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Abstract
The Hippo tumor suppressor pathway, which is well conserved from Drosophila to humans, has emerged as the master regu-
lator of organ size, as well as major cellular properties, such as cell proliferation, survival, stemness, and tissue homeostasis. 
The biological significance and deregulation of the Hippo pathway in tumorigenesis have received a surge of interest in the 
past decade. In the current review, we present the major discoveries that made substantial contributions to our understanding 
of the Hippo pathway and discuss how Hippo pathway components contribute to cellular signaling, physiology, and their 
potential implications in anticancer therapeutics.
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Overview of the Hippo pathway

The core Hippo components in Drosophila

Since it was first established as a genetic model by Thomas 
Hunt Morgan, Drosophila melanogaster has made a large 
contribution to our understanding of metazoan develop-
ment [1]. The genetic mosaic screening of Drosophila using 
tissue-specific loss-of-function assays by the flippase/FRT 
system is a powerful tool to investigate genetic pathways [2]. 
Surprisingly, this led to the discovery of almost all compo-
nents of the Hippo tumor suppressor pathway in experiments 
designed to identify growth suppressors. Gene inactivation 
in this pathway resulted in massive tissue overgrowth in the 
developing eyes or wings. In 1995, two studies discovered 
that homozygous loss of Warts (Wts), which encodes a 

nuclear Dbf-2-related (NDR) family Ser/Thr kinase, caused 
large outgrowth of multiple tissues in Drosophila [3, 4]. 
These initial findings indicated that Wts regulates tissue 
growth and functions as a tumor suppressor gene. Following 
the discovery of Warts, Hariharan, Halder, and collabora-
tors reported that Salvador (Sav; also known as Shar-Pei), 
a WW domain-containing protein, genetically and physi-
cally interacts with Wts and that a Sav mutant clone showed 
excess interommatidial cells in Drosophila eye development 
via elevated cyclin E-induced cell cycle progression [5, 6]. 
Moreover, Sav-deficient cells induced DIAP1 (Drosophila 
inhibitor of apoptosis protein 1), which attenuates apopto-
sis by inhibiting caspase, resulting in cell proliferation and 
organ growth. These results suggested that Wts–Sav restrain 
massive cell growth during development and may have criti-
cal roles in tumor suppression.
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Hippo pathway : the first 20 years

YAP was discovered 
as a binding partner of 
non-receptor tyrosine 
kinase YES1 [20]

1994 1995 2000 2001 2002 2003 2005

Warts was found as 
Drosophila tumor 
suppressor gene [3-4]

• TAZ was found to interact with 
14-3-3b [178]

• TAZ identified as 
transcriptional co-activator [178]

TEAD/TEF transcription 
factors was found to 
directly interact with YAP 
to modulate gene 
expression [33]

• Hippo was identified as 
a serine/threonine 
kinase of the Sterile 20 
(STE20) group [7-11]

• Hpo found to 
phosphorylate Warts [11]

• Salvador was found to 
interact with Warts [6]

• Salvador-Wats regulates 
both cell cycle exit and 
apoptosis [5-6]

• Yorkie was found interact 
and become phosphorylated 
by Warts [18]

• Yki is the Drosophila
ortholog of the mammalian 
transcriptional co-activator 
protein YAP [18]

2006

YAP overexpression shown to 
promote EMT and growth factor-
independent proliferation [19]

Merlin and Expanded was found 
transduce Hippo pathway [67]

Timeline

In 2003, five independent groups identified Hippo (Hpo) 
from genetic mosaic screens for mutant clones that show 
excess overgrowth phenotypes in Drosophila [7–11]. Inter-
estingly, all five reports noticed that the phenotypic charac-
teristics of Hpo mutants were identical to those of Wts or 
Sav loss-of-function mutants. Hpo deletion increased the 
number of interommatidial cells in Drosophila eye disc via 
robust cyclin E [12–14] and DIAP [15] expression. In con-
trast, overexpression of Hpo showed a loss of eye, head, and 
wing tissue phenotype during imaginal disc development 

through cell cycle arrest and apoptosis. Collectively, these 
findings indicated that Hpo, Sav, and Wts control cell 
cycle exit and apoptosis in Drosophila, and thus function 
as negative growth regulators, identifying Salvador/Warts/
Hippo (SWH) signaling as a tumor suppressor pathway 
[16]. Another core component, Mats (Mob as tumor sup-
pressor), was later identified as a Wts-interacting partner that 
enhances Wts kinase activity [17]. Loss of Mats also results 
in an excessive overgrowth phenotype similar to Hpo or Wts 
mutation in Drosophila.



2305Regulation of the Hippo pathway in cancer biology﻿	

1 3

Notably, in 2005, Pan’s group discovered Yorkie (Yki), 
a transcriptional co-activator that acts as a Wts-binding 
partner [18]. Overexpression of Yki recapitulates the tissue 
overgrowth phenotype similar to Sav, Wts, or Hpo mutants, 
while Yki mutants suppress tissue proliferation. Moreover, 
Yki mutants combined with Hpo, Sav, or Wts mutants did 
not show any phenotypic difference when compared with 
the Yki mutation alone. These results suggested that Yki 
is genetically epistatic to Hpo, Wts, and Sav and that the 
Sav/Wts/Hpo complex possibly acts upstream of Yki. Two 
years later, Pan and colleagues reported that Wts phospho-
rylates Yki at serine 168 residue, which induces cytoplasmic 
retention of Yki via interaction with the 14-3-3 protein, thus 
providing the first mechanism of Yki regulation by Wts [19] 
(Fig. 1).

