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Self-supervised learningof accelerometer
data provides new insights for sleep and
its association with mortality
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Sleep is essential to life. Accurate measurement and classification of sleep/wake and sleep stages is
important in clinical studies for sleep disorder diagnoses and in the interpretation of data from
consumer devices for monitoring physical and mental well-being. Existing non-polysomnography
sleep classification techniquesmainly rely on heuristic methods developed in relatively small cohorts.
Thus, we aimed to establish the accuracy of wrist-worn accelerometers for sleep stage classification
and subsequently describe the association between sleep duration and efficiency (proportion of total
time asleep when in bed) with mortality outcomes. We developed a self-supervised deep neural
network for sleep stage classification using concurrent laboratory-based polysomnography and
accelerometry. After exclusion, 1113 participant nights of data were used for training. The difference
between polysomnography and the model classifications on the external validation was 48.2 min
(95% limits of agreement (LoA): −50.3 to 146.8 min) for total sleep duration, −17.1 min for REM
duration (95% LoA: −56.7 to 91.0 min) and 31.1 min (95% LoA: −67.3 to 129.5 min) for NREM
duration. The sleep classifier was deployed in the UK Biobank with ~100,000 participants to study the
association of sleep duration and sleep efficiencywith all-causemortality. Among 66,262UKBiobank
participants, 1644 mortality events were observed. Short sleepers (<6 h) had a higher risk of mortality
compared to participantswith normal sleep duration 6–7.9 h, regardless ofwhether they had low sleep
efficiency (Hazard ratios (HRs): 1.36; 95% confidence intervals (CIs): 1.18 to 1.58) or high sleep
efficiency (HRs: 1.29; 95% CIs: 1.04–1.61). Deep-learning-based sleep classification using
accelerometers has a fair to moderate agreement with polysomnography. Our findings suggest that
having short overnight sleep confers mortality risk irrespective of sleep continuity.

Sleep is essential to life and is structurally complex. Humans spend
approximately one third of their lives asleep, yet sleep is hard to assess in
free-living environments1. Our understanding of how sleep is associated
with health and morbidity primarily draws on studies that use self-report
sleep diaries, which capture the subjective experience2. However, sleep
diaries have a low correlation with objective device-measured sleep
parameters3,4. The accepted standard for sleep measurement is laboratory-
based polysomnography, which monitors sleep using a range of physical
and physiological signals.However, polysomnography is not feasible for use
at scale due to its high cost and technical complexity. Instead, wrist-worn

accelerometers are more viable to deploy in large-scale epidemiological
studies because of their portability and low user burden.

Despite the popularity of sleep monitoring in consumer and research-
grade wrist-worn devices, sleep assessment algorithms are frequently pro-
prietary and validated in small populations, making their measurement
validity unclear5–8. Methods for Sleep classification (i.e. defining periods of
wake, NREMandREMsleep) primarily rely on hand-crafted spatiotemporal
features such as device angle, which may not make full use of all the infor-
mation in the signals.Hence, data-drivenmethods likedeep learning couldbe
advantageous. Furthermore, existing actigraphy-based sleep studies on large
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health datasets have only focused on the differentiation between sleep and
wakefulness4,9–11 without evaluating variations in the stages of sleep.

We therefore set out to: (1) develop and internally validate an open-
source novel deep learning method to infer sleep stages from wrist-worn
accelerometers, (2) externally validate our proposed algorithmtogetherwith
existing sleep staging benchmarks and (3) investigate the association
between device-measured overnight sleep duration and efficiency with all-
cause mortality.

Results
In our multicentre cohort study, we developed and tested a sleep staging
model for accelerometers (SleepNet) using a self-supervised deep recurrent
neural network. We designed the model to classify each 30-s window of
accelerometry data into one of the three sleep stages, wake, rapid-eye-
movement sleep (REM) and non-rapid-eye movement sleep (NREM).
Figure 1 illustrates the three main steps in our study: (1) feature extraction
from unlabelled free-living data, (2) sleep staging model development and

Fig. 1 | The SleepNet development pipeline. 1. We use multi-task self-supervised
learning to obtain a feature extractor by learning from 700,000 person-days of tri-
axial accelerometry data in theUKBiobank. 2. The pre-trained feature extractor was
then fine-tuned with a deep recurrent network to train a sleep-stage classifier using

polysomnography as the ground truth. 3. We deploy the sleep prediction model on
the UK Biobank and investigate the association between device-measured sleep and
mortality outcomes.
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(3) face validity assessment and health association analysis using the
machine learning-estimated sleep parameters.

