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Abstract
The heart is regarded as an endocrine organ as well as a pump for circulation, since atrial natriuretic peptide (ANP) and 
brain natriuretic peptide (BNP) were discovered in cardiomyocytes to be secreted as hormones. Both ANP and BNP bind 
to their receptors expressed on remote organs, such as kidneys and blood vessels; therefore, the heart controls the circula-
tion by pumping blood and by secreting endocrine peptides. Cardiomyocytes secrete other peptides besides natriuretic 
peptides. Although most of such cardiomyocyte-derived peptides act on the heart in autocrine/paracrine fashions, several 
peptides target remote organs. In this review, to overview current knowledge of endocrine properties of the heart, we focus 
on cardiomyocyte-derived peptides (cardiomyokines) that act on the remote organs as well as the heart. Cardiomyokines act 
on remote organs to regulate cardiovascular homeostasis, systemic metabolism, and inflammation. Therefore, through its 
endocrine function, the heart can maintain physiological conditions and prevent organ damage under pathological conditions.
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Introduction

The heart functions not only as an essential pump but also 
as an endocrine organ to maintain homeostasis of the cir-
culatory system [1]. The discovery of atrial natriuretic pep-
tide (ANP) indicates the heart as an endocrine organ. In 
the middle of 20th century, researchers who used electron 
microscopes observed granules in atrial cardiomyocytes that 
resembled those found in endocrine glands. These observa-
tions let them consider the possibility that atrial cardiomyo-
cytes might function as hormone-secreting cells [2]. In 1981, 
de Bold et al. demonstrated endocrine properties of the heart 
[3]. The extract of rat atrial cardiomyocytes contained pep-
tides that exerted potent natriuretic and diuretic effects when 
it was injected in rats. The peptide was identified by several 
groups and named ANP or atrial natriuretic factor (ANF) 
[4–7]. The identification of ANP acting on kidneys revealed 

that the heart functioned as an endocrine organ. After the 
discovery of ANP, structurally and functionally related pep-
tides including brain natriuretic peptide (BNP) and C-type 
natriuretic peptide (CNP) were identified [8, 9]. These pep-
tides are referred to as the natriuretic peptide (NP) family.

Cardiomyocytes also secrete other peptide hormones 
besides natriuretic peptides (NPs) through secretory gran-
ules [10]. In addition to peptides, lipids and genetic materi-
als including mRNAs, DNAs, and non-coding RNAs are 
secreted from cardiomyocytes through extracellular vesicles 
[11]. The word ‘cardiokine’ is used to describe proteins 
secreted from cardiomyocytes, cardiac fibroblasts, endothe-
lial cells, and smooth muscle cells in response to changes 
in the cardiac environment [10, 12]. Particularly, proteins 
secreted from cardiomyocytes are referred to as ‘cardio-
myokines’ [13]. Therefore, ANP and BNP are considered 
to belong to cardiomyokines. Cardiomyokines are predicted 
to play physiological and pathological roles in the heart and 
remote organs. Although most of cardiomyokines act on the 
heart in autocrine or paracrine fashions, some of them exert 
endocrine actions (Fig. 1). In this review, by focusing on the 
regulation and function of cardiomyokines, we overview the 
current knowledge of the heart as an endocrine organ.
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Natriuretic peptides

Natriuretic peptides are mainly secreted from the car-
diovascular system. Although they are primarily known 
as natriuretic, diuretic, and vasodilator factors, NPs also 
possess metabolic activities [14]. ANP is the first cardiac 
endocrine factor identified in rat hearts [4, 5] and human 
atrial tissues [6]. Following the discovery of ANP, BNP 
was identified in the brain [8]. Although isolated from the 
porcine brain, BNP is mainly produced in the heart [15]. 
Because ANP and BNP are expressed predominantly in the 
heart, they are called cardiac NPs [1]. CNP was identified 
as the third NP from the porcine brain [9]. CNP is mainly 
expressed in vascular endothelial cells [16] and the central 
nervous system [17, 18]. CNP acts locally as an autocrine/
paracrine factor [19].

NP receptors and signal transduction

NP receptor family consists of NP receptor 1 (NPR1), 
NPR2, and NPR3 [20–23]. Because NPR1 and NPR2 
have guanylate cyclase (GC) domain in their cytoplasmic 
domain, upon binding to those receptors, NPs increase 
intracellular cyclic guanosine monophosphate (cGMP) 
and subsequently activate cGMP-dependent protein kinase 
(PKG). On the other hand, NPR3 does not induce intracel-
lular cGMP accumulation, because it lacks the GC domain 
and instead has a short 37-amino acid cytoplasmic domain. 
NPR3 acts as a clearance receptor for NPs by binding to 
all NPs. It is still controversial whether NPR3 triggers 

the intracellular signaling via  Gi/o proteins [24]. NPs 
have 17-amino acid ring structure formed by a disulfide 
cysteine bridge between two cysteine residues that is nec-
essary for binding to NPR1 and NPR2 [1]. Both ANP and 
BNP preferentially bind to NPR1, while CNP binds to 
NPR2 [25]. All the NPs bind to NPR3. Binding affini-
ties are ranked as follows; NPR1 = ANP > BNP ≫ CNP; 
N P R 2   =   C N P   ≫   A N P   >   B N P ; 
NPR3 = ANP > CNP > BNP [26].