The Yki transcription co-activator lacks a DNA-binding 
domain, which prompted research to identify the transcrip-
tion factors that mediate Yki target gene expression [18, 20]. 
In 2008, independent groups observed that non-phospho-
rylated Yki localizes in the nucleus and interacts with the 
Scalloped (Sd) transcription factor [21–24], which in turn 
induces Sd target genes. Yki–Sd-induced Bantam micro-
RNA expression, which promotes the overgrowth phenotype, 
and overexpression of bantam partially rescued the growth 
defect phenotype, caused by the Yki loss-of-function muta-
tion [25, 26]. Bantam also links the epidermal growth factor 
receptor (EGFR) and Hippo pathway-mediated tissue growth 
during development [27]. Yki also induces gene expression 
of the proto-oncoprotein and transcription factor dMyc [28, 
29], as well as cell cycle regulator E2F [24]. In addition to 

Sd, Homothorax (Hth), and Teashirt (Tsh) are reported to 
interact with Yki, and mediate the transcriptional output of 
Hippo growth-regulatory pathway [30].

Collectively, this kinase cascade has been grouped into a 
new signal transduction called the “Hippo pathway”, which 
was named after the Hpo mutant Drosophila overgrowth 
head phenotype that resembles the folded skin around the 
neck of a hippopotamus.

The Hippo signaling pathway in mammals

The Hippo signaling pathway is evolutionarily well con-
served from flies to mammals. Hence, most of the core 
components of the Drosophila Hippo pathway have mam-
malian homologs. These include mammalian STE20-like 
protein kinase 1/2 (MST1/2) (Hippo homolog, also known 
as STK4 and STK3), Salvador family WW domain-con-
taining protein 1 (SAV1) (Salvador homolog), large tumor 
suppressor 1/2 (LATS1/2) (Warts homolog), MOB kinase 
activator 1A/B (MOB1A/B) (Mats homolog), YAP [20] and 
TAZ (Yorkie homologs), and TEA domain family members 
1–4 (TEAD1–4) (Scalloped homolog). Similar to the Dros-
ophila Hippo pathway, the mammalian Hippo pathway is 
also considered a tumor suppressor pathway that is mainly 
regulated by a phosphorylation-dependent protein kinase 
cascade. For example, upon receiving various upstream 
signals, activated MST1/2 phosphorylates and activates the 
downstream kinases LATS1/2, MOB1, and SAV1. MST1/2 
interacts with SAV1, which enhances MST1/2 kinase activ-
ity to interact and phosphorylate LATS1/2. Activation of 

Identification of CTGF as a 
direct YAP-TEAD target gene
[21]

Phosphodegron in 
YAP/TAZ by LATS, 
recruits β-TrCP [46]

Mechanotransduction
was found to regulate 
YAP/TAZ localization [94]

Verteporfin(VP) was 
discovered to inhibit YAP-
TEAD interaction [160]

2007 2010 2011 2012 2014 2015

TAZ overexpression shown to 
promote cell proliferation and 
EMT [47]

GPCR signaling was 
found to regulate Hippo 
pathway [95]

Cell detachment was 
found to activate the 
Hippo pathway kinases
[93]

VGLL4 shown to negatively 
regulate the YAP-TEAD 
complex formation [34-35]

Energy stress induced AMPK 
shown to phosphorylate and 
inhibit YAP activity [136]

MAP4K was found to 
phosphorylate and activate 
LATS1/2 [56-57]

Timeline

Kibra was found to 
associate with 
Expanded and 
Merlin [70-72]

2016

Hippo pathway  
modulate tumor 
immunogenicity [150]

Glucose metabolism and 
glycolysis was found to 
activate YAP/TAZ activity
[137-138]

Toll-mediated Hippo 
signaling pathway in 
antimicrobial response 
[149]

2008

• YAP S127 phosphorylation is 
induced by LATS1/2 [19]

• YAP overexpression was shown to 
enlarge liver size [19]

YAP was found to regulate 
progenitor/stem cells in intestine [125]

Cell-cell contact was found to drive 
YAP phosphorylation, activity, and 
localization via the Hippo pathway. 
[118]
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LATS1/2 subsequently phosphorylates and inhibits YAP, 
and its paralog TAZ. Therefore, the final physiological out-
put of the Hippo kinase cascade is to restrict the transcrip-
tional activity of YAP/TAZ and TEAD (Fig. 1).

Regulation of the Hippo pathway

YAP/TAZ regulation by the Hippo pathway

The core Hippo pathway consists of the cytoplasmic kinase 
modules MST1/2 and LATS1/2, which are serine–threonine 
kinases with tumor suppressive functions, and the nuclear 
transcriptional modules YAP/TAZ and TEAD, which har-
bor oncogenic functions. Upon Hippo pathway inactiva-
tion, YAP/TAZ translocate into the nucleus, which leads to 
enhanced gene transcription via interactions with TEAD1–4 
transcription factors [21, 31–33]. In contrast, when YAP/
TAZ is sequestered in the cytoplasm by LATS1/2-mediated 
phosphorylation, TEAD activity is suppressed by Ves-
tigial-like 4 (VGLL4), which acts as a tumor suppressor, 
and the TEAD–VGLL4 interaction is dissociated by YAP/
TAZ–TEAD activation [34–37]. In addition to TEAD, YAP/
TAZ can interact with diverse transcription factors via their 
WW domain–PPXY motif, including FoxO1, ErbB4, TBX5, 
Pax, Smads, p73, and RUNX1/2 to regulate multiple aspects 

of tissue growth and cell differentiation [38]. Through inter-
acting with TEAD and other transcription factors, YAP/TAZ 
promote the expression of target genes including CTGF, 
CYR61, WNT5A, TGFB2, NOTCH2, IL6, and AREG, which 
are involved in cell proliferation, anti-apoptosis, and tumo-
rigenesis [21, 39–44].

