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Abstract
Exosomes represent an important group of extracellular vesicles with a defined size between 40 and 150 nm and cup-shaped 
construction which have a pivotal role in elimination of intracellular debris and intercellular signaling networks. A line 
of evidence revealed the impact of different types of exosomes in initiation, progression, and metastasis of gastric cancer 
(GC). These bioactive vesicles mediate tumor and stromal communication network through modulation of cell signaling 
for carcinogenesis and pre-metastatic niche formation in distant organs. Exosomes contain various cargos including DNAs 
(mitochondrial and genomic), proteins, transposable elements, and RNAs (coding and noncoding) with different composi-
tions related to functional status of origin cells. In this review, we summarize the main roles of key exosomal cargos in 
induction of exosome-mediated signaling in cancer cells. Body fluids are employed frequently as the source of exosomes 
released by tumor cells with a potential role in early diagnosis of GC and chemoresistance. These vesicles as non-toxic and 
non-immunogenic carriers are also found to be applied for novel drug delivery systems.

Keywords MiRNA · Long non-coding RNA · Signaling pathways · Biomarker · Chemoresistance · Exosome-dependent 
drug delivery

Introduction

Gastric cancer (GC) is the fourth prevalent malignancy and 
the second prominent cause of cancer-related death world-
wide which is recognized as a multifactorial disease with a 
heterogeneous nature. Five-year survival rate of GC patients 

is reported 10–30% due to late diagnosis with deprive cura-
tive resections [1, 2]. Surgery removal of the tumors beside 
pre- or post-operative chemo-, chemo radio- and adjuvant 
therapies are the main strategies to boost survival rate [3, 4]. 
Metastasis as the main cause of cancer death is orchestrated 
by multistep intrinsic and extrinsic molecular cascades in 
tumoral and stromal cells. GC dissemination targets both 
local tissues via direct invasion and distant organs by seed-
ing for pre-metastatic niches through secreted elements 
[5, 6]. Advances in high-resolution imaging introduced a 
novel class of extracellular vesicles in the cell secretome 
recognized as exosomes with data trafficking and cell repro-
gramming capability to contribute in signal transduction 
of pathophysiological conditions [7, 8]. This study is an 
overview of the recent knowledge on the general structure 
of exosomes and their role in initiation and progression of 
malignancies, particularly in GC. Since established char-
acteristics of exosomes strongly depend upon the cells of 
the origin and status of development, key modulating mol-
ecules, related signaling pathways and clinical relevance 
to GC will be reviewed. Furthermore, exosome contents, 
as potential diagnostic biomarkers with possible role in 
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induction of chemoresistance followed by their application 
in exosomes-based strategies to overcome this resistance 
will be discussed.

Structure and biological functions 
of exosomes

Exosomes are nanometer-sized bioactive extracellular vesi-
cles, span 40–150 nm in diameter and encompass cytoplasm 
fractions without any organelles by a lipid bilayer membrane 
with similar orientation of origin cell. These vesicles have 
spherical or cup-shaped construction which are released to 
the extracellular space by multitude of cells into the extra-
cellular space with a central role in initiation and progres-
sion of intercellular signaling networks [9–12]. The main 
endosomal proteins of the vesicles which are known as exo-
some surface markers include CD9, CD81, and CD82. Exo-
some biogenesis is initiated by membrane invagination of 
early endosomes to form intracellular multivesicular bodies 
(MVBs) which organize intraluminal vesicles under control 
of the endosomal sorting complex that is required for the 
transport (ESCRT) signaling. Cholesterol-rich MVBs are 
conveyed into the cellular membrane under traction of Rab 
GTPases 27A/B molecular motors to dock, fuse and exocy-
tose exosomes into the extracellular space, while cholesterol-
deficient MVBs are recycled by lysosome and/or autophago-
some complexes under regulation of ISG15-ISGylation on 
tumor susceptibility gene 101 protein (TSG101). Exosomes 
contain various cargos including DNAs (mitochondrial and 
genomic), proteins, transposable elements, and RNAs (cod-
ing and noncoding) with different compositions originated 
from functional status of source cells [13–16]. Exosome 
organotrophy is planned by patterns of transmembrane inte-
grins, whereas preferential uptake is mediated by macropi-
nocytosis, clathrin-dependent and -independent endocytosis, 
phagocytosis, ligand-receptor interaction and direct binding. 
These vesicles can also induce various signaling pathways 
without cellular internalization through soluble and contact-
dependent (juxtacrine) signal transduction [14, 17] (Fig. 1).