Secretion of ANP

Cardiomyocytes store ANP in secretory granules. ANP is 
secreted through the classical secretory pathway, a secretory 
pathway dependent on the endoplasmic reticulum (ER), coat 
protein complex II-coated vesicles, and the Golgi appara-
tus [10, 27]. ANP is secreted in a basal manner as well as 
inductive manners, such as agonist-stimulated and stretch-
stimulated manners [1]. ANP secretion is induced by the 
stimulation of agonists including endothelin1 (ET1) and 
alpha adrenergic agents [28, 29]. Agonist-stimulated ANP 
secretion is mediated through the activation of  Gq proteins 
[30]. Mechanical stretch also promotes the release of ANP 
from cardiomyocytes [31]. Although the mechanisms how 
stretch stimulation exerts secretion of cardiac granules have 
not been fully clarified yet, the secretion is mediated through 
pertussis toxin-sensitive  Gi/o proteins [30]. Stretch-sensitive 
ion channels function as mechanosensors in cardiomyocytes 
[32, 33]. Stretch-activated non-selective cation channels and 
swelling-activated  Cl− channels contribute to stretch-acti-
vated ANP secretion [32, 34].

Fig. 1  Target organs of cardiomyokines. Cardiomyokines act on 
blood vessels, kidney, liver, skeletal muscle, and adipose tissue. Car-
diomyocyte-derived osteocrin (Ostn) might act on bone in zebrafish. 
Cardiokines exert biological functions (cardiovascular homeosta-
sis and metabolic actions) in an endocrine manner (black arrows) 
and in an autocrine/paracrine manner (blue arrow). CST catestatin, 

ET1 endothelin 1, FA fatty acid, FGF21 fibroblast growth factor 
21, FSTL1 follistatin-like 1, Mmp2 matrix metalloproteinase 2, NP 
natriuretic peptide, sPLA2 secreted phospholipase  A2, RAAS renin 
angiotensin aldosterone system, VS1 vasostatin 1, WAT  white adipose 
tissue
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ANP secretion from cardiomyocytes is increased under 
pathological conditions, such as ventricular hypertrophy, 
hypertension, heart failure, and myocardial infarction (MI) 
[35–38]. In these conditions, myocardial stretch and hypoxia 
induce ANP secretion. Hypoxic conditions stabilize hypoxia 
inducible factor 1 alpha (HIF1A). HIF1A promotes ANP 
transcription in neonatal rat cardiomyocytes [39]. In addi-
tion, cardiomyocytes in hypoxic conditions develop intra-
cellular acidosis. The intracellular  H+ increment increases 
intracellular  Na+ and  Ca2+ via  H+–Na+ and  Na+–Ca2+ 
exchange [40], which is also observed in hyperosmolar con-
ditions. The resulting ion imbalance results in an increase of 
ANP secretion [41, 42].

Secretion of BNP

ANP and BNP are co-stored in the same secretory granules 
in cardiomyocytes [43]. They are co-released from cardio-
myocytes, suggesting common mechanisms for the secretion 
of ANP and BNP [44]. On the other hand, in physiological 
conditions, plasma BNP is much lower than plasma ANP. 
Thus, separate NP-specific mechanisms of secretion and 
synthesis must be present. Plasma BNP reflects the severity 
of the pathological conditions [45]. Specific cytokines that 
are increased in pathological conditions including tumor 
necrosis factor alpha (TNFα) and interleukin 1 beta (IL1β) 
selectively promote BNP expression through a p38 mitogen-
activated protein kinase-dependent (p38MAPK-dependent) 
pathway [46]. Moreover, BNP synthesis and secretion might 
be regulated by ER stress. ER stress under pathological 
conditions induces the secretion of various cardiomyokines 
from cardiomyocytes. ER stress promotes the expression of 
transcription factors, such as activating transcription fac-
tor 4 (ATF4), ATF6, and X-box binding protein 1 (XBP1), 
thereby inducing the expression of the genes involved in 
protein folding and secretion as well as the genes encod-
ing cardiomyokines [10, 47–49]. In failing human hearts, 
the expression of active XBP1 and BNP is increased. In 
cultured neonatal rat cardiomyocytes, pharmacological ER 
stress induces BNP expression through an XBP1-dependent 
pathway [50].

