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Abbreviations
HFC	� High fatality cancer
TNBC	� Triple-negative breast cancer
HGSC	� High grade serous ovarian carcinoma
CRD	� Carbohydrate-recognition domains
NSCLC	� Non-small cell lung cancer
SCLC	� Small cell lung cancer
HCC	� Hepatocellular carcinoma
MPM	� Malignant pleural mesothelioma
AML	� Acute myeloid leukemia

Introduction on high fatality cancer

The definition of high fatality cancer (HFC) remains unclear 
and is often debated. For many, it is related to cancers for 
which a diagnosis can be a death sentence. In practice, and 
for the purpose of this review, HFCs are defined as cancers 
for which the five-year survival rate after diagnosis is below 
25–30% (Fig. 1). They compose most of what is sometimes 
called “high mortality cancers”, which include cancers with 
survival rates of less than 50%, as defined by the National 
Cancer Institute in President Obama’s High Mortality Can-
cer Bill of 2013. Of course, these rates will vary according 
to both intrinsic (e.g., genetic) and extrinsic factors (e.g., 
lifestyle, environmental factors). Yet, HFCs can be arbitrar-
ily classified into two broad categories: those in which little 
progress has been made (i.e., pancreatic, liver, non-small 
cell lung cancer, mesothelioma, gastric and glioblastoma), 
and high fatality subtypes (“bad” cancers among the “good”, 
i.e., triple negative breast cancer (TNBC), high grade serous 
ovarian cancer (HGSC), acute myeloid leukemia (AML), or 
castrate resistant prostate cancer). The former category often 
refers to cancers that remain relatively rare. For example, 
there are approximately less than 2–5 gallbladder cancer 
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cases per 100,000 persons, making it the 20th most frequent 
cancer in the world (http://www.wcrf.org). Unfortunately, 
others, such as lung cancer (30–50 cases per 100,000 per-
sons) and breast cancer (more than 100 cases per 100,000 
persons in more developed countries), are more frequent and 
largely responsible for high mortality rates. Clearly, there 
is an urgent need to develop new biomarkers that can be 
used to identify people at risk and to develop treatment with 
greater efficacy.

Galectins

Galectins are multifunctional proteins that belong to the 
animal lectin family. All galectins share similar binding 
affinities to β-galactosides and display high amino acid 
sequence homology among their carbohydrate-recognition 
domains (CRDs) [1]. In mammals, 19 different members 
of this family have been identified, with 13 of them being 
expressed in humans (galectin-5, -6, -11, -15, -16, -19, and 
-20 are not found in humans). Galectins are divided into 
three sub-groups according to their structure: prototypic 
galectins containing one CRD (Gal-1, -2, -5, -7, -10, -11, 

-13, -14, -15, -16, -17, -19, and -20), tandem-repeat galec-
tins containing two covalently linked CRDs (Gal-4, -6, -8, 
-9 and -12) and chimera-type galectins containing multiple 
CRDs linked by their amino-terminal domain (Gal-3). While 
these proteins perform homeostatic functions inside normal 
cells, under pathological or stress conditions, galectins are 
released either passively from dead cells or actively via non-
classical secretion pathways. Once released into the extra-
cellular milieu, they bind to repeating units of high density 
N- and O-glycans on the peptide backbone of membrane 
receptors via their CRD. This ability of galectins to promote 
the packing of glycosylated receptors into an ordered cross-
linked lattice at the cell surface is facilitated by their inherent 
multivalency. Such cross-linking of glycosylated receptors 
triggers signals that are critical for the regulation of cell fate.

Galectins as potential therapeutic targets in HFC?