Comparison to polysomnography
After preprocessing, 1113 participants were included in the internal vali-
dation and 53 participants were included in the external validation. Our
proposed deep recurrent neural network (SleepNet) pre-trained with self-
supervision achieved the best performance when compared with other
baseline models that used hand-crafted features (Supplementary Table 6).

On the internal validation, SleepNet had a mean bias of 9.9min (95%
limits of agreement (LoA): −100.5–120.4min) for total sleep duration,
−24.4 min (95% LoA: −136.7–87.8min) for REM duration and 34.4min
(95% LoA:−106.4–175.1min) forNREMduration (Fig. 2). In comparison,
on the external validation, the mean bias was 48.2min (95% LoA:

−50.3–146.8 min) for total sleep duration, −17.1min (95% LoA:
−56.7–91.0 min) for REM duration and 31.1min (95% LoA:
−67.3–129.5 min) for NREM duration. Overall, our model tends to
underestimate REM and short sleep and overestimate NREM and long
sleep. Supplementary Figs. 5–10 depict the agreement assessments for other
sleep parameters on the individual cohorts.

The subject-wise performance for both the internal and external vali-
dation using the pre-trained SleepNet is shown in Supplementary Table 7.
On the pooled internal validation, ourmodel obtained an F1 of 0.75 ± 0.1 in
the two-class setting (sleep/wake) and an F1 of 0.57 ± 0.11 in the three-class
setting (wake/REM/NREM). The agreement decreased slightly on the
external validation with an F1 of 0.66 ± 0.12 in the two-class setting (sleep/
wake) and an F1 of 0.49 ± 0.10 in the three-class setting (wake/REM/
NREM). In the Newcastle cohort, for the sleep/wake classification,

Fig. 2 | Agreement assessment via Bland-Atman plot for total sleep duration,
rapid eye movement sleep (REM) duration and non-rapid eye movement sleep
(NREM) duration on internal and external validation. a the agreement for the
internal validation; b the agreement for the external validation. The internal

validation consists of 1113 polysomnography nights from the Raine Study and the
Newcastle cohort, whereas the external validation consists of 53 polysomnography
nights from the Leicester and Pennsylvania cohorts.
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Table 1 | Overall sleep parameters by participant characteristics in the UK Biobank (mean ± SD) for overnight sleep duration,
non-rapid-eye-movement sleep (NREM), rapid-eye-movement sleep (REM) and sleep efficiency

Characteristics Overnight sleep NREM REM Sleep efficiency
n (%) h/day h/day h/day %