NPs inhibit cardiac hypertrophy in autocrine/
paracrine fashions

ANP inhibits hypertrophy in cultured neonatal rat cardio-
myocytes [51]. NPR1-deficient (Npr1−/−) mice show cardiac 
hypertrophy as well as systemic hypertension [52]. Moreo-
ver, although cardiac-specific Npr1−/− mice show cardiac 
hypertrophy, the blood pressure of these Npr1−/− mice 
is slightly below wild type. These data suggest that NPs 
directly inhibit cardiac hypertrophy [53].

NPs also inhibit cardiac inflammation. Pro-inflammatory 
cytokines are associated with the development of cardiac 
hypertrophy. Expression of pro-inflammatory cytokines is 
increased in the Npr1−/− mouse hearts, while it is decreased 
in the NPR1 gene-duplicated mouse hearts [54]. The NPR1-
dependent signaling pathway suppresses the expression of 
pro-inflammatory cytokines through the inhibition of the 
transcription mediated by nuclear factor kappa B (NFκB) 
and activator protein 1 [54].

NPs regulate cardiomyocyte proliferation 
in autocrine/paracrine fashions

Natriuretic peptides show an anti-proliferative effect on 
cardiomyocytes. ANP suppresses angiotensin II-stimulated 
(ANGII-stimulated) proliferation of cultured fetal sheep car-
diomyocytes through a cGMP-dependent pathway [55]. On 
the other hand, there are controversial reports demonstrat-
ing that NPs promote cardiomyocyte proliferation probably 
through an NPR3/Gi/o protein-mediated signaling pathway. 
In developing zebrafish, cardiomyocyte proliferation is 
increased by simultaneous knockdown of npr1 and npr2, 
whereas it is decreased by knockdown of npr3. In cultured 
neonatal rat cardiomyocytes, a low concentration (10 nM) of 
ANP triggers an NPR3-dependent pathway to promote cardi-
omyocyte proliferation, while a high concentration (10 μM) 
of ANP induces NPR1- and NPR2-dependent pathways to 
inhibit cardiomyocyte proliferation [56].

NPs inhibit cardiac fibrosis in paracrine fashions

Natriuretic peptides inhibit proliferation of cardiac fibro-
blasts and their collagen syntheses in a cGMP-dependent 
manner [57, 58]. The endogenous ANP released from cul-
tured cardiomyocytes inhibits collagen synthesis in car-
diac fibroblasts [59]. Consistently, both Npr1−/− mice and 
BNP-deficient (Nppb−/−) mice show more cardiac fibrosis 
than the control [52, 60]. Cardiac fibrosis is also regulated 
by the expression of matrix metalloproteinases (MMPs). 
The expression of MMP2 and MMP9 is increased in the 
Npr1−/− mouse hearts. The treatment of a MMP inhibitor 
reduces cardiac fibrosis in Npr1−/− mice [61]. These data 
suggest that ANP suppresses cardiac fibrosis by the inhibi-
tion of MMP expression.

NPs inhibit hypertension in endocrine fashions

When NPs are given to animals, NPs exert natriuretic 
and vasodilator effects, thereby decreasing intravascu-
lar volume and blood pressure. NPs reduce vascular tone 
through a relaxant effect on vascular smooth muscle cells 
[62]. NPs also reduce intravascular volume through a direct 
effect on endothelial permeability [63]. Furthermore, NPs 



1352 A. Chiba et al.

1 3

regulate blood pressure by counteracting the renin–angioten-
sin–aldosterone system, by reducing sympathetic tone, and 
by suppressing the secretion of ET1, a potent vasoconstrictor 
[35]. In the kidney, NPs regulate electrolyte and fluid bal-
ance by increasing glomerular filtration rate [64, 65] and by 
decreasing sodium reabsorption in the proximal tubes and 
the collecting duct [66, 67]. NPs reduce renin release, peri-
tubular ANGII, and ANGII-dependent reuptake of sodium 
[64]. These mechanisms lead to natriuresis that was the ori-
gin used for the naming of these peptides.

NPs regulate metabolism in endocrine fashions

Natriuretic peptides directly act on adipose tissues, resulting 
in the inhibition of the proliferation of human primary adipo-
cytes [68]. NPs induce the synthesis of free fatty acid (FFA) 
through promoting lipolysis in adipose tissues by NPR1/
cGMP/PKG-mediated activation of hormone-sensitive lipase 
[69, 70]. Indeed, ANP infusion increases plasma FFA and 
glycerol in young men. These increments are independent 
of the activation of the sympathetic nervous system [71]. 
Moreover, exercise training improves ANP-induced lipolysis 
in human adipose tissues [72, 73].

