrow niche led to a decrease 
in long-term (LT)-HSCs and myeloid lineage skewing in 
mice [99]. In human CD34-positive cord blood cells, it was 
shown that ASXL1 knockdown resulted in reduced erythro-
poiesis and impaired erythrocyte enucleation [100].

Taken together, these studies demonstrated an essential 
role of wild-type ASXL1 in maintaining normal hemat-
opoiesis. Asxl1 deletion leads to impaired progenitor dif-
ferentiation and often promotes the development of myeloid 
malignancies.

ASXL1 interaction partners

Schermann et al. revealed that, the mammalian ASXL1, 
like drosophila Asx and a deubiquitinase Calypso, bound 
the mammalian BAP. They also showed that ASXL1 and 
BAP1 formed a Polycomb-repressive deubiquitinase (PR-
DUB), which removes monoubiquitination of histone H2A 
at lysine 119, catalyzed by PRC1 complexes [42]. Wild-type 
ASXL1 interacts with EZH2, EED and SUZ12 as well, main 
components of the polycomb repressive complex (PRC) 2 
to help PRC2 functions [24]. Wild-type ASXL1 protein 
contributes to repress their target genes such as posterior 
HOXA genes via collaboration with PRC2 to induce a rep-
resentative histone repressive mark H3K27me3. Therefore, 
ASXL1 depletion results in global reduction of the trimeth-
ylation of histone H3 at lysine 27 (H3K27me3), a repre-
sentative repressive mark, leading to derepression of pos-
terior HOXA genes. It was also reported that knockdown of 
wild-type Asxl1 caused myeloid transformation in concert 
with a NRAS mutant [24]. In addition, Wang et al. revealed 
that  lineage− c-Kit+ cells of Asxl1-knockout bone marrow 
cells exhibited global reduction of both H3K27me3 and 
H3K4me3 [26]. Inoue et al. showed that ASXL1 interacted 
with OGT and HCFC1 by mass spectrometry, and found that 
the knockdown of ASXL1, OGT or HCFC1 decreased global 
levels of H3K4me3 and attenuated myeloid differentiation 
of HL-60 cells [31]. Previous reports showed that the OGT/
HCFC1 complex bound and recruited trithorax homologues, 

such as MLL1, SET1/COMPASS and MLL5 [101–103]. 
These results indicate that wild-type ASXL1 could play piv-
otal roles as a scaffold to control the levels of H2AK119ub, 
H3K27me3 and H3K4me3, leading to epigenetic control of 
gene expression.

In addition, wild-type ASXL1 was shown to interact with 
non-histone proteins; ASXL1 directly bound AKT1 and 
ASXL1 deficiency led to p27-dependent cell cycle arrest, 
resulting in cellular senescence [104]. ASXL1 also interacts 
with the cohesion complex, including SMC1A, SMC3, and 
RAD21, and ASXL1 depletion leads to impaired telophase 
cohesion separation [105]. Moreover, ASXL1 interacts with 
RNA polymerase II (RNAPII) complex to regulate RNAPII 
transcriptional activity [99].

These findings demonstrated that ASXL1 interacts with a 
variety of molecules, important for transcription and trans-
lation, and that its loss or mutations cause aberrant histone 
modifications and dysregulated transcription as well as other 
cellular functions such as cell division and cell signaling, 
leading to various diseases (Fig. 2).