Regulation of protein stability by post-translational modi-
fications is a common mechanism to alter transcriptional 
activity. In Drosophila, Leash E3 ubiquitin ligase induces 
Yki degradation via Hippo protein–protein interaction net-
work [45]. In addition, Zhao and colleagues showed that 
Hippo signaling promotes YAP/TAZ cytoplasmic reten-
tion via YAP/TAZ phosphorylation and 14-3-3 interaction, 
followed by β-TrCP E3 ubiquitin ligase-mediated ubiqui-
tination and proteasomal degradation [46–49]. YAP/TAZ 
degradation depends on LATS1/2-mediated direct phos-
phorylation of YAP/TAZ at multiple sites. YAP S127 phos-
phorylation by LATS1/2 is essential for YAP to associate 
with 14-3-3, while phosphorylation on YAP S381 triggers 
subsequent phosphorylation by Casein kinase 1δ/ε, thus cre-
ating a phospho-degron motif for β-TrCP, which leads to 
YAP/TAZ ubiquitination and degradation. Conversely, upon 
Hippo pathway inactivation, dephosphorylated YAP/TAZ 
translocates into the nucleus and interacts with the TEAD 
family transcription factors, to activate the transcription of 
genes encoding proteins involved in cell proliferation and 

CTGF
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DKK1
WNT5A
TGFB2
AREG
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Fig. 1   Core Hippo pathway components in Drosophila and mam-
mals. In Drosophila (left), Hippo (Hpo) and Misshapen (Msn) kinase 
phosphorylate and activate Warts (Wts) kinase, which in turn inac-
tivate the transcriptional co-activator Yorkie (Yki). Phosphorylation 
of Yki leads to cytoplasmic retention via a 14-3-3 interaction. Upon 
Hippo pathway inactivation, dephosphorylated Yki translocates to the 

nucleus and binds the transcription factor Scalloped (Sd) to induce 
gene expression involved in cell proliferation and anti-apoptosis. In 
mammals (right), the core Hippo pathway components are evolution-
arily conserved. MST1/2 kinase phosphorylates LATS1/2, which in 
turn phosphorylates and inhibits YAP/TAZ. Phosphorylation of YAP/
TAZ leads to cytoplasmic sequestration and proteasomal degradation
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tissue growth [46]. Consistently, mouse models with dele-
tion of upstream Hippo components, MST1/2, NF2 (Mer-
lin homolog), SAV1, MOB1A/B, or LATS1/2, all exhibit 
hyperactivated YAP-induced progenitor cell expansion and 
tumorigenesis [50]. Therefore, YAP/TAZ phosphorylation 
by the Hippo pathway is a critical process that restricts their 
transcriptional activity. In addition to phosphorylation and 
ubiquitination, multiple post-translational modifications 
such as acetylation, methylation, sumoylation, and glyco-
sylation have been recently identified to regulate the Hippo 
pathway (for a review, see [51]).

Recent studies discovered that Tao Kinases 1–3 
(TAOK1/2/3) and Misshapen (Msn) function similar to 
Hpo kinase and are responsible for Wts activation. The 
sterile 20 family kinase, TAO1/3, directly phosphorylates 
MST1/2 and LATS1/2 via NF2 and RHOA upstream sign-
aling [52–54]. Msn is conserved in mammals as MAP4K4, 
and its activation induces phosphorylation of LATS1/2 [55], 
which in turn inhibits YAP/TAZ activity [56]. In addition, 
two recent studies revealed that multiple MAP4K family 
kinases, including MAP4K1/2/3/5 (Happyhour in Drosoph-
ila) and MAP4K4/6/7 (Msn in Drosophila), could directly 
phosphorylate and activate LATS1/2 [57, 58]. Thus, MST1/2 
and MAP4Ks act in parallel to phosphorylate and activate 
LATS1/2, and loss of both MST1/2 and MAP4Ks can com-
pletely inhibit the Hippo pathway by turning off LATS1/2 
hydrophobic motif phosphorylation and activation [55, 57, 
58].

Regulation of the Hippo pathway by cell polarity 
and cell adhesion

Apical–basal polarity separates two complementary mem-
brane domains, the adherens junctions, and tight junctions 
(adherens and septate junctions in Drosophila). Cell polar-
ity is connected to diverse signaling pathways, and controls 
development and tissue growth [59]. Genetic studies showed 
that two protocadherins Fat (Ft) and Dachsous (Ds), both 
of which are highly involved in cell polarity and planar-
cell polarity (PCP), regulate the Hippo–Yki pathway during 
Drosophila wing growth [60, 61]. The Drosophila Zyxin 
family gene, Zyx102 (Zyx), a downstream target of Ds, 
interacts with Wts and inhibits its kinase activity, linking 
Fat signaling to the Hippo pathway [62, 63]. Moreover, the 
Drosophila Crumbs (Crb) protein has been identified as a 
cell surface Hippo signaling regulator [64–67]. Crb interacts 
with FERM (4.1, Ezrin, Radxin, and Moesin) domain pro-
teins, Merlin (Mer) and Expanded (Ex), which are homologs 
of NF2 and Willin/FRMD6 in mammals, respectively, and 
function as tumor suppressors by interacting with Tao-1 
through Schip1, which activates the Hippo pathway [68, 
69]. Crb also inhibits Yki by regulating the Ex level through 
ubiquitin-mediated degradation [70]. Kibra (WW and C2 

domain-containing protein 1) interacts with Mer and Ex, 
which in turn activate Wts to suppress Yki activity [71–73]. 
Inactivation of Kibra by forming a complex with Par3/aPKC 
promotes cancer metastasis via Hippo inactivation [74]. 
Thus, the Mer/Ex/Kibra complex recruits the Hippo path-
way kinases to the apical plasma membrane for activation.