NPs modulate thermogenesis. Adipose tissues consist 
of white adipose tissue (WAT) and brown adipose tissue 
(BAT). The former is the main fat reservoir, while the latter 
is another fat reservoir and is able to generate heat through 
mitochondria-uncoupled respiration. NPs induce a transi-
tion from WAT to BAT-like tissue. In both BAT and WAT, 
NPs increase the expression of thermogenic genes, such as 
peroxisome proliferator activated receptor gamma coactiva-
tor 1 alpha (PGC1α) and uncoupling protein 1 (UCP1). The 
expression of those genes by NPs in the adipocytes is medi-
ated by an NPR1/cGMP/PKG/p38 MAPK and subsequent 
ATF2-dependent pathway [74]. These data suggest that NPs 
might increase energy expenditure through the regulation of 
lipolysis and thermogenesis. The heart needs a huge energy 
supply to maintain continuous beating. To this end, the adult 
heart mainly uses either FFA or glucose as its energy source 
to generate ATP. Under normal conditions, most of ATP is 
generated from mitochondrial oxidation of FFA [75]. NPs 
increase FFA availability and mitochondrial biogenesis. 
These effects might contribute to more efficient FFA oxida-
tion in the heart [76].

NPs also regulate skeletal muscle oxidative capacity. 
Skeletal muscle in which either BNP or PKG is overex-
pressed in mice shows higher oxygen consumption, greater 
FFA oxidation, and higher expression of mitochondrial 
oxidative genes [77]. Interestingly, exercise training up-
regulates NPR1 transcripts in human skeletal muscles [78]. 
Therefore, NP signaling may also contribute to exercise 
training-induced fat oxidation in skeletal muscle.

NPs control satiety

Natriuretic peptides might regulate the gastro-intestinal sys-
tem through modulating satiety hormone levels. Ghrelin, a 
gut-derived hormone, increases appetite and energy balance 
[79–81]. Plasma ghrelin is decreased after an administration 
of somatostatin, a peptide produced in the gastric oxyntic 
mucosa [82]. ANP stimulates somatostatin secretion via 
NPR1 activation [83]. Considering these data, NPs might 
indirectly inhibit ghrelin secretion through somatostatin 
secretion. Indeed, intravenous BNP administration inhibits 
the fasting-induced increment of plasma ghrelin in healthy 
volunteers [82]. In addition, BNP decreases the subjective 
rating of hunger and increases the feeling of satiety [84]. 
These results support the existence of a mutual regulation 
mediated by peptide hormones between the heart and gut.

NPs suppress inflammation in an endocrine fashion

Natriuretic peptides exhibit anti-inflammatory actions. As 
nitric oxide (NO) produced in the activated macrophages is 
toxic for microorganisms [85], an excess of NO production 
can cause damage in neighboring tissues. ANP inhibits the 
lipopolysaccharide-induced expression of inducible nitric 
oxide synthase (iNOS) that is required for NO production in 
macrophages [86]. In addition, ANP stimulation inhibits the 
secretion of pro-inflammatory cytokines, chemokines, and 
adipokines from cultured human adipose tissues [87]. Simi-
larly, BNP has protective effects on acute lung, kidney, and 
intestinal tissue injury by down-regulating the expression of 
pro-inflammatory cytokines, such as TNFα and IL6. These 
anti-inflammatory effects of NPs are mediated through the 
suppression of NFκB inhibitor (IκB) phosphorylation and 
NFκB expression [88–91]. Because the chronic low-grade 
inflammation state is a risk factor for cardiovascular and 
metabolic disease [87], those anti-inflammatory effects of 
NPs seem to be beneficial to suppress the onset of those 
diseases.

Secreted phospholipase  A2

Secreted phospholipase  A2  (sPLA2) is a class of enzyme 
that catalyze sn-2 ester of glycerophospholipids to release 
FFAs and lysophospholipids.  PLA2 family consists of intra-
cellular  PLA2 and  sPLA2 [92]. In mammals, there are 11 
 sPLA2s (groups IB, IIA, IIC, IID, IIE, IIF, III, V, X, XIIA, 
and XIIB) [93].

Secretion of  sPLA2s

sPLA2s are stored in secretory granules.  sPLA2s have dis-
tinct tissue distributions. Group V  sPLA2 (PLA2G5) is 
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expressed mainly in the heart [94]. Cardiomyocytes secrete 
 sPLA2s through the classical secretory pathway. The release 
of  sPLA2 from hearts is enhanced by the ex vivo incuba-
tion with pro-inflammatory C-C motif chemokine ligand 7 
(CCL7). CCL7 binds to and is inactivated by MMP2. In 
MMP2-deficient (Mmp2−/−) mice, the plasma  sPLA2 that is 
presumably released from cardiomyocytes is elevated [95, 
96].

sPLA2s induce inflammation in autocrine/paracrine 
fashions

Cardiomyocyte-derived  sPLA2s function as autocrine/parac-
rine factors. The elevation of cardiomyocyte-derived  sPLA2s 
in the Mmp2−/− mice induces cardiac inflammation. The 
expression of pro-inflammatory cytokines is increased in 
the Mmp2−/− mouse hearts. The pro-inflammatory cytokine 
expression induced in the Mmp2−/− mice is down-regulated 
by the knockdown of Pla2g5 gene and the treatment of a 
pan-sPLA2 inhibitor, respectively [95]. Therefore, cardiomy-
ocyte-derived  sPLA2s induce cardiac inflammation.

sPLA2s induce inflammation and metabolic 
dysregulation in endocrine fashions

In addition, cardiomyocyte-derived  sPLA2s work as endo-
crine factors.  sPLA2s derived from the Mmp2−/− mouse 
hearts induce hepatic inflammation and metabolic dysregu-
lation. A pan-sPLA2 inhibitor normalizes the expression of 
lipid metabolic genes and pro-inflammatory cytokines in the 
liver of Mmp2−/− mice [96]. Therefore, liver functions are 
regulated by cardiac  sPLA2s in Mmp2−/− mice.