Posttranslational modifications of ASXL1

Notably, posttranslational modifications of ASXL1 influ-
ence its stability and function. Inoue et al. demonstrated that 
ASXL1 was ubiquitinated at lysine 351. The deubiquitinase 
USP7 stabilizes ASXL1 by removing polyubiquitin chain 
[106]. ASXL1 lysine 351 is subject to not only polyubiquit-
ination but also monoubiquitination, in the presence of BAP1 
[30]. Interestingly, monoubiquitination of mutant ASXL1 at 
lysine 351, in turn, activates the catalytic function of associ-
ating BAP1. Recent mechanistic analysis of mutant ASXL1 
protein revealed the ‘gain of function’ features of ASXL1 
mutations. BAP1, a strong interacting partner of ASXL1, is 
frequently mutated in renal cell carcinoma, mesothelioma 
and uveal melanoma, implicating BAP1 as a tumor suppres-
sor [107–109]. However, BAP1 is rarely mutated in acute 
myeloid leukemia [110]. There are a series of experimental 
evidence that BAP1 plays tumor-promoting roles in myeloid 
neoplasms. Balasubramani et al. showed that the cancer-
associated ASXL1 mutant protein aberrantly enhanced the 
catalytic function of BAP1, leading to a profound decrease 
in H2AK119ub [111]. Sahtoe et al. also biochemically dem-
onstrated that the ASXH domain of ASXL1 was essential in 
increasing BAP1′s affinity to ubiquitin on H2A [112]. We 
showed the mutually reinforcing effects between the mon-
oubiquitinated form of mutant ASXL1 and BAP1 in myeloid 
leukemogenesis by dysregulating HOXA and IRF8 genes 
[30], which are responsible for leukemogenesis and monopo-
iesis, respectively. We also demonstrated that depletion of 
endogenous BAP1 abrogated the leukemogenesis induced 
by mutant ASXL1, demonstrating pivotal roles of BAP1 in 
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mutant ASXL1-induced cell transformation. Recently, Daou 
et al. showed that monoubiquitination of wild-type ASXL2 
at lysine 370, which corresponds to lysine 351 of ASXL1, 
was indispensable for activation of the catalytic function of 
BAP1, and was catalyzed by UBE2E family proteins [113]. 
Whether monoubiquitination of mutant ASXL1 at lysine 351 
is also catalyzed by UBE2E family proteins remains to be 
elucidated. In addition to ubiquitination, Inoue et al. demon-
strated that glycosylation of ASXL1 at serine 199 by OGT 
(O-linked N-acetylglucosamine transferase) was important 
for its stability [31]. Functional significance of other modi-
fications of ASXL1 such as phosphorylation, sumoylation, 
and methylation remains to be elucidated.

Mutant ASXL1 protein gains functions 
leading to myeloid transformation

As described above, Asxl1 deficiency leads to the develop-
ment of myeloid diseases in mouse models, suggesting that 
ASXL1 mutations are loss-of-function mutations. However, 
accumulating evidence suggests that mutant ASXL1 pro-
teins gain functions that promote myeloid leukemogenesis. 
Most ASXL1 mutations in myeloid malignancies are het-
erozygous frameshift or nonsense mutations localized near 
the 5′ end of the last exon [20]. Mutant ASXL1 transcripts 
are, therefore, predicted to escape from nonsense-mediated 
decay, resulting in production of the C-terminally truncated 
ASXL1 protein [114]. In cell lines derived from patients 
with hematological malignancies, mutant ASXL1 proteins 
were indeed detected by western blot and mTRAQ-based 
mass spectrometric analyses [27].

Hence, several groups have investigated whether the pres-
ence of the C-terminally truncated forms of ASXL1 protein 
induce myeloid transformation. Inoue et al. showed that 
mutant ASXL1 proteins (ASXL1-MT) interacted with PRC2 
components and interfere with its catalytic activity. Forced 
expression of ASXL1-MT inhibited wild-type ASXL1 
functions and caused MDS/AML development in mouse 
bone marrow transplantation models via derepression of 
miR125a and Hoxa genes caused by decreased H3K27me3 
[28]. Yang et al. established C-terminally truncated mutant 
of Asxl1(Asxl1Y588X)-expressing transgenic mice mimick-
ing human ASXL1 Y591X mutation and demonstrated that 
transgenic Asxl1Y588X expression led to myeloid malignan-
cies [33]. Nagase et al. engineered a conditional Rosa26 
locus ASXL1-MT knock-in mice (Asxl1-MT KI mice) mim-
icking human ASXL1 E635RfsX15 mutation, derived from 
patients with MDS/AML, and characterized the phenotype 
[29]. Asxl1-MT KI mice showed mild anemia and a modest 
block in erythroid differentiation associated with increased 
number of platelets, and repopulation ability of HSCs was 
attenuated. However, Asxl1-MT KI mice did not develop any 

hematological malignancies. Co-expression of a RUNX1 
frameshift mutation cooperatively induced MDS/AML 
in Asxl1-MT KI mice. In addition, a retrovirus-mediated 
insertional mutagenesis study exhibited the susceptibility 
of Asxl1-MT KI bone marrow cells to myeloid leukemia. 
Thus, mutant Asxl1 promotes leukemia susceptibility.