Generally, cells remove hazardous and redundant intra-
cellular constituents including different drugs through 
exosomes in conserved condition with minimum suscep-
tibility of degradation to avoid local contamination [18]. 
Exact physiologic features of exosomes are largely unex-
plored except in a few insights on their role in modulation of 
immune response by antigen presenting capability, synaptic 
physiology, and cellular hemostasis.

In the period of cellular stress, elevated exosome secre-
tion subscribes to maintain cellular hemostasis by prevent-
ing cytosolic nuclear DNA accumulation to restrain innate 
immune response for cell cycle arrest or apoptosis in normal 
cells [19]. Constant presence of exosomes in body fluids 

(saliva, breast milk, plasma, bronchial lavage, amniotic fluid, 
abdominal cavity effusion, urine, and cerebrospinal fluid), 
extracellular spaces, and different tissues postulate their role 
as the important modulators in signal transduction pathways 
accompanied with cell–cell contact and secretome signaling 
[20]. The role of these vesicles in initiation and progression 
of inflammation, autoimmune and neurological diseases, 
infectious disease, and cancers are well known. Small non-
coding RNAs (MiRNAs) are known as the most abundant 
and crucial biomolecules derived from exosomes which play 
a pivotal role in tumor regulation [21–23]. Excessive amount 
of circulating exosomes along with exosomal cargo in can-
cer, suggest possible contribution of these subcellular secre-
tory nanoparticles to establish complex cross-talk networks 
in dependent signaling pathways for initiation, progression 
and dissemination of tumors.

Exosome and gastric cancer

Tumor development requires continuous carcinogenic repro-
gramming to establish malignant characteristics in the cells. 
Exosomes are potential communicative vectors to share 
oncosignals with dual role in tumorigenesis due to cell of 
the origin. Normal cell exosomes block the corresponding 
cancer signaling pathways by tumor-suppressive profile, 
however, oncogenic contents of tumor exosomes (TEXs) 
provoke recipient cells to acquire malignant characteristics 
[24, 25]. For instance, normal cells secrete exosomes con-
taining miR-101, as an anti-tumor molecule, into the sys-
temic circulation to suppress GC tumor cells. During early 
stages of the tumorigenesis, downregulation of anti-tumoral 
miRNAs in cancer cells and insufficient exosomal supple-
ment of miR-101 by microenvironment of residential cells 
stimulate GC development [26]. Tumor suppressor genes 
are generally targeted by Onco-exomiRs in recipient cells, 
several exomiRs are known to trigger carcinogenesis in GC, 
including exomiR-Let7 of AZ-P7a cells that inhibit expres-
sion of common tumor suppressors and high mobility group 
at-hook-2 to establish tumors. Moreover, mesenchymal stem 
cells (MSCs)-derived exosomes from gastric tumor biopsies 
contain exomiR-221, which stimulates HGC-27 cells pro-
liferation. ExomiR-217 is able to target and downregulate 
cadherin-1, a tumor suppressor gene, which is responsible 
for maintaining cell–cell adhesion, this downregulation 
causes tumor proliferation. Downregulation of cadherin-1 
predispose cells for tumor initiation, meanwhile declined 
load of cadherin-1 in host cell derived exosomes facilitate 
establishment of malignancy in the cells within cross-talk 
networks [27–29]. Exosomes of primary tumors adjacent 
to gastric cells also provide cancer initiation. Three-dimen-
sional culture system of stem cells revealed that esophageal 
cancer-derived exo-miR-25 and -210 effectively reprogram 
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gastric organoids that provides cancer initiation by inhibition 
of phosphatase and tensin homolog (PTEN) and apoptosis 
inducing factor mitochondria associated-3 (AIFM3) genes 
expression. PTEN and AIFM3 are apoptotic genes which 
their down-expression roll out apoptosis for uncontrolled 
cell proliferation [30]. Mitogen-activated protein kinase/
extracellular-signal-regulated kinase (MAPK/ERK) sign-
aling pathway is mostly involved in tumor initiation and 
progression which are regulated by exosomes. Tumor cell-
derived exosomes partially activate MAPK/ERK and PI3K/
Akt pathways in SGC7901 and BGC823 GC cells without 
any alteration in extracellular signal-regulated kinases-1/2 
and Akt cytoplasmic level, suggesting epigenetic repro-
gramming through induction of phosphorylation in Akt and 
ERK1/2 to promote cancer. Exosomes which contain CD97 
including human bone marrow MSC exosomes activate 

MAPK and hedgehog signaling pathways in SGC-7901 GC 
cells that elevate cellular proliferation to initiate cancerous 
features [31–33]. These vesicles also transform recipient 
cells to expand malignant characteristics, orchestrate cell 
transcriptome and proteome landscapes to co-opt bi-direc-
tionally with the surrounding cell derived exosomes in the 
tumor microenvironment to stimulate cancer invasion and 
progression into the distant organs.