In mammals, tight junction (TJ)-associated scaffold pro-
tein angiomotin (Amot) has emerged as a critical regulator 
of the Hippo pathway. Amot has both PY- and PDZ-binding 
motifs, which interact with diverse proteins involved in cell 
polarity and junction formation [75–77]. Zhao et al. reported 
that Amot family proteins directly interact with YAP/TAZ 
through PPXY motif and WW domain interactions [78]. 
Amot inhibits YAP/TAZ activity by promoting their cyto-
plasmic translocation [78–80]. In addition, Amot can bind 
both LATS1/2 and MST1/2 to promote LATS kinase activity 
[81], which in turn suppresses YAP/TAZ activity. Scribble, 
a polarity protein localized to the epithelial junctions, has 
been shown to physically interact with and inhibit TAZ. Upon 
EMT epithelial-to-mesenchymal transition (EMT), Scribble 
delocalization activates TAZ, which induces cancer stem 
cell traits [82]. Another tight junction cytoplasmic scaffold-
ing protein, Zonula occludens-2 (ZO-2) interacts with the 
C-terminal PDZ domain of YAP/TAZ, and promotes YAP/
TAZ nuclear translocation [83, 84] (Fig. 2).

α-Catenin is a major component of adherens junctions 
(AJs), and acts as a linker for the cadherin complex and actin 
cytoskeleton [85]. α-Catenin functions as a tumor suppressor 
by negatively regulating YAP activity during epidermal stem 
cell proliferation and tissue expansion [86]. Consistently, 
Silvis et al. reported that deletion of α-catenin in the hair 
follicle stem cells led to skin cancer because of the con-
stitutive nuclear localization of YAP [87]. In addition, the 
Hippo pathway is required for E-cadherin/catenin-dependent 
contact inhibition of proliferation via YAP inhibition [88]. 
Another AJ component, protein tyrosine phosphatase 14 
(PTPN14), also directly interacts with YAP and contributes 
to YAP cytoplasmic retention [89–92] (Fig. 2). Therefore, 
the apical cell polarity complex, cadherin/catenin, and adhe-
rens junction proteins are important regulators of Hippo 
signaling to suppress cell proliferation and tumorigenesis.

Regulation of the Hippo pathway by extracellular 
ligands and cellular stress

The Rho family of GTPase are molecular switches that 
play an essential role in converting external cues into sig-
nal transduction pathways that regulate actin cytoskeleton 
polymerization, membrane transport, and cell migration 
[93]. Importantly, Rho GTPases, including RhoA, Rac1, 
and Cdc42, play pivotal roles in Hippo pathway regu-
lation linking extracellular stimuli, such as membrane 
receptor signaling and mechanotransduction, to YAP/
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TAZ activity [94–96]. First, various G protein-coupled 
receptors (GPCRs) and their associated heterotrimeric 
G protein signaling regulate Hippo pathway activity via 
Rho GTPases. Serum-borne lysophosphatidic acid (LPA) 
and sphingosine 1-phosphate (S1P) act as ligands for 
the Gα12/13–coupled receptor, and its downstream RhoA 
signaling to inhibit LATS1/2 [96]. Thrombin, throm-
boxane A2, and Kaposi sarcoma-associated herpesvirus 
also activate YAP via Rho GTPases. Similarly, Gαq/11-
coupled GPCR ligands such as endothelin-1 and estrogen 
can activate YAP/TAZ via Rho GTPases [97, 98]. Moreo-
ver, constitutively active YAP/TAZ resulting from Gαq/11 
mutations is oncogenic drivers in patients with uveal mela-
noma [99, 100]. In contrast, upon stimulation of the Gαs-
coupled receptor, activation of PKA by cAMP inhibits Rho 
GTPases, which in turn activates LATS kinase activity [99, 
101, 102]. Rho GTPases link ligand stimuli to the Hippo 
pathway through F-actin formation. Both in Drosophila 
and mammalian cells, modulating actin polymerization 
by Rho GTPases and actin-capping proteins affect YAP/
TAZ and Yorkie activities [103, 104]. However, how the 
actin cytoskeleton controls the core Hippo kinase activity 
requires further investigation.

Wnt signaling has been intensively studied as a YAP/
TAZ upstream regulator. YAP/TAZ interacts with β-catenin, 
which is a key transcriptional co-activator in canonical Wnt 
signaling. Imajo et al. found that YAP inhibits Wnt signaling 
by sequestering β-catenin in the cytoplasm [105]. Piccolo 
and colleagues identified that YAP and TAZ are essential 
components of the β-catenin destruction complex [106, 
107]. In addition, alternative Wnt signaling by Wnt ligands, 
including Wnt3 and Wnt5a/b, activates YAP/TAZ through 
the Gα12/13–Rho–LATS signaling pathway by interacting 
with the Frizzled/ROR receptors [40]. Amino acids regu-
late YAP/TAZ activity through the TSC–mTORC1 pathway. 