While the main reasons for the high mortality rates for HFCs 
are linked to a late diagnosis, other factors that contribute to 
their aggressiveness include an elevated growth rate, seques-
tration from the immune system, lack of effective treatments, 

Fig. 1   High fatality cancer (HFCs) according to body location. Illustration of the major HFCs and the percentages indicate the approxima-
tive 5-year survival rate according to the 2017 annual report of the American Cancer Society (http://www.cancer.org)

http://www.wcrf.org
http://www.cancer.org
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therapeutic resistance, metastasis, tumor microenvironment, 
dormancy and heterogeneity of the tumor. Because galectins 
have been shown to modulate most if not all these processes 
and can thus play a crucial role at different stages of cancer 
progression, their potential as therapeutic targets in HFC is 
high. The revived interest in designing new and effective 
immunotherapies for cancer treatment has further placed the 
galectin under the projector. This is largely due to recent 
studies showing that almost all secreted galectins share the 
ability to build an immunosuppressive microenvironment 
that helps tumor cells escape cancer-killing immune cells 
[2]. Such immunosuppressive activity represents a major 
obstacle to cancer treatment and slows down the pace of 
progress in cancer immunotherapy, a promising avenue for 
the treatment of aggressive cancers for which there are lim-
ited treatment options. This immunosuppressive function 
of galectins has been well-described during pregnancy, in 
which placental galectins have been shown to be essential for 
establishing immune tolerance that protects the fetus from 
an aggressive maternal allogeneic response [3, 4]. Such new 
paradigm attracts the interest of many researchers involved 
in the development of novel immunotherapies that target 
immune checkpoints, a valuable strategy for the treatment 
of HFC, most notably for those harboring an immune phe-
notype. The role of galectins in controlling immunological 
homeostasis explains that they are often considered alarmin-
like proteins, a family of structurally unrelated proteins that 
are released from intracellular compartments in the milieu 
in response to stress signals or cell damage [5, 6]. However, 
the role of galectins in cancer is by far not limited to their 
immunomodulatory role. There is a large amount of litera-
ture establishing galectins as a group of proteins that induce 
resistance to drug-induced cell death or promote metastasis 
by facilitating cell-to-cell and cell-to-matrix adhesion. In the 
section below, we briefly review some of the key findings 
and recent advances illustrating the emergence of galectins 
as potential therapeutic targets in HFC.

Pancreatic cancer

Pancreatic ductal adenocarcinoma is the preeminent sub-
type of pancreatic cancer. The 5-year survival is less than 
10% in the USA and the overall survival after being diag-
nosed varies between 3 and 6 months if no treatment is given 
(http://www.cancer.org). The main reason for pancreatic 
cancer having a poor prognosis is the late stage at which 
the disease is discovered. It is an asymptomatic disease that 
comes with an early metastasis and recurrence risk, as well 
as chemoresistance and radioresistance problems. At pre-
sent, most of the studies on the role of galectins in pan-
creatic cancer have focused on gal-1 and gal-3. The role 
of gal-1 in pancreatic cancer has been mostly linked to its 
immunomodulatory properties and the potential for targeting 

extracellular gal-1 to restore the immunological barrier to 
cancer has been relatively well-documented, making gal-1 
a strong candidate for pancreatic cancer therapy [7]. Gal-3, 
like gal-1, is also expressed at abnormally high levels in 
human pancreatic tumor tissue [8, 9]. The role of gal-3 in 
pancreatic cancer, however, is not linked to its extracellular 
form but to its ability to modulate intracellular signaling 
events by increasing Ras activity, thereby stimulating growth 
and invasive behavior of pancreatic cancer cells [10]. Such 
a role of gal-3 in pancreatic cell migration and invasion 
has also been reported by Kobayashi et al. [11]. The abil-
ity of gal-3 to modulate key signaling pathways, including 
the Akt pathway, also increases the resistance of pancreatic 
cancer cells to chemotherapy-induced apoptosis [12]. Two 
recent studies have shown, however, that galectins may not 
always be protumorigenic in pancreatic cancer. Van Die and 
colleagues recently reported that gal-4, which is absent in 
healthy pancreatic tissue but expressed at high levels in pan-
creatic cancer cells, has tumor suppressive functions [13, 
14]. The authors showed that de novo expression of gal-4 
interferes with the Wnt/β-catenin pathway and inhibits the 
invasive behavior of human pancreatic cancer cell lines and 
primary pancreatic ductal adenocarcinoma cells. However, 
although there are indications suggesting that galectins are 
important for pancreatic cancer progression, clearly, addi-
tional knowledge of their expressions and functions in pan-
creatic cancer cells is deeply needed, especially for the less 
well-known galectins.