Exosomes/ExomiRs and GC invasion 
and metastasis

During multiple steps of metastasis procedure, cells loose 
adhesion into the stroma and migrate into the bloodstream 
to reach pre-metastatic niches followed by establishment of 

Fig. 1  a Lipid rafts are produced by Golgi apparatus and facilitate 
endocytosis which provides extrinsic exosome cargos. Endosomal 
and cytosolic contents are encompassed in exosomes during invagi-
nation of intraluminal vesicles (ILVs) inside the multivesicular bod-
ies (MVBs) under control of endosomal sorting complex required 
for the transport (ESCRT) family signals. Cholesterol-rich (CHL-R) 
pre-exosomes are convened in the cellular membrane by Rab-GTPase 

motors to be released in cooperation with Rab-27, but cholesterol 
deficient (CHL-D) pre-exosomes are degraded under control of 
ISG15-ISGylation on TSG101 through lysosome or autophagosome 
complexes. b Exosome uptake is mediated by several mechanisms 
including: macropinocytosis, clathrin-dependent and -independ-
ent endocytosis, phagocytosis, ligand-receptor interaction and direct 
binding through soluble and contact-dependent signaling
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secondary tumors. Notably, only 0.01% of circulating tumor 
cells successfully develop distant organ metastasis [34]. GC 
microenvironment includes various types of stromal cells 
corresponding for tumor metabolism. The multidirectional 
communication network of cancer and stromal cells based 
on secreted compounds comprising exosomes, participate 
in cancer metastasis [35]. For example, extracted exosomes 
of KatoIII and MKN45 GC cell lines elevate MKN45 cell 
invasion and migration through upregulation of fibronectin-1 
(FN1) and laminin Subunit Gamma-1 (LAMC1). Similarly, 
in vivo studies revealed enhanced adhesion of mesothelial 
cells into the GC cells during peritoneal metastasis with 
similar pattern of elevated FN1 and LAMC1. Moreover, 
in vitro treatment of mesothelial cells by malignant pleural 
effusion derived exosomes shows similar raise in expression 
pattern of FN1 and LAMC1 in MKN45 cells, but the effect 
is not reciprocal [36, 37]. Overexpression of oncogenic 
exomiR-21, -320c, -1225-5p, -1202, -4270, -1207 in the per-
itoneal lavage fluid revealed possible molecular reprogram-
ming mechanism for the cancer spread into the mesothelial 
cells [38]. Also, exosomal delivery of hypoxia-inducible 
factor-1α (HIF-1α) into the GC cells educates them to adapt 
hypoxic microenvironment of the abdominal cavity for feas-
ing peritoneal dissemination [37]. GC cell-derived exosomes 
induce pro-tumor phenotype in neutrophils through exoso-
mal induction of NF-κB pathway by interaction of high 
mobility group box-1 and Toll-like receptor 4 molecules to 
provoke GC cell migration [39]. Angiogenesis is an essen-
tial part of metastasis which is mediated by exosomes, GC 
exomiR-130a induce angiogenesis in vascular–endothelial 
cells by modification of c-myb proto-oncogene expression 
[40, 41].

Epithelial–mesenchymal transition (EMT) conducts tumor 
escape from the primary sites of tumors in cooperation with 
reversible mesenchymal–epithelial transition (MET) in the dis-
tant metastatic niches to embed and establish secondary tumors 
[42]. EMT stimulates tumor cells to loose apical–basal polar-
ity, cell–cell junction and render mesenchymal features with 
low rate of proliferation beside high motility, invasiveness, and 
survival rate. Loss of epithelial E-cadherin and acquirement of 
mesenchymal vimentin, N-cadherin, and spindle-like cellular 
shape are the main hallmarks of EMT [43]. ExomiR-423-5p 
induces EMT in GC cell lines by downregulation of suppressor 
of fused protein gene (SUFU), a tumor suppressor gene, to pro-
mote tumor migration and proliferation. ExomiR-191 and let7a 
are also abundant cargos in GC exosomes which modulate 
EMT to support cancer promotion [44, 45]. MSC exosomes 
increase the expression of mesenchymal markers and decrease 
the expression of epithelial markers in GC cells which result 
in acceleration of EMT to elevate migration and invasion of 
HGC-27 cells by predominant activation of protein kinase B 
signaling pathway through octamer-binding transcription fac-
tor 4, sex determining region Y-box 2 and Lin28B [46].