TSC1/2 deficiency potentiates YAP through mTORC1-medi-
ated inhibition of autophagosome degradation [108]. YAP in 
turn activates mTORC1. YAP-induced miR-29 downregu-
lates PTEN, which in turn activates the PI3K–mTOR path-
way [109]. YAP/TAZ also promotes mTORC1 activation 
via a TEAD-induced LAT1 amino acid transporter under 
low nutrient conditions [110]. In Drosophila, positive cross-
talk between Yki and insulin/Tor pathway also suggested 
coordinated regulation of these two oncogenic pathways in 
development and cancer [111].

MAPK, including JNK and p38, link stress responses 
to the Hippo pathway. During would healing and tumor 
growth, JNK increases Yki and YAP activity by promoting 
the binding of Ajuba family proteins to Warts and LATS 
[112]. When activated by UV irradiation, JNK and p38 
MAPK phosphorylate and potentiate YAP [113, 114]. 
Moreover, p38 promotes TEAD cytoplasmic translocation 
and suppresses YAP-driven cancer cell growth upon vari-
ous cellular stress signals [115]. NLK also phosphorylates 
YAP on Ser128 during osmotic stress and disrupts 14-3-3 
interactions, thereby promoting nuclear accumulation of 
YAP [116, 117]. Stress caused by cytokinesis failure has 
been shown to activate LATS2, which in turn inactivates 
YAP/TAZ and stabilizes p53 [118]. Hippo pathway activa-
tion by cellular stresses is considered an important tumor 
suppression mechanism.

Mechanotransduction and the Hippo pathway

Organ and cell growth are constantly subjected to mechani-
cal stresses, extra cellular matrix (ECM) stiffness, cell adhe-
sion, and cell–matrix interaction. For instance, cell–cell 
contact at high density results in a growth inhibitory signal, 
which is an important cue for Hippo pathway activation [31, 
32, 119]. Recently, YAP/TAZ has emerged as critical sen-
sors of mechanotransduction, demonstrating that ECM stiff-
ness, cell shape, or tension of cells controls YAP/TAZ activ-
ity and localization in the context of stem cell differentiation 
and tumorigenesis [95, 120, 121] (Fig. 2). Small adhesive 
areas or soft ECM conditions retain YAP/TAZ in the cyto-
plasm. Conversely, large adhesive areas or a stiffer ECM 
induces nuclear localization of YAP/TAZ and enhances 
TEAD transcriptional activity [95]. Wada et al. showed that 
stress fiber-dependent F-actin signaling suppresses YAP 
phosphorylation and induces YAP nuclear translocation 
[121]. Consistent findings showed that F-actin formation 
induced a strong overgrowth phenotype in Drosophila imag-
inal discs by inhibiting the Hippo pathway [104]. Aragona 
et al. showed that F-actin-capping/severing proteins Cofilin, 
CapZ, and Gelsolin inhibit YAP/TAZ transcriptional activity 
during cell contact inhibition by sensing mechanical forces 
[122]. Mechanical regulation promotes LIMD1–LATS1 
binding through activation of c-Jun N-terminal kinase 

Fig. 2   Regulators and regulations of the Hippo pathway. Hippo path-
way components in mammals are shown in various colors. Pointed 
arrows indicate activation, and blunt-ended lines indicate inhibition. 
Hippo cascade kinases are shown in red and inhibitory regulators of 
YAP/TAZ activity are shown in blue. a Hippo pathway is regulated 
by cell polarity (Crumbs, DACH1–FAT4) and cell–cell junctions 
(adherens junction, tight junction). AMOT angiomotin, AJ adherens 
junction, CRB Crumbs homolog, DACH1 Dachous-1, FRMD6 FERM 
domain-containing protein 6, LATS large tumor suppressor homolog, 
MST mammalian STE20-like protein kinase, NF2 neurofibromin 2 
(also known as Merlin), PTPN14 protein tyrosine phosphatase, non-
receptor type 14, SCRIB scribbled planar-cell polarity protein, TAZ 
transcriptional co-activator with PDZ-binding motif, TJ tight junc-
tion, VGLL4 vestigial-like protein 4, YAP Yes-associated protein, ZO 
zona occludens protein. b Hippo pathway is regulated by extracellular 
ligands, stress responses, and mechanotransduction. AMPK 5′ AMP-
activated protein kinase, APC adenomatous polyposis coli, β-TRCP 
β-transducin repeat-containing E3 ubiquitin protein ligase, ECM 
extracellular matrix, GPCR G protein-coupled receptor, Rho Ras 
homolog gene family, ROCK Rho-associated protein kinase

◂
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(JNK), which in turn suppresses LATS activity, leading to 
YAP transcriptional activity [123].