Lung cancer

Because lung cancer is the deadliest form of cancer in terms 
of the number of victims worldwide [15–17], there has been 
considerable research on the role of galectins in lung cancer. 
There are two main subtypes of lung cancer; 85% are non-
small cell lung cancer (NSCLC) and 15% are small cell lung 
cancer (SCLC), and they are associated with a 5-year overall 
survival rate of approximately 15 and 7%, respectively [15, 
18]. The SCLC form is the more aggressive subtype, with 
an estimated life expectancy of 7 months if no treatment 
is given [18, 19]. The advanced stage at which it is diag-
nosed, the lack of an efficient early diagnosis technique, the 
rapid metastasis formation and the molecular complexity of 
this disease are the major factors that make SCLC an HFC 
[18]. These factors are also an obstacle to the survival of 
NSCLC patients, for whom the median survival is between 
8 and 10 months [20–22]. Similarly to pancreatic cancer and 
other cancers, most of the research on galectins in lung can-
cer has focused on gal-1 and gal-3. Again, the role of gal-1 
in modulating the antitumoral response and suppressing 
cancer-killing immune cells is well-documented [23–25]. 
This is not, however, the only role of gal-1 in lung cancer, 
as a number of studies have shown that it also promotes 

http://www.cancer.org
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cancer progression by increasing the invasive behavior of 
lung cancer cells (Table 1). A protumorigenic role of gal-3 
in lung cancer has also been attributed to intracellular gal-3 
and its ability to modulate key signaling pathways, such as 
the β-catenin pathway [26]. However, while the roles of 
gal-1 and gal-3 in lung cancer generally mirror their roles 
in pancreatic cancer, this is certainly not the case for gal-4. 
Using biopsies collected from a cohort of more than 700 
patients with lung adenocarcinoma, Hayashi and colleagues 
[27] showed that expression of intracellular gal-4 is inversely 
associated with clinicopathologic variables of disease pro-
gression. Such an anti-tumorigenic role of galectins in lung 
cancer is not unique to gal-4 as it has also been shown for 
gal-9 [28, 29], illustrating, again, their well-documented 
double-edged swords for their function [3]. Such opposing 
roles for galectins in HFC are also observed in stomach can-
cer. Again, while gal-1 is generally associated with tumor 
progression of stomach cancer, gal-7 and gal-9 express anti-
tumorigenic properties [23, 25].

Brain cancer

The most common type of brain cancer diagnosed, glioblas-
toma multiforme, is also the most aggressive [30, 31]. The 
incidence of this grade IV astrocytoma is approximately 3 
per 100,000 persons. Glioblastoma multiforme displays a 
median survival of 14.6 months [31, 32]. Another type of 
brain tumor with a low survival rate is anaplastic astrocy-
toma, a grade III astrocytoma with a 5-year survival rate of 
approximately 10% for people older than 55-years of age. 
An important restriction for the treatment of brain cancers is 
the blood–brain barrier, which restricts the passage of drugs. 
The heterogeneity of the disease and the higher proportion 
of recurrence or therapy resistance are among the reasons 
leading to this unfavorable prognosis [30, 33]. In this case, 
the role of galectins is unequivocal since most, if not all, 
studies on gal-1, -3, and -8 have reported these galectins as 
having a protumorigenic role (Table 1). The role of gal-1 
secreted by glioma cancer cells in inhibiting infiltration of 
myeloid-derived suppressor cells confirms the importance of 
this galectin in controlling the anti-cancer immune response 
[34]. The ability of gal-1 and gal-3 to promote the migration 
and invasion of cancer cells is also a central theme in studies 
aimed at defining the role of galectins in brain cancer. There 
is, however, much to be learned about the role of galectins 
in brain cancer since all but one study have focused almost 
exclusively on gal-1 and gal-3.