Cancer-associated fibroblasts (CAFs) are abundant and 
heterogeneous spindle-shaped group of stromal cells mainly 
originate local fibroblasts and several other cells (mesen-
chymal stem cells, epithelial, endothelial, adipocytes and 
pericytes cells) under effect of exosomes to modulate tumor 
growth, angiogenesis, metastasis, and chemoresistance [47]. 
GC exosomes contain exomiR-27a which remarkably repro-
grams residential fibroblasts to transform into CAFs. Fur-
thermore, GC-derived exosomes transform umbilical cord 
MSCs into the CAFs through direct delivery of exosomal 
transforming growth factor-beta (TGF-β) and initiation of 
TGF-ß/Smad cascades, for cancer promotion [48, 49]. Resi-
dential MSCs of the GC tumor secret exosomes that transfer 
exomiR-221 and -222 into the gastric tumor cells to support 
migration and metastasis of the cells [24]. Also, exosomal 
bone morphogenetic protein (BMP) induces transition of 
pericytes into CAFs through PI3K/AKT and MEK/ERK 
signaling pathways. CAFs create niches in remote organs by 
secretion of α-smooth muscle actin and fibroblast-activating 
proteins to support metastasis [50] (Fig. 2). Bone marrow-
derived MSC secret exosomes that regulate tumor prolifera-
tion and progression of GC through activation of Hedgehog 
signaling pathway by exomiR-221 [33, 51]. Also, these ves-
icles promote angiogenesis via activation of ERK1/2 and 
MAPK pathways for tumor growth in vivo [52].

Macrophages are the most abundant fraction of stromal 
leukocytes with a dual activity,  M1cells act as pro-inflam-
matory with tumoricidal activity and  M2 cells function as 
anti-inflammatory cells which are linked to cancer progres-
sion and metastasis [53]. GC exosomes promote inflamma-
tion by induction of  M2 subtype of macrophages through 
NF-κB pathway that causes tumor proliferation, migration 
and invasion. NF-κB pathway is epigenetically activated by 
exosomes, and none of the engaged molecules are deliv-
ered directly by exosomes [54]. Exosomes derived from 
SGC7901 and BGC823 gastric cancer cell lines are able 
to educate monocytes to transit into the programmed cell 
death-1 (PD-1) positive tumor-associated macrophages 
with  M2 features for upregulation of interleukin-10 secre-
tion that interferes with  CD8+ T cell function which leads 
to GC progression [55]. Mass spectrometry revealed that  M2 
macrophages release exosomes containing apolipoprotein E 
that activates PI3K-Akt signaling pathway in recipient GC 
cells which results in cytoskeleton remodeling to establish 
EMT and promotion of metastasis [56].

Exosomal DNAs and gastric cancer

Exosomal DNA (exoDNA) generally appears as dou-
ble strand fragments that may extend more than 10,000 
base pair in length. Tumor-methylated DNA comprises 
great portion of TEXs DNA. In vitro analysis of exoDNA 
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fragments for long interspersed nuclear elements-1 
(LINE-1) and SOX-17 indicates same methylation pat-
tern in nuclear and exoDNA. Furthermore, in vivo analy-
sis of LINE-1 shows slightly lower rate of methylation 
in exoDNA in contrast to nuclear DNA which may arise 
non-cancerous circulating exosomes. Exosomal SOX-
17 methylation pattern in exosomal and nuclear DNA is 
concordant with in vitro investigations [57]. BarH-like 2 
homeobox protein (BARHL2) expression level in lavage 
is significantly shifted at the early stage of GC with inde-
pendent pattern of Helicobacter pylori (H. pylori) infec-
tion. The exosomal-DNA derived from the gastric juice 
of patients is used for evaluation of BARHL2 methylation 
pattern demonstrates similar pattern of biopsy samples, 
free DNA in gastric juice and GC cell lines. BARHL2 
methylation is gradually increases by development of GC 
suggesting exosomal-BARHL2 methylation pattern as a 
promising diagnostic and prognostic biomarker in GC 
[58].