Overall 66,262 (100.0) 6.8 ± 0.9 5.3 ± 0.9 1.5 ± 0.6 81.5 ± 8.6

Age, year

40–49 6119 (9.2) 6.7 ± 0.9 4.9 ± 0.8 1.8 ± 0.6 81.7 ± 8.2

50–59 20,146 (30.4) 6.7 ± 0.9 5.1 ± 0.9 1.6 ± 0.6 81.1 ± 8.5

60–69 29,216 (44.1) 6.8 ± 0.9 5.4 ± 0.9 1.5 ± 0.6 81.6 ± 8.7

70–79 10,781 (16.3) 6.8 ± 1.0 5.5 ± 1.0 1.3 ± 0.6 82.1 ± 8.8

Sex

Female 38,552 (58.2) 6.9 ± 0.9 5.3 ± 0.9 1.6 ± 0.6 82.0 ± 8.3

Male 27,710 (41.8) 6.7 ± 1.0 5.2 ± 1.0 1.4 ± 0.6 80.9 ± 9.0

Ethnicity

Non-white 2004 (3.0) 6.2 ± 1.1 4.7 ± 1.0 1.4 ± 0.6 77.7 ± 10.2

White 64,258 (97.0) 6.8 ± 0.9 5.3 ± 0.9 1.5 ± 0.6 81.7 ± 8.5

Physical activity level

low < 24.08 mg 22,075 (33.3) 6.9 ± 1.0 5.4 ± 1.0 1.5 ± 0.6 80.8 ± 9.2

Medium 24.08–30.42mg 22,082 (33.3) 6.8 ± 0.9 5.3 ± 0.9 1.5 ± 0.6 81.6 ± 8.4

High > 30.42 mg 22,105 (33.4) 6.7 ± 0.9 5.1 ± 0.9 1.6 ± 0.6 82.2 ± 8.1

Smoking status

Never smoker 38,960 (58.8) 6.8 ± 0.9 5.3 ± 0.9 1.5 ± 0.6 81.5 ± 8.5

Ex-smoker 22,884 (34.5) 6.8 ± 0.9 5.3 ± 0.9 1.5 ± 0.6 81.7 ± 8.6

Current smoker 4418 (6.7) 6.7 ± 1.0 5.2 ± 1.0 1.4 ± 0.6 81.2 ± 9.3

Alcohol consumption

Never drinker 3612 (5.5) 6.6 ± 1.1 5.2 ± 1.0 1.4 ± 0.6 80.7 ± 9.6

<3 times per week 30,099 (45.4) 6.8 ± 0.9 5.3 ± 0.9 1.5 ± 0.6 81.3 ± 8.6

3+ times per week 32,551 (49.1) 6.8 ± 0.9 5.3 ± 0.9 1.5 ± 0.6 81.8 ± 8.5

Education

School leaver 14,655 (22.1) 6.9 ± 1.0 5.4 ± 0.9 1.5 ± 0.6 81.1 ± 8.9

Further education 21,717 (32.8) 6.8 ± 1.0 5.3 ± 0.9 1.5 ± 0.6 81.3 ± 8.7

Higher education 29,890 (45.1) 6.8 ± 0.9 5.2 ± 0.9 1.5 ± 0.6 81.9 ± 8.3

Townsend Deprivation Index

Least deprived (<−3.8) 16,559 (25.0) 6.9 ± 0.9 5.3 ± 0.9 1.5 ± 0.6 81.8 ± 8.4

Second least deprived 16,570 (25.0) 6.8 ± 0.9 5.3 ± 0.9 1.5 ± 0.6 81.7 ± 8.4

Second most deprived 16,566 (25.0) 6.8 ± 0.9 5.3 ± 0.9 1.5 ± 0.6 81.5 ± 8.6

(−2.5 to −0.2)

Most deprived (>−0.2) 16,567 (25.0) 6.7 ± 1.0 5.2 ± 0.9 1.5 ± 0.6 81.1 ± 8.9

BMI

<18.5, underweight 396 (0.6) 6.9 ± 0.9 5.3 ± 0.9 1.6 ± 0.7 83.1 ± 8.9

18.5–24.9, normal 26,787 (40.4) 6.9 ± 0.9 5.3 ± 0.9 1.6 ± 0.6 82.2 ± 8.2

25–29.9, overweight 26,931 (40.6) 6.8 ± 0.9 5.3 ± 0.9 1.5 ± 0.6 81.3 ± 8.7

30+, obese 12,148 (18.3) 6.6 ± 1.0 5.2 ± 1.0 1.4 ± 0.6 80.5 ± 9.2

Employment

Employed 41,673 (62.9) 6.7 ± 0.9 5.2 ± 0.9 1.6 ± 0.6 81.4 ± 8.5

Not employed 24,589 (37.1) 6.9 ± 1.0 5.4 ± 1.0 1.4 ± 0.6 81.7 ± 8.8

Self-rated health

Poor 1281 (1.9) 6.6 ± 1.3 5.3 ± 1.2 1.3 ± 0.6 80.2 ± 10.2

Fair 9168 (13.8) 6.7 ± 1.0 5.3 ± 1.0 1.4 ± 0.6 80.6 ± 9.2

Good 40,146 (60.6) 6.8 ± 0.9 5.3 ± 0.9 1.5 ± 0.6 81.5 ± 8.5

Excellent 15,667 (23.6) 6.8 ± 0.9 5.3 ± 0.9 1.6 ± 0.6 82.2 ± 8.2
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sensitivity decreased and specificity increased in participants with sleep
disorders. No obvious difference was observed in both Raine Gen1 and
Gen2 cohorts when the participants were stratified by sex, BMI, AHI and
sleep disorder conditions. (Supplementary Tables 8–10).