Several groups generated and analyzed Asxl1 mutant 
knock-in mice at the endogenous Asxl1 locus. Hsu et al. 
established endogenous locus Asxl1G643fs mutant knock-in 
mice mimicking human ASXL1 G646WfsX12 mutation 
(Asxl1tm/+) [115]. Asxl1tm/+ mice showed enhanced colony-
forming activity of HSPCs and modestly impaired repopula-
tion ability of HSCs. They showed that MN1 overexpression 
was observed in patients harboring ASXL1 mutations, and 
that MN1 overexpression increased the frequency of long-
term culture initiation cells. However, Asxl1G643fs mutant 
knock-in mice alone did not develop hematological malig-
nancies within 18 months of follow-up. On the other hand, 
Uni et al. generated endogenous locus knock-in mice of 
Asxl1G643fs mutant and identified different phenotypes [116], 
although it is not clear why theoretically the exact same KI 
mice gave different phenotypes. The locus KI mice devel-
oped by Uni et al. presented decreased number of HSC and 
increased apoptotic cells, and leukopenia and thrombocyto-
sis were observed at 12 months old, with some mice devel-
oping MDS/MPN-like disease after a long latency period 
(about 18–24 months). Consistent with the previous mouse 
studies of mutant ASXL1, expression of Hoxa genes in Asx-
l1G643fs/+ mice was dysregulated. In addition, they focused 
on upregulation of senescence-related genes including 
p16Ink4a in Asxl1G643fs/+ mice because young Asxl1G643fs/+ 
mice (3 months old) showed myeloid-skewing differentiation 
like aged mice. In relation to this observation, it was previ-
ously reported that the ASXL1/BAP1 axis was implicated 
in upregulation of p15Ink4b, supported by the fact that the 
promoter activity of INK4B-ARF-INK4A locus was sup-
pressed by H2AK119ub modification [117]. Uni et al. dem-
onstrated that wild-type, but not mutant ASXL1 proteins, 
interacted with BMI1, a key component of PRC1. The level 
of H2AK119ub was decreased at the p16Ink4a promoter 
locus, and Ink4a expression was derepressed in Asxl1G643fs 
mutant knock-in mice. They also found that p16Ink4a knock-
out rescued decreased HSC numbers and aberrant apoptosis 
in Asxl1G643fs mutant knock-in mice.

Collectively, these findings indicate that mutant ASXL1 
at physiological expression levels alone is insufficient to 
induce myeloid transformation but impairs hematopoiesis 
and promotes susceptibility to myeloid malignancies by 
altering histone modifications. The distinct phenotypes of 
Asxl1 mutant knock-in mice among several groups could 
be caused by the differences in the cites of Asxl1 muta-
tions or the levels and the hematopoietic lineages of Asxl1 
expression.
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Potential therapies for myeloid malignancies 
harboring ASXL1 mutations

Recent studies pave the way to novel therapeutic strat-
egies for ASXL1-mutated myeloid malignancies. First, 
ASXL proteins/BAP1 complex promotes gene activa-
tion via opposing PRC1-mediated monoubiquitination of 
H2AK119 [118]. As described above, ASXL1-MT, but not 
wild-type ASXL1, strongly enhanced the catalytic activity 
of BAP1, resulting in profound reduction of H2AK119ub 
[30, 111]. In hematopoietic cells, hyperactive ASXL1-
MT/BAP1 complex upregulates HOXA genes resulting in 
myeloid transformation [30]. Therefore, enzymatic activity 
of BAP1 or BAP1–ASXL1 binding is a potential thera-
peutic target for ASXL1-mutated myeloid malignancies. 
Guo et al. also revealed that the endogenous Bap1 activity 
is essential for pathogenesis of myeloid malignancies of 
Asxl1Y588X transgenic mice [119].