Exosomal proteins and gastric cancer

Exosomes contain a large number of proteins as internal and 
surface molecules which probably suggest an important role 
for these proteins in exosome navigation and function. GC 
TEX-proteins are mainly participated in promotion of the 
cancer, for instance, exosomes of gastrointestinal stromal 
tumors contain tyrosine kinase proteins which transform 
progenitor cell-derived smooth muscle cells into the pre-
metastatic cells. Exosomal CD97 induces proliferation of 
GC cells by activation of MAPK signaling pathways in com-
bination with miRNAs. Exosomal CD9 of CAFS also stimu-
late metastatic migration in scirrhous-type GC cells [32, 59, 
60]. On the other hand, lack of certain exosomal molecules 
may promote cell viability and proliferation. The absence 
of gastrokine-1, as a tumor suppressor protein, in exosomes 
provides GC cell lines proliferation. Low concentration of 
Tripartite Motif Containing 3 (TRIM3) in serum exosomes 
of GC patients promote growth and progression of GC as a 

Fig. 2  Niche formation. Different cells contribute to transit into can-
cer-associated-fibroblasts (CAFs) in tumor microenvironment. Sev-
eral cells are transformed into the CAFs including mesenchymal stem 
cells (MSCa), mesenchymal cells, endothelial cells, and also epithe-
lial cells which are under epithelial mesenchymal transition (EMT). 
Gastric cancer (GC)-derived exosomes are able to promote pericytes 

and umbilical cord MSCs transition into the CAFs. GC exosomes 
delivering bone-morphogenetic-proteins (BMP) into the pericytes and 
BMP activates PI3K/AKT and MEK/ERK signaling pathways. Sub-
sequent CAFs secret a-smooth muscle actin (a-SMA) and fibroblast-
activating proteins (FAP) in target cells environment and provoke 
niche formation for GC cell metastasis
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key regulator of stem cell factors and EMT [61, 62]. CAFs 
are able to control EMT by secretory TGF-1 through activa-
tion of TGF-1-SMAD signaling pathway. These molecules 
also provoke EMT by exosomal delivery of TGF-1. Gastro-
epiploic vein of GC patients contain circulating exosomes 
which are rich in TGF-β1 that significantly modulate host 
immune-surveillance by transforming of naive T cells into 
 FOXP3+ T regulatory cells and prepare tumor escape to pro-
mote lymphatic metastasis [63]. Exosomal-tetraspanin 8 is 
another molecule that increases the invasion rate in recipient 
GC cells by activation of ERK/MAPK pathway that pro-
motes angiogenesis and metastasis [64]. Exosomes are also 
able to conduct targeted metastasis for different organs. Exo-
somal epidermal growth factor receptors in GC cells mediate 
organotropism metastasis into the liver through activation 
of hepatocyte growth factor (HGF) signaling pathway by 
suppressing of miR-26a/b in GC [65]. HIF-1α expression is 
directly associated with GC peritoneal dissemination; it is 
an adaptation key in the hypoxic microenvironment of the 
abdominal cavity for GC cells which exert its effect by β1 
integrin as mediator of HIF-1α to increase cell adhesion. 
Exosomal delivery of HIF-1α in hypoxia condition into the 
GC cells promote the cancer dissemination by upregulation 
of EMT-associated transcription factors [66].

Exosomal long non‑coding RNAs in gastric 
cancer

Non-coding genes comprise approximately 98% of the 
human genome which are involved in regulation of various 
cellular processes. Long non-coding RNAs (LncRNAs) are 
defined as longer RNAs than 200 bp without protein cod-
ing capability. LncRNAs target preferential transcriptomes 
directly by base–base complementation or regulate up- or 
down-stream of gene transcription cascades [67, 68]. Exo-
somal transportation of these molecules in GC is repeat-
edly reported. Overexpression of serum-exosomal hoxa 
transcript at the distal tip (HOTTIP) is indirectly correlated 
with greater tumor-size, advanced pathological stage and 
extensive metastasis beside shorter overall survival rate of 
GC patients. HOTTIP targets miR-331-3p as competitive 
endogenous RNA to reduce expression of HER2 gene which 
results in gastric tumor proliferation and invasion [69, 70]. 
Upregulation of circulating-exosomal long intergenic non-
protein-coding RNA 152 (LINC00152) and zinc finger anti-
sense1 (ZFAS1) serve as prognostic biomarkers, they are 
capable to mediate clinical status of patients by promoting 
lymphatic metastasis [71, 72]. LINC00152 downregulates 
miR-193a-3p to elevate expression of MCL1 gene and also 
targets PI3K/Akt signaling pathway to induce GC prolif-
eration and invasion. MCL1 expression is a trigger factor 
for EMT to induce metastasis [73, 74]. Also, ZFAS1 is a 