To classify any given window in an epoch-by-epoch fashion, the Sleep-
Net achieved a Kappa score of 0.39 on the internal validation set and a Kappa
score of 0.32 on the external validation set in the three-class setting (Supple-
mentary Fig. 11). Cohort-specific confusion matrices can be found in Sup-
plementary Figs. 12–15. Supplementary Fig. 16 visualises a one-night sample
actigram, its ground-truth polysomnography labels and SleepNet predictions.
Weused SleepNet to generate all the sleep parameters for the rest of the paper.

Face validity in the UK Biobank
Before deploying the SleepNet on theUKBiobank,we excludedparticipants
with unusable accelerometer data and participants with missing covariates
in the descriptive analysis. We further excluded participants with any prior
hospitalisation for cardiovascular disease or cancer in the association ana-
lysis (Supplementary Fig. 17). In sum, 66,262 participants were included in
the final analysis.

Table 1 describes the variations in overnight sleep duration, REM and
NREM durations and sleep efficiency across population subgroups in the
UK Biobank. Older participants generally slept longer with higher sleep
efficiency. Females had a longer overnight sleep duration, REM andNREM
durations. Participants with better self-rated health had longer sleep dura-
tion and higher sleep efficiency than those with poor self-rated health. Sleep
efficiency was relatively stable across different seasons and days of the week.
The correlation coefficients between device-measured sleep parameters
during accelerometer wear and self-reported total sleep duration at baseline
assessmentwere all below0.25 (Supplementary Fig. 18). The distributions of
device-measured overnight sleep duration tend to have a greater variability
for participants who self-reported to have less than 5 or greater than 10 h of
total sleep duration (Supplementary Fig. 19). Overall, older participants
have a shorter REM sleep than younger participants (Supplementary
Fig. 20). No major differences were seen between females and males.

We found expected sleep-wake patterns in population subgroups. For
example, timing of the sleep opportunity for participants with a self-reported
‘morning’ chronotype was about 1 h earlier when compared with those that
had a self-reported ‘evening’ chronotype (Fig. 3a).We saw similar but shorter
phase advance (~30min) in participants who were most physically active
compared to the participants that were least physically active (Fig. 3b).When
comparing groups that had a history of self-reported insomnia symptoms
versus those who did not, we found that participants with a history of
insomnia symptoms were more likely to be in REM sleep on average during
the overnight sleep window (Fig. 3c, d). Participants with a history of self-
reported insomnia symptoms tended to have a longer overnight sleep
duration but with a lower sleep efficiency (Supplementary Fig. 21). The sleep
architecture for different population subgroups were similar between week-
days and weekends, with a slight phase delay over the weekend (Supple-
mentary Fig. 22).

Association with all-cause mortality
Over 452,652 years of the follow-up, 1644 mortality events among 66,262
participants were observed. Short sleepers (<6 h) had a higher risk of mor-
tality in groups of low sleep efficiency (Hazard ratios (HRs): 1.36; 95%
confidence intervals (CIs): 1.18–1.58) and high sleep efficiency (HRs: 1.29;
95% CIs: 1.04–1.61) compared to participants with normal sleep duration
(6–7.9 h, Fig. 4). The risk of all-causemortality appeared to decrease linearly
as sleep efficiency increased.However, a non-linear associationwas observed
in the association for overnight sleep duration (Supplementary Fig. 23).
When further adjusted for BMI, associations of overnight sleep duration and
sleep efficiency with all-cause mortality were slightly attenuated (Supple-
mentaryFigs. 24–25). Longerovernight sleepdurationwasnot found tohave
a higher risk than the reference group (Supplementary Fig. 23).

Discussion
We have developed, and internally and externally validated a deep learning
method to characterise sleep architecture from a wrist-worn accelerometer
with competitive performance against 1113 nights of laboratory-based
polysomnography recordings.When applying our developedmethod in the
UKBiobank in an epidemiological analysis of 66,214 participants, we found
that shorter sleep time was associated with an increased risk of all-cause
mortality individually regardless of sleep continuity, indexed by sleep effi-
ciency. Our open-source algorithm and the inferred sleep parameters will
open the door to future studies on sleep and sleep architecture using large-
scale accelerometer databases.