Follistatin‑like 1

Follistatin-like 1 (FSTL1), also referred to transforming 
growth factor beta-stimulated (TGFβ-stimulated) clone-36 
(TSC-36), is a secreted glycoprotein identified originally as a 
molecule induced by TGFβ stimulation [97]. FSTL1 belongs 
to follistatin family, because it shares a domain structure, 
which is called the FS domain [98]. Although other mem-
bers of follistatin family proteins antagonize the binding of 
TGFβ superfamily proteins to their receptors, FSTL1 does 
not act on cells through its ability to inhibit the actions of 
TGFβ superfamily proteins [99].

FSTL1 receptor and signal transduction

Despite of inhibiting TGFβ superfamily proteins, FSTL1 acti-
vates Disco-interacting protein 2 homolog A, a cell surface 
receptor, and induces AKT serine/threonine kinase (AKT) 
phosphorylation [99]. In neonatal rat cardiomyocytes, FSTL1 

induces extracellular signal-regulated kinase1/2 (ERK1/2) 
phosphorylation and AMP-activated protein kinase (AMPK) 
activation [100, 101].

Secretion of FSTL1

FSTL1 is secreted from cardiomyocytes through the classical 
secretory pathways [10]. The expression of Fstl1 is ubiqui-
tous in early mouse embryos, whereas it becomes restricted 
and is mostly found in the mesenchymal tissue later during 
development [102]. Although FSTL1 is expressed in epicardial 
cells of the normal adult mouse heart, FSTL1 is expressed in 
cardiomyocytes and disappears from epicardial cells in the 
mouse heart with MI [103]. Serum FSTL1 is increased in 
mice with MI [101]. FSTL1 protein in the heart and plasma is 
increased in the mice with transverse aortic constriction (TAC) 
and ischemia/reperfusion (I/R) injury [100, 104]. Furthermore, 
FSTL1 expression is increased in patients with heart failure 
[105].

FSTL1 improves cardiomyocyte survival and inhibits 
cardiac hypertrophy in autocrine/paracrine fashions

FSTL1 secreted from the cardiomyocytes inhibits myocar-
dial apoptosis and hypertrophy. FSTL1 knockdown exacer-
bates hypoxia/reoxygenation-induced apoptosis in neonatal 
rat cardiomyocytes through an AKT-dependent mechanism 
[101]. Cardiac-specific FSTL1-deficiency exacerbates cardiac 
hypertrophy following TAC. Cardiac FSTL1 inhibits TAC-
induced cardiac hypertrophy through an AMPK-dependent 
mechanism [104]. On the other hand, epicardial cell- but not 
cardiomyocyte-derived FSTL1 improves cardiac functions 
after MI [103]. Although the role of cardiomyocyte-derived 
FSTL1 remains to be resolved, these data indicate the cardio-
protective role for FSTL1.

FSTL1 inhibits systemic inflammation in endocrine 
fashions

FSTL1 works as an endocrine factor. In mice with kidney 
injury, plasma FSTL1 is increased. An increase of FSTL1 
seems to be dependent on its secretion from cardiomyocytes. 
Given that cardiac-specific FSTL1-deficient mice show the 
exacerbation of renal injury after nephrectomy and that cardi-
omyocyte-derived FSTL1 exerts anti-inflammatory effects in 
kidneys via an AMPK-dependent mechanism, FSTL1 might 
function as a mediator involved in inter-organ communication 
between the heart and kidney [106].
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Endothelin 1

ET1 is the most potent and long acting vasoconstrictor [107]. 
In 1988, ET1 was identified as an endothelium-derived 
blood vessel-constricting factor using the supernatant of cul-
tured porcine aortic endothelial cells [108]. The ET peptide 
family consists of three structurally similar 21-amino acid 
peptides, ET1, ET2, and ET3 [109].

ET1 receptors and signal transduction

In 1990, two ET receptors, endothelin receptor type A 
(ENDRA) and type B (ENDRB), were identified [110, 
111]. ENDRA has higher affinity to ET1 and ET2 than ET3. 
ENDRB has equal affinity to all ETs. Both ET receptors 
belong to the G-protein-coupled receptor family. ET recep-
tors activate phospholipase C, inositol triphosphate, diacylg-
lycerol, and intracellular calcium-dependent pathways [112].