modulatory factor in notch signaling pathway that affects 
EMT which results in GC dissemination. Competitive 
sponging of miR-150, miR-200b or miR-200c by ZFAS1 
leads to overexpression of ZEB1/2, MMP-14/16, BMI1, and 
Sp1 gene profile that stimulates proliferation and invasion 
in GC cells [75, 76]. UFC1 promotes GC by sponging of 
miR-498 that represses expression of Lin28b as tumor sup-
pressor [77].

Infection‑induced exosomes in gastric 
cancer

Pathogenic organisms generally utilize endocytic-pathways 
of host cells to alter cellular activity and also hijack exo-
some content and membrane structure. Infected cell-derived 
exosomes are potential transmitters of pathogen substances 
to spread the infection. H. pylori and Epstein–Barr virus 
(EBV) are the main infectious agents in gastric epithelium 
which are associated with GC initiation. CagA is the main 
virulence factor of H. pylori that promotes GC establish-
ment. Exosomal-CagA delivery supports GC metastasis by 
modulation of Src family kinases in recipient cells through 
activation of NF-κB pathway and induction of MET proto-
oncogene sorting over generated exosomes to educate resi-
dential macrophages for tumor progression through secre-
tion of pro-inflammatory cytokine like IL-1β [78–80]. EBV 
infection, as a latent virus, is detectable in about 90% of 
population worldwide. Exosomal latent membrane protein-1 
(LMP1) of EBV stimulates tumor-related signaling pathways 
including EGFR/PI3 K and AKT/ERK beside upregulation 
of ICAM-1 or CD54 which cause promotion of GC by sup-
pressing of T cell proliferation and natural killer cell cyto-
toxicity. Also, miR-BART15-3p is transferred by exosomes 
in EBV-infected GC cells, supporting inhibition of apoptosis 
with overexpression of BRUCE in neighbor immune cells 
to provide GC progression. miR-BART6-3p is EBV-specific 
molecule that directly suppresses host miRNA biogenesis by 
targeting of host Dicer which is transposable through exo-
some secretion [81].

Exosomes as potential diagnostic 
and prognostic biomarkers in gastric cancer

Enigmatic origin of free circulating non-coding RNAs and 
their poor association with tumoral expression profile beside 
expression impressibility in blood stream by hypoxia, diet, 
exercise, circulating blood cells secretome, and infections 
remarkably candidate them as debatable biomarkers [82, 
83]. Cytosolic content of exosomes properly resembles met-
abolic status of the origin cell. Abundance of exosomes in 
body fluids, selective cargo sorting, accessibility, circulation 
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stability and reproducibility in different stages of the disease, 
suggesting these vesicles as emerging non- or semi-inva-
sive diagnostic and prognostic targets in cancer biomarker 
investigation. ExomiRs expression pattern (not exosomal 
mRNA) supports potential signature for discrimination of 
origin and subtypes of various cancers including GC [84, 
85]. Combined quadri-plasma derived exomiRs (miR10b-
5p, miR195-5p, miR20a-3p, and miR296-5p) pattern is sug-
gested as a diagnostic biomarker for GC which indicates 
similar correlation with gastric tumors. Upregulation of 
miR10b-5p or miR296-5p afterward adjuvant chemotherapy 
tends to reduce overall survival rate of the patients [86]. 
Elevated peritoneal lavage fluid derived exomiR-21, -320c 
and -1225-5p beside plasma exomiR-23b are proposed as 
prognostic biomarkers in evaluation of peritoneal GC recur-
rence [87, 88]. Different exosomal cargos including DNAs, 
proteins, miRNAs, and LncRNAs are previously described 
as potential GC diagnostic and prognostic biomarkers which 
are summarized in Table 1.