Liver cancer

Liver cancer has the second highest mortality rate world-
wide. Hepatocellular carcinoma (HCC) is the most common 
malignant hepatic disease [35]. The 5-year overall survival is 

approximately 10–20% but increases to 70% after a surgery 
[36–39]. Liver transplantation and other resection surgeries 
are effective procedures for this disease, but the late stage at 
which it is diagnosed, limited availability of organ donation, 
problem of recurrence and other associated liver dysfunc-
tions are important obstacles to the successful therapy of 
HCC [36, 40]. What is unique to liver cancer is the dominant 
roles of gal-1 and gal-3 in conferring resistance of cancer 
cells to cell death induced by either antibodies or chemo-
therapeutic drugs (Table 1). A fair amount of studies on 
galectins in liver cancer have focused on gal-3 and its role 
in migration and invasion [41–43]. A number of studies have 
also focused on gal-9, which seems to have an anti-prolif-
erative effect on hepatocarcinoma and cholangiocarcinoma 
cells [44–46].

Other HFCs

Very few studies have examined the role of galectins in 
other HFCs, including gallbladder cancer, a relatively rare 
(a global incidence of 2.2 per 100,000) [125, 126] but deadly 
disease. The 5-year overall survival rate of gallbladder can-
cer does not exceed 5% and it is associated with an average 
survival of 6 months [127]. Surprisingly, to our knowledge, 
there is only one study published on the roles of gal-1 and 
gal-3, the most commonly studied galectins in cancer. Yang 
et al. [128] have shown that an increased expression of gal-3 
was associated with a decreased overall survival of patients 
with gallbladder adenocarcinoma. However, a recent study 
by a group in Japan has shown that gal-9 suppresses the 
growth of cancer cells and their resistance to apoptosis 
[129]. Such an antitumoral role of gal-9 has also been found 
in gastric cancer [130], the fourth most commonly diagnosed 
cancer and the second leading cause of cancer-related deaths 
worldwide, with an incidence rate that varies greatly (from 
2 to 3 in Egypt, and up to 65.9 in men and 25.9 in women 
in Korea) [131, 132]. On average, people diagnosed with 
stomach cancer have a 25% chance of living at least 5 years 
after their diagnosis. In contrast, the protumorigenic role of 
gal-1 and gal-3 in promoting invasive behavior and a resist-
ance to drug-induced apoptosis in gastric cancer is relatively 
well-documented (Table 1). Preliminary reports have been 
published on the expressions of gal-4, gal-7 and gal-8 in 
gastric cancer [121, 133, 134]. However, functional data are 
lacking with regards to their role in tumor progression. On 
the other hand, a number of studies are now focusing on high 
mortality (“bad”) subtypes of cancer that have a relatively 
high 5-year survival rate. This is the case, for example, for 
high grade serous ovarian carcinoma (HGSC), which has 
a 5-year survival rate of less than 15% while the overall 
survival rate of ovarian cancer is approximately 46%, in the 
US (http://www.cancer.org). Recent studies have shown that 
gal-3 and gal-7 may confer epithelial ovarian cancer cells 

http://www.cancer.org
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Table 1   Functional effects of galectins in HFCs

Cancer type Subtypes Galectins Effect References

Liver Hepatocellular carcinoma Gal-1 ↑ Tumor progression [47–54]
Contribute to resistance to antibody-mediated killing of cancer cells [55]
Contribute to Sorafenib and Cisplatin chemoresistance [49, 56]

Gal-3 ↑ Tumor progression [41–43, 57–62]
Gal-4 ↑ Tumor progression [63]
Gal-9 Interact with Tim-3 to promote degeneration of T cells [64]

↓ Tumor progression [44, 65]
Gal-9 expression correlates with recurrence of cancer [66]

Cholangiocarcinoma Gal-1 ↑ Tumor progression [67]
Gal-3 ↑ Anti-apoptosis capacities of cancer cells [68]

Contribute to the chemoresistance
Involved in the preneoplasic and neoplasic transformation [67]

Gal-9 ↓ Tumor progression [45]
General Gal-9 Gal-9 induced lymphocyte apoptosis and tumor cell immune escape [46]