The Hippo pathway in cancer biology

The dramatic overgrowth observed upon Hippo pathway 
dysregulation has led to the investigation of its role in cancer 
development. Numerous reports indicate that hyperactiva-
tion of YAP/TAZ or TEAD confers proliferative advantage, 
promotes cell invasion and migration, enhances cancer stem 
cell traits, and elicits metastasis and drug resistance [124, 
125]. One of the early studies was performed in mouse liver. 
Liver-specific induction of YAP, or depletion of upstream 
Hippo components, caused aberrant tissue expansion and a 
dramatic increase in liver size, which subsequently devel-
oped into liver tumors [19, 126]. Deletion of Mst1/2 or 
SAV1 in the mouse intestinal epithelium also resulted in 
crypt hyperplasia and tumorigenesis through hyperactiva-
tion of YAP [127–129]. Moreover, loss of the APC tumor 
suppressor in colon cancer led to YAP/TAZ activation [106, 
130]. YAP also promotes resistance to anticancer drugs 
targeting RAF and MEK in tumor cells harboring BRAF, 
KRAS, and NRAS mutations, which is a major clinical chal-
lenge [131]. Indeed, the protein levels and nuclear localiza-
tion of YAP/TAZ and TEAD are elevated in many human 
cancers, such as lung carcinoma, thyroid, ovarian, colorec-
tal, prostate, pancreatic, esophageal, liver, and breast cancer 
[125, 132]. Higher YAP/TAZ protein levels positively cor-
relate with poorly differentiated tumors and are associated 
with shorter patient overall survival [125]. In addition to 
mammals, the Hippo pathway in Drosophila also plays an 
important role in tumorigenesis. Nutritional cues activate 
salt-inducible kinase (SIK), which inhibits the Hippo path-
way and activates Yorkie in Ras/Src-induced tumorigenesis 
[133]. In addition, Hippo pathway inhibition by mitochon-
drial dysfunction has been shown to drive non-autonomous 
tumor progression via JNK/Ras signaling [134]. Therefore, 
the conserved components and tumorigenic phenotypes in 
various genetic models, as well as in humans, underscore the 
role of the Hippo pathway in cancer biology.

The Hippo pathway in cancer metabolism

Cancer cells utilize different metabolism from that of normal 
tissues, because they require ample amount of cellular build-
ing blocks, such as glucose, amino acids, and fatty acids 
for their rapid and unrestricted proliferation. Importantly, 
Warburg showed that under aerobic conditions, cancer cells 
metabolize a significantly higher amount of glucose into lac-
tate than normal tissues do a phenomenon called the War-
burg effect [135]. In addition to altered glucose metabolism 
or glycolysis, cancer-associated metabolic changes in amino 
acid uptake, increased demand for nitrogen via glutamine, 

and the use of intermediate metabolites for biosynthesis are 
reported [136]. Recent studies highlighted the role of the 
Hippo pathway in several aspects of these altered metabo-
lisms in cancer cells.

Glucose metabolism and the cellular energy level have 
emerged as critical upstream regulators of the Hippo path-
way. The AMP-activated protein kinase (AMPK), a major 
energy sensor, directly phosphorylates angiomotin-like 
protein 1(AMOTL1) at Ser 793, which in turn stabilizes 
AMOTL1 to inhibit YAP activity via the Hippo pathway 
[137]. Two independent groups explored whether AMPK 
directly phosphorylates YAP on multiple residues, includ-
ing S94, and should that these additional phosphorylations 
diminished the YAP–TEAD interaction and YAP-driven 
cancer cell growth [138, 139]. Moreover, YAP increases 
glucose uptake in cancer cells by increasing the transcription 
of mRNA encoding the GLUT3 transporter [139]. Phospho-
fructokinase (PFK1), which catalyzes the first rate-limiting 
step of glycolysis, interacts with TEAD in the nucleus to 
promote the YAP–TEAD interaction and transcription activ-
ity [140]. In Drosophila, liver kinase B1 (LKB1) directly 
activates AMPK, which further attenuates Yki activity 
[141]. In addition, SIKs sense nutrients such as glucose to 
activate Yki during tumorigenesis [133, 142]. Two studies 
also indicate that glucose stimulates O-GlcNAcylation of 
YAP via O-GlcNAC transferase (OGT) at residues S109 
and T241, which is critical for high glucose-induced tumo-
rigenesis [143, 144]. Collectively, these studies suggest that 
glucose metabolism is a critical regulator of YAP transcrip-
tional activity in cancer cells.

The mevalonate pathway or the cholesterol synthesis 
pathway activates YAP/TAZ via Rho GTPases. Inhibition of 
this pathway by statins and bisphosphonates suppresses YAP 
nuclear localization and YAP-driven tumor growth [145, 
146]. Reliance on Glutamine is considered as another hall-
mark of cancer cell metabolism. YAP can directly enhance 
glutamine synthase (GLUL) expression to elevate intracel-
lular glutamine levels and stimulate nucleotide biosynthesis, 
which is required for liver growth and tumorigenesis [147]. 
Thus, further understanding of the role of the Hippo pathway 
in both normal and cancer cell metabolism will lead to novel 
therapeutic strategies to treat cancer.

The Hippo pathway in cancer immunity

Immunotherapy provides novel therapeutic approaches 
for clinical oncology, and recently, several studies have 
demonstrated the importance of Hippo signaling in host 
immune responses and the tumor microenvironment. YAP 
activation in tumor-initiating cells (TICs) recruits M2 mac-
rophages via TEAD-dependent Ccl2 and Csf1 expression, 
which protects the TIC from immune clearance, and thus 
enhances tumor growth [148]. By contrast, YAP activation 