Exosomes and gastric cancer therapy 
and chemoresistance

Modest achievements of chemotherapy in GC treatment 
are highly under influence of the late diagnosis. Cisplatin 
as the main chemotherapy treatment is common approach 
in solid tumors including GC which triggers DNA damage 
in rapidly proliferating cells that causes massive cell death 
by inducing apoptosis. Cisplatin resistance in tumor cells 
is established by several mechanisms: decreased drug-
uptake, raised activity of efflux pumps, reduction of active 
drug agents in cancer cells, subsequent modifications of 
molecular targets of drugs, improved DNA damage repair, 
and reduced pro-apoptotic factors or upregulated anti-
apoptotic genes. Exosomes are also novel players that 
interfering drug metabolism by exporting drugs or sharing 
anti-apoptotic agents in cancer cells to promote chemore-
sistance [92–95]. MSC exosomes modulate drug efflux and 

Table 1  Exosomal biomarkers in gastric cancer

Biomarker type Molecules (signatures) Exosome origin References

miRNA miR10b-5p, miR195-5p, miR20a-3p, and miR296-5p Plasma [86]
miR-21, miR-320c, miR1225-5p, miR-1202, miR-4270, miR-

1207-5p
Peritoneum lavage fluid [34]

(miR-23b, mir-210, mir-25, miR-92b) Plasma [85]
miR-19b-3p, miR-17-5p, miR-30a-5p, and miR-106a-5p Serum [86]
(miR-92b, miR-25, miR-20a, miR-185, miR-210) Plasma [87]
Let-7 Cell line [29]
miR-101 Serum [26]
miR-217 Plasma [28]
miR-423-5p Serum [44]
miR-23b Plasma [88]
miR-101 Plasma [26]
miR-221 Peripheral blood [51]

Long None coding RNA HOTTIP Plasma and serum [69]
LINC00152 Plasma and serum [73]
ZFAS1 Plasma and serum [75]
lncUEGC1 Serum [89]
UFC1 Serum [77]
lncRNA HOTAIR Serum [90]

DNA BARHL2 Gastric juice [54]
LINE-1 and SOX-17 In vivo and in vitro [53]

Protein Tetraspanin 8 Plasma [61]
CD97 Serum [90]
Glypican-3 Serum [91]
GRN Cell line [60]
HER-2/neu and CCR6 Blood exosome surface [92]
TRIM3 Serum [91]
Gastrokine 1 HFE-145 cell line [61]
CD9 In vitro [60]
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drug delivery into the recipient cells by transferring of cer-
tain proteins (MRP2, ATP7A, and ATP7B) and miRNAs 
(miR-100, m-222, miR-30a, miR-17) to activate apoptosis 
escaping pathways beside CaM-Ks/Raf/MEK/ERK signal-
ing pathways that provoke 5-fluorouracil chemoresistance 
in GC cells [96]. Dysregulated miR-101 expression in gas-
tric tumors promotes the malignancy, and therefore, exo-
somal delivery of miR-101 by blood circulation promotes 
elimination of established tumors [26]. Cancer stem cells 
(CSCs) take role both in cancer seeding and induction of 
chemo/radio therapy resistance, hence targeted delivery 
of the therapeutic agents into the CSCs is beneficial for 
cancer restriction. Line of evidence confirms that trans-
formation of non-CSCs into CSCs is mediated by shar-
ing stemness and EMT-related factors through exosomes, 
Snail is an EMT promoting factor which is shared by GC 
exosomes to establish gastric carcinoma cells with CSC 
characteristics [97, 98]. M2 macrophages derived from 
peripheral blood mononuclear cells produce exosomes 
that containing mir-21 which triggers downregulation of 
PTEN, and activation of PI3K/AKT pathway in GC cells 
and establish cisplatin resistance [99]. MiRNAs efficiently 
interrupt cellular functions by dysregulation of expres-
sion networks in the cells, precisely in cancers. Directed 
exosomal delivery of miRNAs, to modify recipient cell 
metabolism is a novel approach which is growing fast. 
Mir-214 overexpression in GC cells is associated with 
anti-apoptotic behavior of cells leading to invasion and 
metastasis with poor prognosis. Also, it is shown that mir-
214 interrupt PTEN function in cancer cells and tumor 
microenvironment to induce cisplatin resistance. Exoso-
mal-anti-mir-214 delivery to GC tumor cells recovers cis-
platin activity in cisplatin refractory GC patients [100]. 
Delivery of tumor-suppressive miRNAs to chemo-resistant 
cancer cells is another approach to retrieve drug effec-
tiveness in chemoresistance cells. Mir-122 concentration 
increases gradually by cancer cell proliferation and causes 
GC cell resistance to cisplatin. It has been suggested that 
exosomal delivery of anti-miR-122 is a valuable approach 
to overcome this chemoresistance in vitro and in vivo 
[100]. Exosomal miR-21, a tumor promoter, downregu-
lates PDCD4 gene expression to bypasses apoptosis in 
benefit of tumor progression, exosomal antibody delivery 
against miR-21 effectively stimulates cell apoptosis [101]. 
Exosomal delivery of overexpressed TRIM3 can suppress 
GC growth and metastasis by arresting cell cycle at G0/G1 
checkpoints in vitro and in vivo [62]. Trastuzumab emtan-
sine (T-DM1) is a conjugated antibody with drug complex 
which transfers cytotoxic part (DM1) to  HER2+ tumor 
cells through targeted activity of antibody. Strong attach-
ment of T-DM1 to exosomes with origin of  HER2+ cells 
induces out spreading of T-DM1 through exosomes by cir-
culation followed by decrease in viability of target cells 