Brain Glioblastomas Gal-1 ↑ Tumor progression [28, 34, 69–72]
Contribute to the chemoresistance [29]
Reduces motility [73]

Gal-3 ↑ Tumor progression [71]
Enhances the adhesion of homotypic tumor cell [74]

Gal-8 ↑ Tumor progression [71]
Astrocytomas Gal-1 ↑ Tumor progression [71, 72]

Gal-3 ↑ Tumor progression [71, 75]
Gal-8 ↑ Tumor progression [71]

General Gal-1 ↑ tumor progression [76, 77]
Silencing of tumor-derived gal-1 increased survival [34]

Gal-3 ↑ Tumor progression [78, 79]
Ovaries Serous high grade Gal-3 ↓ Cellular proliferation of Clear Carcinoma cancer cells [80]

Contribute to the chemoresistance to CDDP
Gal-7 ↑ Tumor progression [81, 82]

Breast Triple negative Gal-3 ↑ Tumor progression [83]
Gal-7 ↑ Tumor progression [158]

Pancreatic Undefined Gal-1 ↑ Tumor progression and tumor evasion [7, 84–91]
Gal-3 ↑ Tumor progression and chemoresistance [10, 12, 89, 92, 93]
Gal-4 ↓ The tumors progression [13, 14]

Lung Undefined Gal-1 ↑ Tumor progression, chemoresistance and tumor evasion [23, 24, 94–98]
Gal-3 ↑ Tumor progression and chemoresistance [26, 99–106]
Gal-4 ↑ Tumor progression [27]
Gal-9 ↓ Tumor progression [107, 108]

Oesophagus Undefined Gal-3 Nuclear gal-3 inversely correlates with vascular invasion [109]
↑ Tumor progression
↑ Chemoresistance to Gefitinib treatment [110]

Gal-7 ↑ Tumor progression [111]
Stomach Undefined Gal-1 ↑ Tumor progression [112, 113]

Gal-3 ↑ Tumor progression [114–119]
↓ Metastasis formation [120]
Contribute to the chemotherapy resistance of cancer cells [119]

Gal-7 ↓ Tumor progression [121]
Gal-9 ↓ Tumor progression [122–124]
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with resistance to drug-induced apoptosis [80–82]. This field 
of research is likely to rapidly progress as we are now to able 
to refine the classification of cancer subtypes and identify 
novel aggressive molecular subtypes with the help of com-
parative transcriptome analysis of large cohort of patients.

Galectins as biomarkers in HFCs

Currently, considerable efforts are being dedicated to the 
development of predictive biomarkers for the early detec-
tion of HFC and for the initiation of treatment in the early 
stages of progression before metastasis. The benefit of 
early detection using imaging procedures, routine clinical 
exams, cytology screening, or blood tests has been well-
established for several cancers, including breast, colon, 
prostate and cervical cancers. Biomarkers are also used to 
assess disease susceptibility and risk, grading severity of 
the disease, the determination of an optimal treatment or 
predicting outcomes to a specific treatment. They are at the 
center of precision medicine, which requires better stratifi-
cation of patients. Ideally, they are used as companion tests 
in harmony with a given therapeutic drug. A case in point 
is testing for HER-2 expression, which classifies patients 
with breast cancer into two categories: responders and non-
responders to targeted therapy with Trastuzumab (Hercep-
tin). This immunohistochemistry test detects the expression 
of HER-2 membrane proteins at the surface of epithelial 
breast cancer cells. Although the “Her-2 test”, which was 
approved in 1998, has survived numerous obstacles linked 
to reproducibility and quantification, the general view is 
that measurements of plasma biomarkers by ELISA test-
ing are better suited not only because of the ease and its 
relatively non-invasive nature but also because this assay is 
more quantifiable and reproducible. Not surprisingly, given 
the soluble nature of galectins and their release outside of 
cells, plasma levels of galectins are now commonly used as 
a predictive biomarker in many diseases. The best-known 
galectin plasma biomarker is probably gal-13, also known 
as PP-13, which is specifically expressed in placental tissues 
where it plays a central role in maternal–fetal immune toler-
ance [135]. Its potential as a biomarker alone or in combina-
tion with other biomarkers for detecting pre-eclampsia in the 
first trimester has been well-documented and tested clini-
cally [136–138]. Another good example is plasmatic gal-3, 
which is commonly used as a biomarker in patients with 
various vascular diseases, thereby helping in the prognosis 
of these patients [139]. Measurements of plasma galectin-3 
were approved by the US Food and Drug Administration 
in 2011 as helping in the prognosis of patients with heart 
failure. Abnormally high levels of galectins have also been 
reported in many other diseases, including colorectal can-
cer [140], acute intracerebral hemorrhage [141], pulmonary 