In addition, it has been shown that ASXL1-MT, but 
not wildtype ASXL1, bound Bromodomain-containing 
4 (BRD4) [33], a well-known oncoprotein in myeloid 
malignancies [120]. BRD4 activates pTEFb complex and 
induces acetylation of H3 at lysine 122 (H3K122Ac), 
resulting in phosphorylation of RNA polymerase II and 
gene activation. In the Asxl1Y588X transgenic mice, the 
level of H3K122Ac at the promoter locus of Prdm16 was 
increased, resulting in dysregulated expression of Prdm16 
[33]. Bone marrow cells from Asxl1Y588X transgenic mice 
showed higher sensitivity to the BRD4 inhibitor than those 
from normal mice.

A previous study showed that combined expression of 
ASXL1-MT and SETBP1-MT rapidly developed MDS/
AML in mice and the leukemia cells showed repression 
of TGFβ pathway genes [73]. Nano-liquid chromatogra-
phy–mass spectrometry analysis revealed physical interac-
tion between mutant ASXL1 and HDAC1 [30]. Saika et al. 
demonstrated that decrease in acetylation levels of histone 
H3K14 and H4K5 at TGFβ pathway genes in leukemia 
cells transformed by ASXL1-MT and SETBP1-MT [32]. 
They also showed that mutant ASXL1-induced leukemia 
conferred high sensitivity to an HDAC inhibitor, vori-
nostat. Vorinostat restored acetylation of histone H3K14 
and H4K5 and the expression of TGFβ pathway genes.

On the other hand, it is effective to reactivate the func-
tions of wild-type ASXL1 which are weakened by hemizy-
gous ASXL1 mutations. Wild-type ASXL1/OGT complex 
is required for maintaining the level of H3K4me3 [31]. 
Depletion of ASXL1 or OGT led to impaired myeloid dif-
ferentiation and global loss of the level of H3K4me3. In 
addition, OGT directly bound and stabilized wild-type 
ASXL1. Therefore, enhancing OGT activity is a reason-
able strategy for restoring tumor suppressive functions of 

wild-type ASXL1. Intriguingly, an OGA inhibitor, which 
elicits the OGT activity, was effective in suppressing 
growth of leukemia cells expressing the mutant ASXL1 
by restoring the tumor suppressor roles of wild-type 
ASXL1–OGT axis [31].

Taken together, inhibition of either BAP1, BRD4, 
HDACs or OGA has been shown to suppress leukemia with 
ASXL1 mutations in mouse models. These findings need to 
be validated using patient derived xenograft (PDX) models 
in future studies.

Conclusions and future perspectives

ASXL1 mutations are often associated with poor prognosis. 
Therefore, it is important to understand the precise mecha-
nisms by which ASXL1 mutations contribute to myeloid 
transformation. Recent biological analyses demonstrated 
that mutant ASXL1 plays pivotal roles in leukemogenesis 
and leads to increased susceptibility to myeloid transforma-
tion by altering histone modifications. Meanwhile, unlike 
other epigenetic factors such as EZH2 and TET2, ASXL1 
itself has no catalytic function. Hence, ASXL1 binding 
partners have been intensively investigated and biochemi-
cal analyses of these binding partners have shed light on 
the potential therapeutic strategies for myeloid malignancies 
harboring ASXL1 mutations.

While mutant ASXL1 causes dysregulations of histone 
modifications, resulting in myeloid malignancies, wild-type 
ASXL1 should also play crucial roles in epigenetic regula-
tions under the physiological conditions via interacting a 
variety of epigenetic factors. In addition, ASXL1 have vari-
ous post-transcriptional modifications probably induced by 
outside stimuli. Therefore, investigation of epigenetic con-
trol by wild-type ASXL1 may clarify how the outside stim-
uli are converted to the transcriptional profiles via altering 
epigenetics.
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