Secretion of ET1

Cardiovascular systems predominantly express ET1 [113]. 
In coronary endothelial cells, ET1 is stored in secretory 
granules. ET1 secretion follows the classical secretory path-
way [114]. Although the primary source of ET1 is vascular 
endothelial cells [115], ET1 is also expressed in cardiomyo-
cytes [116]. Mechanical stretch and low oxygen conditions 
lead to ET1 secretion in cultured neonatal rat cardiomyo-
cytes [117, 118]. Plasma ET1 concentration and cardiac ET1 
synthesis are increased in patients with ischemic cardiomyo-
pathy [119].

ET1 promotes cardiac hypertrophy and cell survival 
in autocrine/paracrine fashions

Autocrine/paracrine effects of cardiomyocyte-derived ET1 
have been demonstrated by cardiac-specific ET1-deficient 
mice. ET1 exacerbates tri-iodothyronine-induced cardiac 
hypertrophy [120]. On the contrary, ET1 is essential for aged 
mice to survive and to maintain cardiac functions [121].

ET1 controls blood pressure

ENDRA is expressed on vascular smooth muscle cells and 
cardiomyocytes. The activation of ENDRA results in vaso-
constriction and vascular smooth muscle cell proliferation 
through a phospholipase C-dependent pathway. On the 
other hand, ENDRB is expressed on endothelial cells and 
is involved in the clearance of ETs. ENDRB also shows a 
vasodilator effect through the release of NO and prostacy-
clin from endothelial cells [112, 122]. Although the role 

of cardiomyocyte-derived ET1 for the systemic regulation 
remains to be resolved, it appears to work as an autocrine 
or a paracrine factor in the organs where ET1 is produced.

Chromogranin A

Chromogranin A (CHGA) is an ubiquitously expressed 
acidic secretory protein, which belongs to the granin fam-
ily. Because CHGA has several cleavage sites, the proteo-
lytic cleavage of CHGA results in several biologically active 
CHGA-derived peptides, such as vasostatin1 (VS1), pancre-
astin, and catestatin (CST) [123].

Secretion of CHGA

Chromogranin A is found as a chromaffin granule protein 
secreted from the catecholamine- stimulated adrenal medulla 
[124, 125]. CHGA is co-stored and co-secreted with other 
secretory factors, such as catecholamines and NPs. Immuno-
histochemical analyses show that CHGA co-exists with ANP 
and BNP in cardiac secretory granules [126, 127]. Circulat-
ing CHGA levels are increased in patients with heart failure 
and essential hypertension [128, 129].

Vasostatin1

VS1 is an N-terminal fragment of CHGA. CHGA fragments 
containing VS1 are detected in rat heart extracts [130]. VS1 
binds to heparin sulfate proteoglycans and activates phosph-
oinositide 3-kinase (PI3K) through a caveolae endocytosis-
dependent mechanism [131].

VS1 inhibits cardiomyocyte hypertrophy 
in autocrine/paracrine fashions

VS1 treatment shows anti-adrenergic effects in cardio-
myocytes. VS1 abolishes the isoproterenol-induced (ISO-
induced) positive inotropism in the perfused rat heart [132]. 
Consistent with this action, chronic VS1 treatment inhibits 
ISO-induced cardiomyocyte hypertrophy in rats [133]. The 
anti-adrenergic effect of VS1 might depend on the activation 
of a PI3K/endothelial NOS (eNOS)/NO-dependent signal-
ing pathway in endothelial cells rather than in cardiomyo-
cytes [134]. Cardiomyocyte-derived VS1 might work as a 
paracrine factor and inhibits cardiomyocyte hypertrophy by 
targeting endothelial cells.

VS1 inhibits hypertension and angiogenesis

Although VS1 treatment suppresses vascular tension and 
inhibits angiogenesis [135, 136], it is unclear whether car-
diomyocyte-derived VS1 acts as an endocrine factor.
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Catestatin

CST is a C-terminal fragment of CHGA. CHGA fragments 
containing CST are detected in the mouse heart [137]. CST 
acts as a nicotinic cholinergic antagonist to inhibit catecho-
lamine release [138]. While plasma CHGA is increased, 
plasma CST is decreased in patients with cardiovascular 
disease, such as hypertension [139] and heart failure [140]. 
Therefore, low plasma CST might increase the risk for car-
diovascular disease.

CST controls heart function

In the Langendorff-perfused rat heart, CST stimulation 
counteracts ISO-induced positive inotropism and lusitropism 
through a  Gi/o protein and eNOS-dependent mechanism 
[141].

CST inhibits hypertension

CST Catestatin prevents blood pressure elevation. Intrave-
nous administration of CST results in a decrease of blood 
pressure in rats through an increment of plasma histamine, 
a potent vasodilator [142]. CHGA-deficient mice show 
high blood pressure, increased heart rate, and high plasma 
catecholamines. This phenotype is rescued by exogenous 
injection of CST [143, 144]. Although these data suggest 
that CST is involved in the cardiovascular maintenance, it 
is unclear whether cardiomyocyte-derived CHGA acts as an 
endocrine factor.