arterial hypertension [142], prediabetes and diabetes [143, 
144], systemic lupus erythematosus [145] and viral infec-
tions [146]. Galectin levels have also been shown to be 
elevated in patients with HFCs such as pancreatic cancer 
[147]. Clearly, levels of galectins in plasma samples and 
other liquid biopsies can be used for prognostic purposes. 
However, given their dual role in cancer, it is logical to 
believe that plasma levels of a given galectin may not nec-
essarily correlate with the cancer’s aggressiveness. This is 
well-illustrated in malignant pleural mesothelioma (MPM), 
the most frequent type of mesothelioma, which has a median 
survival time of approximately 12 months after diagnosis 
[148]. Gal-3 concentrations in pleural fluids are significantly 
lower in MPM than in lung adenocarcinoma. Gal-3 can thus 
be used to differentiate MPM from lung adenocarcinoma 
and as a negative marker to exclude a diagnosis of MPM 
[149, 150]. This is in contrast to gal-1. In this case, high 
concentrations of gal-1 in pleural fluids correlates with a 
lower overall survival [151], which is consistent with its 
well-documented role in creating an immunosuppressive 
tumor microenvironment [152]. Whether other galectins are 
present in pleural effusion or other liquid biopsies (includ-
ing cerebrospinal fluids, which contains several biomarkers 
for different forms of brain cancer) remains unknown. The 
potential of using galectins in liquid biopsies as a predictive 
tool in cancer patients, however, is a rapidly evolving field 
of research investigation, and there are reasons to believe 
that they may be useful, alone or in combination, for prog-
nostic purposes or for predicting responses to treatment. A 
good example is the combination of galectins and MUC-1 
as potential biomarkers for metastatic breast cancer [153], 
reinforcing the association between galectins and MUC-1, 
a highly glycosylated cell surface receptor expressed on the 
surface of cancer cells [154, 155].

Predictive value of intracellular galectins

Although most of the attention on galectins has historically 
focused on their extracellular functions, their intracellular 
patterns of expression are often significantly altered in can-
cers compared to normal cells. In cancer cells, they can be 
found almost anywhere, including in cytosolic, nuclear, and 
mitochondrial compartments, where they accomplish dis-
tinct and often contradictory functions [156]. Such distinct 
patterns of expression can be exploited for the development 
of biomarkers for risk prediction in cancer patients. A good 
example is galectin-8, a galectin known to shuttle between 
the nucleus and the cytosol in cancer cells [157]. Our recent 
studies showed that nuclear, but not cytosolic, gal-8 is asso-
ciated with a good prognosis in patients diagnosed with 
TNBC, one of the most aggressive subtypes of breast can-
cer. TNBC patients with nuclear gal-8 have a significantly 
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better disease-free survival, metastasis, and overall survival 
[158]. This is in contrast to nuclear gal-1, which is rather 
associated with a poor prognosis. Interestingly, in TNBC 
patients who expressed both nuclear gal-1 and gal-8, the 
phenotype of nuclear gal-8 is clearly dominant. Indeed, 
despite having nuclear gal-1, the 5-year survival rate of 
TNBC patients expressing nuclear both gal-1 and gal-8 is 
100% [158]. Such findings illustrate the importance of look-
ing at the overall galectinome when examining the predic-
tive values of galectins in patients with cancer. Such shut-
tling between intracellular compartments in cancer cells has 
also been well-documented for gal-3, which translocates to 
the nucleus to modulate β-catenin regulated transcriptional 
activity [159]. Although there are indications that nuclear 
gal-3 is expressed in pancreatic and gallbladder cancer cells, 
its potential as a predictive factor for these HFCs remains 
unknown [128, 160]. The potential of nuclear gal-3 as a pre-
dictive biomarker in HFC has, however, been reported for 
at least two other HFCs. These include lung and esophageal 
carcinomas [109, 161, 162].