Our novel self-supervised deep learning sleep staging method out-
performedexisting baselinemethods that rely onhand-crafted features. The
inferred sleep architecture estimates had a fair agreement (κ = 0.37)with the
polysomnography ground truth on the internal validation12. Unlike pre-
vious work in sleep classification methods that depended on hand-crafted
features13,14, ourproposedmethodautomatically extracted the featuresusing
self-supervision, hence removing the need formanual engineering. Even for
sleep/wake classification, SleepNet achieved comparable results to a sys-
tematic evaluation of eight state-of-the-art sleep algorithms8 in the New-
castle dataset. However, our work offers a more robust evaluation and
identifies the upper limit of using accelerometry for sleep classification by
developing a model with one of the largest multicentre datasets with poly-
somnography ground truth, at least ten times the size of existing studies.

In the subsequent epidemiological analysis, we found a clear associa-
tion between short overnight sleep duration with increased risk of all-cause
mortality in both good and poor sleepers defined by sleep efficiency. Short
overnight sleep duration has been linked with mortality outcomes in self-
report and actigraphy-based studies15,16. However, few studies have inves-
tigated the joint effect of sleep duration and efficiency. One recent study has
suggested that participants with short and long total sleep time had an
increased risk after accounting for sleep efficiency17. However, our analysis
didnotfind that longovernight sleepdurationwas associatedwith increased
risk, potentially because we did not include daytime naps in our measure-
ment of overnight sleep duration. Daytime napping has been found to be

Table 1 (continued) | Overall sleep parameters by participant characteristics in the UKBiobank (mean ± SD) for overnight sleep
duration, non-rapid-eye-movement sleep (NREM), rapid-eye-movement sleep (REM) and sleep efficiency

Characteristics Overnight sleep NREM REM Sleep efficiency
n (%) h/day h/day h/day %

Day

Weekday 66,262 (100.0) 6.7 ± 1.0 5.2 ± 1.0 1.5 ± 0.6 81.7 ± 9.0

Weekend 66,262 (100.0) 7.0 ± 1.2 5.4 ± 1.2 1.6 ± 0.8 81.2 ± 10.5

Wear season

Spring 14,729 (22.2) 6.8 ± 0.9 5.3 ± 0.9 1.5 ± 0.6 81.7 ± 8.6

Summer 18,211 (27.5) 6.7 ± 0.9 5.2 ± 0.9 1.5 ± 0.6 81.6 ± 8.5

Autumn 18,698 (28.2) 6.8 ± 0.9 5.3 ± 0.9 1.5 ± 0.6 81.5 ± 8.5

Winter 14,624 (22.1) 6.8 ± 1.0 5.3 ± 0.9 1.5 ± 0.6 81.3 ± 8.7
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associated with an increased risk of cardiovascular events and deaths in
those with longer nighttime sleep18. We did not find a U-shape association
between device-measured sleep and mortality that has been suggested by
other smaller studies15. Instead, our data are supportive of adverse asso-
ciations with short sleep duration only, which is concordant with pre-
clinical human and animal studies19.

This study has several strengths, including the analysis of sleep
architecture in a large, prospective Biobank with longitudinal follow-
up. Compared with self-reported sleep questionnaires that only cap-
tured sleep duration to the nearest hour, actigraphy-basedmethods like
ours can provide more fine-grained sleep duration and efficiency esti-
mates. The extensive multicentre evaluation of the sleep classification

Fig. 4 | Associations of overnight sleep duration with all-cause mortality for
groups with low and high sleep efficiency. a participants with less than 85% sleep
efficiency; b participants with greater or equal to 85% sleep efficiency. The model
used 1644 events among 66,262 participants. We used age as the timescale and
adjusted for sex, ethnicity, TownsendDeprivation Index of baseline address (split by

quarter in the study population), educational qualifications, smoking status, alcohol
consumption (Never, <3 times/week, 3+ times/week), overall activity (measured in
milli-gravity units). Themedianwas used to separate groupswith low andhigh sleep
efficiency. Areas of squares represent the inverse of the variance of the log risk. The I
bars denote the 95% confidence interval for the floated risks.