Fibroblast growth factors

Fibroblast growth factor (FGF) family consists of 22 FGFs, 
FGF1–FGF23 (FGF15 and FGF19 are orthologous pep-
tides). FGFs can be classified as paracrine, endocrine, and 
intracrine FGFs [145]. Seven major FGF receptors (FGFRs) 
are translated from 4 FGFR genes, FGFR1-FGFR4 [146]. 
Paracrine FGFs including FGF1-FGF10, FGF16-FGF18, 
FGF20, and FGF22 bind to FGFRs with heparin/heparin 
sulfate as a cofactor. Endocrine FGFs comprising FGF15/19, 
FGF21, and FGF23 require either αKlotho or βKlotho as a 
cofactor to bind to FGFRs. Because of their low heparin-
binding affinity, endocrine FGFs are capable of targeting 
remote organs through the blood stream [147]. Intracrine 
FGFs, FGF11–FGF14, are intracellular proteins that regulate 
voltage gated sodium channels through intracrine fashions. 
Among FGFs, FGF3, FGF8, FGF9, FGF10, FGF15/19, 
and FGF16 work as paracrine factors during heart devel-
opment. On the other hand, FGF2, FGF9, FGF10, FGF16, 
and FGF21 act on the heart in pathological conditions as 
paracrine factors [148].

FGF21 receptors and signal transduction

FGF21, an endocrine FGF, activates FGFR1c, FGFR2c, 
and FGFR3c with βKlotho [145]. Cardiomyocytes express 
both FGFR1 and βKlotho [148]. FGF21 activates ERK1/2, 
p38MAPK, AMPK, and PI3K/AKT pathways in mouse 
hearts and in rat cardiomyocytes [149, 150].

Secretion of FGF21

FGF21 is mainly expressed in the liver and acts as a meta-
bolic regulator [151, 152]. FGF21 increases glucose uptake 
[153], regulates lipid metabolism [154, 155], and improves 
insulin sensitivity in the liver and adipose tissues [156]. 
Because FGF21 is also produced in cardiomyocytes, it is 
regarded as a cardiomyokine [157]. Its expression is up-reg-
ulated in H9C2 cardiomyotubes by ER stress and in mouse 
hearts by mitochondrial dysfunction, respectively [158, 
159]. FGF21 mRNAs in mouse hearts are also up-regulated 
after ISO-induced cardiac hypertrophy, TAC, and MI [160].

FGF21 inhibits cardiac hypertrophy in an autocrine/
paracrine fashion

Cardiomyocyte-derived FGF21 works as an autocrine/par-
acrine factor. It prevents cardiac hypertrophy through the 
inhibition of metabolic dysregulation and pro-inflammatory 
signaling in cardiomyocytes. FGF21 activates FFA oxida-
tion through an ERK1/2-, cAMP-responsive element binding 
protein-, and PGC1α-dependent pathway. FGF21 suppresses 
pro-inflammatory gene expression through the inhibition of 
NFκB activity [160].

FGF21 protects cardiomyocytes in autocrine/
paracrine fashions

FGF21 protects the heart from oxidative stress through up-
regulating antioxidant factors, including UCP2, UCP3, and 
superoxide dismutase 2 [161]. In addition, FGF21 inhibits 
cardiac apoptosis in an ERK1/2-, p38 MAPK-, and AMPK-
dependent manner [150].

FGF21 controls systemic metabolism in endocrine 
fashions

Although the endocrine function of cardiomyocyte-derived 
FGF21 remains to be elucidated, mice overexpressing 
FGF21 in the heart show a decrease in body weight [158]. 
Moreover, mitochondrial dysfunction-induced FGF21 up-
regulation in the mouse heart seems to be responsible for 
systemic changes in metabolism [159]. These data suggest 
that cardiomyocyte-derived FGF21 has a potential to work 
as an endocrine factor.
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Osteocrin

Osteocrin (OSTN) was originally identified in muscles and 
bones by signal-sequence trap methods [162, 163]. OSTN 
is proposed to belong to the NP family, because it has 
two NP-like motifs. OSTN binds to NPR3, but not NPR1 
and NPR2, because NP-like motifs of OSTN lack disulfide 
cysteine bridges that are essential for the circle structure 
of NPs [164, 165].

Cardiomyocyte‑derived Ostn might promote bone 
formation in zebrafish

Recently, we reported that Ostn is expressed in zebrafish car-
diomyocytes and that Ostn-deficient fish show the shortening 
of membranous bone and cartilage lengths. This impairment 
of bone growth was rescued by the myocardium-specific 
overexpression of Ostn. Although it is unclear whether 
the amount of endogenous cardiomyocyte-derived Ostn is 
enough to regulate bone formation, cardiomyocyte-derived 
Ostn might contribute to bone formation [166]. These data 
suggest that the cardiomyocyte-derived peptide has a poten-
tial to regulate bone growth at least in zebrafish.