Galectin inhibitors for the treatment of HFCs?

Because of their critical role in cancer, considerable efforts 
have been directed towards the development of carbohy-
drate-based inhibitors that would limit the binding of galec-
tins to glycosylated residues on cell surface receptors. Up to 
now, however, most of these efforts have focused on target-
ing the glycan binding site of extracellular gal-1 and gal-3 
using either modified mono- and disaccharides, synthetic 
glycodendrimers and modified complex glycans, and pep-
tide inhibitors, such as Anginex [163–166]. Such inhibitors 
have shown great potential against HFCs. For example, a 
polysaccharide purified from the flower of Panax notogin-
seng has shown strong antiproliferative activity against 
pancreatic cancer cells in vitro by disrupting the interac-
tion between Gal-3 and EGFR [167]. Despite decades of 
research, however, the progression in this field has been rela-
tively slow. Achieving specificity and high affinity for these 
compounds, most notably considering our limited knowl-
edge on less well-characterized galectins, is a true challenge. 
Consequently, the benefits of using these inhibitors for the 
treatment of cancer are currently shadowed by their puta-
tive off-target effects. More specific inhibitors are alternative 
strategies are thus urgently needed. The use of antisense- and 
short hairpin RNA-based strategies is one possibility. We 
and others have shown that such approach is an interest-
ing option to inhibit the pro-tumoral activity of galectins, 
most notably in glioblastoma, pancreatic cancer and highly 
aggressive forms of lymphoid malignancies [12, 28, 93, 
168–170]. Yet, another consideration to take into account 
in the design of inhibitors is the need to target intracellular 

galectins. This is not trivial as we found that accumulation 
of galectins occurs in several intracellular compartments and 
that their pro-tumoral role with depend on their intracel-
lular localization [156]. A better understanding of the roles 
of intracellular galectins is thus needed to determine how 
galectins collaboratively modulate cancer progression from 
within the cells. This is especially important as it is increas-
ingly clear that is the cellular context, as defined by the bal-
ance of intracellular and extracellular signaling events, that 
dictates whether galectins will spare the cancer cell or lead 
to its apoptotic demise.

Conclusions

The search for finding new and effective biomarkers and 
treatment options that would offer hope for patients with 
HFCs needs to be conducted using new approaches, given 
the distinct characteristics of HFCs. A rapid overview of 
studies that examined the expressions and functions of 
galectins in cancer cells reveals that they play a central role 
in at least three major features that characterize HFCs: (1) 
induction of systemic and local immunosuppression, (2) 
chemoresistance of cancer cells, and (3) increased invasive 
behavior. It is important to note, however, that galectins are 
not exclusively associated with increased aggressiveness. 
Many of them do have anti-tumorigenic functions and do 
inhibit cancer progression. Because we do find a relatively 
large and heterogeneous galectinome in cancer tissues, the 
use of galectins as therapeutic targets will need to be well-
thought and ideally involved companion diagnostic testings. 
This is, especially true as most of the studies have focused 
on a limited number of galectins and we still know very little 
information about the less well-known galectins. Exploiting 
our knowledge on galectins to fight HFCs will thus require 
both the identification of the specific galectinome expressed 
in cancer tissues and the development of highly specific 
galectin inhibitors. Defining the galectinome in HFCs will 
also lead to a better understanding of tumor heterogeneity 
while providing critical information that could improve the 
accuracy of biomarker panels for a more personalized treat-
ment of HFCs.
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