2311Regulation of the Hippo pathway in cancer biology﻿	

1 3

in cancer cells promotes myeloid-derived suppressor cell 
(MDSC) recruitment by inducing TEAD-dependent CXCL5 
expression, thus suppressing tumor progression [149]. Fur-
ther investigation may reveal how YAP-induced secreted 
ligands trigger context-dependent effects in the tumor 
microenvironment and immune cell infiltration. Similarly, 
YAP activation by LATS1/2 deletion in cancer cells trig-
gers an anti-tumor immune response via activation of the 
TLR–MYD88/TRIF pathway by secreting nucleic-acid-
rich extracellular vesicles (EVs) [150, 151]. Recent studies 
indicate that these nucleic-acid-rich EVs might also trigger 
an antiviral immune response in neighboring cells via the 
Hippo pathway. Independent studies demonstrate that MST1 
and YAP/TAZ are critical regulators of the cytosolic RNA/
DNA, sensing immune response by inhibiting TBK1 activ-
ity [152, 153]. Notably, YAP/TAZ has recently been shown 
to directly regulate PD-L1 expression in lung cancer cells. 
In EGFR–TKI-resistant lung cancer cells, YAP induces the 
transcription of PD-L1 [154]. In addition, TAZ activation 
is responsible for lactate-rich tumor microenvironment-
induced PD-L1 expression in lung cancer cells, which led 
to apoptosis of T cells in vitro [155]. Therefore, the Hippo 

pathway may provide new avenues for the development of 
immunotherapy targeting the PD1/PD-L1 pathway.

Next, in immune cells, the Hippo pathway plays a 
role in tumor immunity. Liu et  al. reported that Gram-
positive bacteria activate Hippo–Yki signaling through a 
Toll–Myd88–Pelle/Cha cascade in the Drosophila immune 
organ [150]. Several reports demonstrate that the Hippo 
pathway plays pivotal roles in T-cell differentiation and 
inflammation. Activation of CD8+ T cells induces the 
expression of core Hippo pathway components, including 
YAP and TEAD, through CTLA-4, which regulates T-cell 
terminal differentiation [156]. The Hippo pathway is also 
involved in TH17 cell differentiation, which plays an impor-
tant role in cancer immunity. Geng et al. showed that the 
TAZ/RORγt transcription complex is required for TH17 dif-
ferentiation and TH17 cell-mediated inflammatory diseases, 
whereas the TAZ/TEAD complex promotes Treg-cell dif-
ferentiation [157]. The core Hippo kinase Mst1-null mice 
exhibit a low number of mature T cells by inhibiting naïve 
T-cell proliferation [158]. MST1 in dendritic cells inhibits 
TH17-cell differentiation and regulates autoimmune diseases 
via p38 MAPK signaling [159]. Therefore, the status of the 
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Hippo pathway may be a critical factor in both innate and 
adaptive immune responses in the tumor microenvironment. 
Interestingly, unique to the hematopoietic system, YAP/TAZ 
expression is restricted to the hematopoietic stem cell (HSC) 
fraction, whereas upstream Hippo components are expressed 
at high levels across all fractions, including mature and line-
age positive cells [160]. Further investigation may delineate 
the critical functions of YAP/TAZ and the Hippo pathway in 
immune cells and their role in cancer immunity.

Therapeutics targeting the Hippo pathway

The core Hippo pathway functions as a tumor suppressor 
pathway by inhibiting YAP/TAZ-dependent tumor growth. 
Therefore, current therapeutic approaches are mostly 
focused on inactivating YAP/TAZ oncogenic activity, but 
also negative upstream regulators of the pathway. Here, 
we focus on small molecules that are designed to target 
Hippo pathway components themselves, as well as various 
upstream regulators.

Targeting protein–protein interactions (PPIs)

Recent studies demonstrated that disrupting the formation 
of the YAP/TAZ–TEAD complex might be a potential strat-
egy to develop anticancer therapeutics. In 2002, a screen-
ing of FDA-approved drugs by Pan and colleagues led to 
the identification of verteporfin (VP) and related porphyrin 
compounds as inhibitors of YAP–TEAD interactions [161] 
(Fig. 3). Verteporfin is a small molecule that inhibits YAP-
induced tumor progression and suppresses liver overgrowth 
in mice, thereby demonstrating the therapeutic significance 
of interrupting YAP–TEAD interactions in cancer cells 
[99, 100, 161]. However, verteporfin has been reported to 
be toxic in non-malignant cells and has poor solubility, 
which may limit its specificity and bioavailability for can-
cer patients [162].

Vestigial-like family member 4 (VGLL4) is a transcrip-
tional regulator that has two Tondu (TDU) domains. VGLL4 
was initially reported to have interacted with TEAD1 and 
suppresses TEAD1-dependent α1 adrenergic activation in 
cardiac myocytes [163]. Recent reports identified VGLL4 as 
an antagonist of YAP/TAZ–TEAD transcriptional activity 
by directly interacting with TEADs via its TDU domains. 
VGLL4 is downregulated in gastric, lung, and colorectal 
cancer, and is considered as a potential tumor suppressor 
and prognostic marker [34, 35, 164]. In addition, based on 
the structure of the VGLL4–TEAD interacting domain, 
Jiao and colleagues developed a new therapeutic strategy 
against YAP-driven human cancers: a VGLL4-mimicking 
inhibitor peptide termed “Super-TDU,” which disrupts 