Cardiomyokines have a potential to regulate bone 
formation

In mammals, OSTN is mainly expressed in bones and skel-
etal muscles, whereas subtle expression is detected in cardio-
myocytes. Besides Ostn, several peptides known to regulate 
bone formation have been reported to be secreted from car-
diomyocytes, although they are thought to work as autocrine 
factors. TGFβ superfamily peptides, such as activin A, bone 
morphogenetic protein 2 (BMP2), growth differentiation fac-
tor 15 (GDF15), and myostatin (MSTN) are secreted from 
cardiomyocytes [167–170]. Cardiomyocyte-derived TGFβ 
superfamily peptides might target bones, because some 
of them contribute to systemic increment of these peptide 
levels in pathological conditions. Cardiomyocyte-derived 
MSTN contributes to skeletal muscle atrophy in heart failure 
[171]. An increase of GDF15 in the blood that is presumably 
derived from cardiomyocytes acts on the liver to inhibit body 
growth [172]. In addition, FGFs have a potential to regulate 
bone formation. Cardiomyocyte-derived FGF21 might affect 
bone formation, because it has been reported to enhance the 
osteogenic activity of BMP2 [173]. Moreover, parathyroid 
hormone like hormone, a peptide known to regulate bone 
formation, has been reported to be secreted from cardio-
myocytes [174]. Therefore, bone formation might also be 
regulated by cardiomyokines in mammals.

Secretion through cardiac extracellular 
vesicles

Besides the secretory pathway released from secretory gran-
ules, cardiomyocytes secrete proteins using extracellular vesi-
cles, such as exosomes and micro-vesicles [11].

Cardiomyocyte exosome‑derived proteins work 
as paracrine factors

Under hypoxic conditions, cultured adult rat cardiomyo-
cytes secrete HSP20 via exosomes. Serum HSP20 in mice 
are increased after myocardial I/R. Cardiomyocyte-specific 
HSP20-overexpressing mice show increased circulating 
HSP20 and enhanced capillary density in hearts. Cardiomy-
ocyte-derived HSP20 might induce angiogenesis through its 
paracrine effects [175].

Cardiomyocyte exosome‑derived microRNAs work 
as paracrine factors

Extracellular vesicles carry not only proteins but also other 
bioactive mediators, such as lipids, DNAs, mRNAs, and 
non-coding RNAs including microRNAs (miRNAs) [11]. 
Exosomal miRNAs work as paracrine factors. In adult Goto-
Kakizaki rats, an animal model of type 2 diabetes, cardiomyo-
cytes release exosomes containing miR-320. Cardiomyocyte 
exosomal miR-320 regulates its target genes and inhibits pro-
liferation, migration, and tube formation of cultured cardiac 
endothelial cells [176].

Cardiomyocyte exosome‑derived microRNAs are 
detected in systemic blood

miRNAs are reported to play roles in progression of cardio-
vascular diseases and are recognized as potential biomarkers 
and novel drug targets [177]. miR-1, miR-133a/b, miR-208a, 
and miR-499 are highly expressed in cardiomyocytes. Plasma 
levels of these miRNAs are increased after acute MI [178]. 
These miRNAs regulate cardiac function. For example, miR-1 
and 133 inhibit cardiac hypertrophy in mice [179]. On the 
other hand, the inhibition of miR-208a improves cardiac func-
tion and survival during hypertension-induced heart failure 
[180]. Although the function of circulating miRNA remains to 
be resolved, the systemic elevation of cardiomyocyte-derived 
miRNAs has the potential to target remote organs.
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Conclusion

The fact that the heart is an endocrine organ was demon-
strated by the discovery of ANP. Besides ANP, several 
peptides have been reported to be secreted from cardio-
myocytes. Although most of such cardiomyokines act as 
autocrine or paracrine factors, several cardiomyokines, 
including those introduced in this review, target remote 
organs as endocrine factors. These peptides act on not 
only blood vessels and kidneys, but also liver, skeletal 
muscles, and adipose tissues. In addition, bone formation 
might also be regulated through cardiomyokines. There-
fore, these peptides regulate various biological functions, 
such as cardiovascular homeostasis and metabolism. Car-
diomyokines are synthesized in stress environments, such 
as pressure overload and ischemia through hypoxia- and 
ER stress-induced up-regulation of transcripts and are sub-
sequently released in stretch- and agonist-induced man-
ners. The heart contributes to general homeostasis of the 
body by regulating circulation and by secreting peptides. 
Although there are many cardiomyokines that have poten-
tials to work as endocrine factors, their endocrine function 
is not fully demonstrated because of the lack of cardiac-
specific knockout data. Further investigation will lead to 
a better understanding of the heart as an endocrine organ.
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