Fig. 3 |Device-measured sleep probability trajectories throughout the day for the
UKBiobank participants.Top: variations of the average overnight sleep probability
for the participants with self-reported ‘morning’ and ‘evening’ chronotype (a) and
the overnight sleep distributions across thirds of device-measured physical activity

level (b). Bottom: variations of the average REM (c) and NREM (d) probability in
participants with a history of self-reported insomnia symptoms versus those with-
out. REM rapid-eye-movement sleep, NREM non-rapid-eye-movement sleep.
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allowed for the characterisation of the measurement uncertainty and a
less biased interpretation of the health association analysis. Sleep stage
identification from actigraphy is highly challenging, especially for wake
periods in bed that are not characterised by wrist movement. With the
proposed SleepNet, we could obtain sleep architecture estimates for
population health inference after evaluating the face validity of the sleep
parameters in the UK Biobank. While future work might improve sleep
staging performance by incorporating additional physiological signals,
such as electrocardiogram, to improve sleep staging performance,
multi-modal sensor signals are not yet available for population-scale
studies with longitudinal follow-up beyond a few years20. Despite our
best efforts to include diverse validation cohorts from different centres,
the included datasets mainly consist of healthy populations from a
Caucasian ethnic background. Validation in populations with chronic
diseases and different ethnic backgrounds would aid in quantifying the
measurement uncertainty. Laboratory-based polysomnography is
known to suffer from the first-night effect consisting of a reduction in
sleep duration, quality and continuity21. Future validation studies could
also assess the within-person variability using multi-night
polysomnography.

In this work, we have developed and validated an open-source sleep
staging method that substantially improves the ability to measure sleep
characteristics with wrist-worn accelerometers in large biomedical datasets.
Using the sleep parameters generated by our model, we demonstrated that
shorter overnight sleep was associated with a higher risk of all-cause mor-
tality in both good and poor sleepers. Our proposed method provides the
community with a rich set of new measurements to study how sleep
parameters are longitudinally associated with clinical outcomes.

Methods
Study participants
Weused theUKBiobank accelerometry dataset22 for twopurposes: learning
health-relevant accelerometer features to support the training of the sleep
staging model and conducting the downstream health association analyses
using the developed sleep staging model.

For sleep staging model development, internal validation consisted of
two generations of participants from the Raine Study23,24 and a sleep patient
population from the Newcastle cohort25. The Raine Study has followed up
roughly 2900 children since 1989 in Australia. A subset of children (Raine
Generation 2, Gen2) at the age of 22 and their parents (Raine Generation 1,
Gen1) were invited to undergo one night of laboratory-based poly-
somnography atWestern Australia’s Center for Sleep Science. The external
validation consisted of two general populations from Leicester26 and
Pennsylvania27. Detailed population characteristics and inclusion criteria
are listed in Supplementary Section 1.1.

Accelerometer devices and data preprocessing
Three different devices were used to collect the accelerometry for the
included datasets, ActiGraph GT3X, Axivity AX3 and GENEActive Origi-
nal accelerometers. The devices used have been shown to have a high inter-
instrument agreement (>80%) in derived sedentary and sleep-related time
estimates in free-living environments28. As for device placement,we selected
data from the dominant wrist where possible to be consistent with the UK
Biobank protocol.

Weused theBiobankAccelerometerAnalysis Tool29,30 to preprocess all
the data. The raw tri-axial accelerometrywas first resampled into 30Hz and
clipped to ±3 g. The accelerometry sequence was then divided into con-
secutive 30-swindows.We considered stationary periods (x/y/z sd < 13mg)
with a duration greater than 60min as non-wear22.We further excluded the
data that could not be parsed, had unrealistic high values (>200mg), orwere
poorly calibrated.

Ascertainment of sleep stages via polysomnography
The gold-standard, laboratory-based polysomnography sleep label was
aligned with its concurrent accelerometer data as the model ground truth.

The polysomnography labels were scored according to the American
Academy of Sleep Medicine (AASM) protocol31, which divided sleep into
five categories: wake, REM and NREM I, II and III. In total, 1,157,913
(~10,000 h) sleep windows were used to train the network. The sleep stage
distributions were similar across all the datasets except for the Newcastle
cohort, which had a greater proportion of wakefulness than the others
(Supplementary Fig. 1).