[102]. Angiogenesis as crucial part of metastasis is medi-
ated by overexpression of HGF/c-Met signaling pathway in 
GC that upregulates VEGF expression through activation 
of MAPK, PIK3 and Stat3 which leads to tumor spread. 
Exosomal HGF siRNA delivery efficiently suppresses cell 
proliferation through blocking of vasculation [103]. In a 
recent report, milk exosomes were introduced as resistant 
carriers to human digestive system which enabled exosome 
uptake in gastrointestinal (GI) tract cells which is sug-
gesting exosomes as promising oral delivery systems for 
wide range of therapeutics which are encapsulated in these 
vesicles without any modification or degradation to target 
GI cells [104]. These findings support promising role of 
exosomes in induction of chemoresistance to transfer and 
deliver anti-resistant factors to various cells.

Conclusion

Exosomes as natural nanocarriers continuously departure 
from various cell types to preserve cellular hemostasis and 
intracellular signaling networks. In contrast to other family 
of extracellular vesicles, exosomes biogenesis is result of 
multivesicular bodies’ fusion with plasma cell membrane 
instead of direct shedding under control of strict loading 
mechanisms. Certain biological roles are introduced for 
exosome in normal condition, genetic material exchange 
and excretion of redundant waste substances in conserved 
manner are main roles in various investigations. Distribu-
tion of different biological molecules through exosomes 
during pathological conditions including cancers, suggest-
ing a considerable role for modulation of cancer initiation, 
progression and metastasis. These vesicles can easily present 
in different body fluids due to their nanoscale, their abil-
ity for modifications of recipient cells, and detectability of 
exosomes in the majority of body organs which candidate 
them as potential targets for non-invasive biomarker stud-
ies. Exosomes are persistent part of tumor microenviron-
ment with origin of tumoral and normal cells. Various tumor 
cells tend to release set of exosomes with oncogenic activ-
ity to promote the cancer in the battle of normal exosomes. 
Exosomes provide distant metastasis by modulating of target 
organs which suggesting possible monitoring of metastasis 
procedure. Exosomes also modify metastatic cell adaption 
into the target tissue microenvironment through reprogram-
ming of cells’ domestic metabolism. Exosomal HIF was 
reported to modify GC abdominal metastasis by mediating 
hypoxia adaption, targeting of exosomal HIF delivery in GC 
may serve as potential approach to limit GC invasion into 
adjacent tissues. Infectious agents hijack exosome loading 
machinery in host cells a beneficial system to spread the 
pathogenic organism in the host cells. They also deliver 
genotoxic and carcinogenic elements into the recipient 
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cells which may cause cancer initiation, as the mechanism 
of CagA in H. pylori. These findings suggest that exosome 
biogenesis and loading can be controlled by extrinsic modifi-
ers such as infectious agents. Also, exosome content screen-
ing may be a considerable approach to detect carcinogenic 
molecules during infections. The role of exosomes in chem-
oresistance is emerging finding, they exert chemotherapy 
compounds outward the cells and also share key molecules 
for regulation of target cells in benefit of chemoresistance by 
epigenetic reprogramming and direct delivery of functional 
molecules. The natural structure of these vesicles makes 
them candidate as non-immunogenic vectors to deliver 
chemotherapy compounds and recover therapeutic activity. 
Overall, exosomes are multipotent carriers to participate in 
tumor initiation, progression and chemoresistance. These 
vesicles can also be applied early detection of tumor initia-
tion and targeted therapy.
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