the YAP–TEAD interaction [35]. In addition, Jiao et al. 
reported that VGLL4 targets the TEAD4–TCF4 complex 
to interfere with the functional interplay between TEAD4 
and TCF4 [155]. Similarly, cyclic YAP-like peptide (17mer) 
was designed to disrupt the YAP–TEAD interaction [165]. 
Flufenamic acid, a non-steroidal anti-inflammatory drug 
(NSAID), binds to the YAP-binding domain of TEADs 
and inhibits YAP–TEAD-dependent transcription and 
cell proliferation [166]. Interestingly, the structure of the 
TEAD–flufenamic complex showed that the flufenamic 
acid-contacting residue (C380 of TEAD2) is palmitoylated. 
Two studies indicated that palmitoylation of TEAD at evo-
lutionarily conserved cysteine residues is required for TEAD 
stability and the YAP/TAZ interaction [167, 168]. Whether 
flufenamic acid affects TEAD palmitoylation requires fur-
ther investigation. Mo and colleagues reported that AMP-
activated protein kinase (AMPK) directly phosphorylates 
YAP at residue S94 and disrupts the YAP–TEAD interac-
tion. 5-Aminoimidazole-4-carboxamide ribonucleotide 
(AICAR) is a cell-permeable activator of AMPK that inhib-
its YAP activity [138]. Src family kinase inhibitor, Dasat-
inib, inhibits the kinase activity of YES, which disrupts the 
YAP–β-catenin–TBX5 complex, and thus attenuates cancer 
progression in both cell lines and animal models [169].

Targeting upstream components of YAP/TAZ

The Hippo pathway receives a wide range of upstream sig-
nals that lead to the regulation of YAP/TAZ. Thus, the pri-
mary targets for small-molecule therapeutics are modulators 
of YAP/TAZ cellular localization and activity.

Recent reports underscore the metabolic regulation of 
YAP/TAZ activity by the mevalonate pathway and energy 
stress. Inhibitors of the mevalonate pathway, such as statins, 
HMG–CoA reductase inhibitors, as well as the geranylge-
ranyl transferase inhibitor, GGTI-298, suppress YAP/TAZ 
activity via Rho GTPase inhibition [145, 146, 170] (Fig. 3). 
In addition, energy stress conditions inhibit YAP activity 
through AMPK and LATS kinase activity. AMPK directly 
suppresses the YAP–TEAD interaction, as mentioned above; 
however, it also promotes YAP cytoplasmic retention by 
activating Hippo kinase LATS1/2 [138, 139]. In addition, 
AMPK phosphorylates AMOTL1, which then facilitates 
YAP phosphorylation by LATS [137]. Thus, targeting the 
components of metabolic signaling might efficiently regulate 
YAP/TAZ activity.

Next, targeting GPCRs and their downstream effectors 
are promising approaches to modulate YAP/TAZ activity. 
Recent studies indicated that YAP/TAZ is activated through 
Gα12/13 or Gαq/11-coupled GPCR ligands by Rho GTPases 
[40, 96, 171]. Hippo pathway activity is strongly affected by 
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actin dynamics through Rho GTPases and their downstream 
effector ROCK. Thus, ROCK inhibitors, such as fasudil and 
Y27632, may be potent inhibitors of YAP/TAZ. In contrast, 
activation of Gαs-coupled GPCR signaling by glucagon and 
epinephrine inhibits YAP/TAZ activity [96, 101, 102]. Simi-
larly, phosphodiesterase (PDE) inhibitors elevate the cAMP 
level, which lead to LATS1/2 activation and suppression of 
YAP/TAZ [101]. Membrane proximal components are also 
targets for therapeutic approaches. Dasatinib, a Src family 
inhibitor, inhibits focal adhesion kinase (FAK)–Src–PI3K 
signaling, which in turn suppress YAP by promoting cyto-
plasmic retention [172].

Tankyrase inhibitors target YAP/TAZ by Hippo-inde-
pendent mechanisms. XAV939, which is a small-molecule 
inhibitor of Wnt/β-catenin signaling that acts through axin 
stabilization [173], not only decreases β-catenin stability, but 
also the TAZ protein level via a destruction complex [107]. 
In addition, a tankyrase inhibitor attenuated TEAD transcrip-
tional activity by stabilizing angiomotin and sequestering 
YAP in the cytoplasm [174, 175]. QLT0267, a small-mole-
cule inhibitor targeting integrin-linked kinase (ILK), reduces 
tumor growth by inhibiting YAP/TAZ [176]. In addition, 
dobutamine, a sympathomimetic drug that antagonizes the 
β-adrenergic receptor, prevents YAP nuclear accumulation 
and YAP-dependent gene transcription [177] (Fig. 3). The 
core Hippo kinases are poorly druggable anticancer targets, 
because very few small-molecule kinase activators are avail-
able. By contrast, inhibition of the Hippo pathway may be 
valuable for wound healing and tissue regeneration. XMU-
MP-1 has been identified as an MST1/2 inhibitor, which 
encourages multiple tissue repair and regeneration through 
YAP activation [178].

Conclusion/perspective

Hippo signaling has emerged as a pivotal regulatory path-
way in mammalian development and tissue growth. Recent 
advances in research on the deregulation of Hippo pathway 
have attracted significant attention from researchers inter-
ested in all the stages of tumorigenesis from EMT, metasta-
sis, and drug resistance to those involved in cancer metabo-
lism and immunity. Accumulating evidence suggests that 
perturbation of YAP/TAZ activity has profound effects on 
various cancer types. Notably, since driver mutations of the 
core components of the Hippo pathway are relatively rare, 
and development of small-molecule activators of the Hippo 
kinases is difficult, it is important to identify a wide range 
of upstream regulators, as well as downstream targets, of 
Hippo–YAP signaling. In addition, identifying crosstalk with 
other oncogenic signal transduction pathways might provide 
valuable targets to modulate the Hippo pathway activity. 
Therefore, understanding the cellular determinants of the 

Hippo pathway and its role in tumorigenesis and regenera-
tion will be critical to classify cancers susceptible to YAP/
TAZ modulation and to develop anticancer therapeutics.
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