Deep learning analysis of sleep stages from wrist-worn
accelerometers
Adeep recurrent neural network (SleepNet) was trained to classify the sleep
stages for every 30-s window of tri-axial accelerometry data. The SleepNet
has three components: a ResNet-17 V232 with 1D convolution for feature
extraction, a bi-directional Long-Short-Term-Memory (LSTM)network for
temporal dependencies learning33 and two fully-connected layers for sleep
stage prediction. During training, we provided the SleepNet with five-stage
polysomnography labels (wake, REMandNREMI, II, III).Whenevaluating
themodel, we collapsed all theNREM stages into one class for classification
(wake/REM/NREM). Similarly, we collapsed all theREMandNREMstages
together to classify wake vs sleep.

The SleepNet was pre-trained using multi-task self-supervision on the
UKBiobank to learn features of humanmotion dynamics34.Multi-task self-
supervision automatically extracts the features relevant to motion by
learning todiscriminate different spatiotemporal transformations applied to
the unlabelled 700,000 person-days of data. Self-supervised pre-training has
been shown to help classify human activity recognition not just in healthy
but clinical populations35. See Supplementary Section 1.2 for further details
of the model development.

For internal validation, we used subject-wise five-fold cross-validation
on the Raine Gen2, Raine Gen1 and Newcastle cohorts. For external vali-
dation, we trained the SleepNet on all the internal datasets and then eval-
uated its performance on the Leicester and Pennsylvania cohorts. We
compared the SleepNet performance with a random forest model that used
the hand-crafted spatiotemporal features13,30. The random forest feature
definitions are listed in Supplementary Table 2.

We reported the staging performance in both subject-wise and epoch-
to-epoch fashion.Three-class andfive-class confusionmatriceswereplotted
for both internal and external validation. SinceCohenKappa, F1 scores and
balanced accuracies (Supplementary Table 3) are less influenced by class
imbalance, they were used to evaluate the overall model. To assess the
relationship between the model performance and population character-
istics, we stratified the subject-wise sleep staging performance by age, sex,
employment status, income level, body mass index (BMI), presence and
severity of sleep apnoea using the apnoea-hypopnea index (AHI), existing
sleep disorders and neurological disorders where available.

Finally, we evaluated the agreement between summary sleep para-
meters per each night derived from our deep learning method and poly-
somnography via Bland-Altman plots for the following sleep parameters:
total sleep duration, sleep efficiency (proportion of total time asleepwhen in
bed), time awake after sleep onset (WASO), REM duration, NREM dura-
tion, REM ratio, NREM ratio. Supplementary Table 4 entails the sleep
parameter definitions and their calculations.

Measurements of sleep in 100,000 UK Biobank participants
We obtained the sleep architecture estimates on the UK Biobank by
applying SleepNet on the longest overnight sleep windows. Since no con-
current sleep diaries were collected in the UK Biobank, we used a random
forest model trained on sleep diaries with Hidden Markov Models
smoothing tofirst obtain time in bed29,30. The random forestmodel achieved
90%+ precision and recall for detecting sleep windows in 152 free-living
participants with sleep diaries that asked two questions: ‘What time did you
first fall asleep last night?’ and ‘What time did youwakeup (eyes open, ready
to get up)?’30. We used the sleep window output from the random forest
model as a proxy for the time in bed. We then merged any time in bed
windowswithin 60minof one another36. Finally,we applied the SleepNet on
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the longest window over each noon-to-noon interval to estimate the over-
night sleep duration. The difference between overnight and total sleep
duration is that total sleep duration is a sleep parameter used to assess the
agreement between our SleepNet output and polysomnography for model
validation. In a single night of polysomnography, the total sleep duration
refers to the total time spent in sleep, whereas in a free-living environment,
total sleep duration consists of both napping and overnight sleep duration.
Overnight sleep duration refers to the estimate for the amount of sleep one
obtains for a noon-to-noon interval in a free-living environment using a
random forest model for sleep window detection and the SleepNet for sleep
stage identification.

We simulated the effects of random missing data on the participants
that had no missing data across 7-days to determine the minimum wear
time required for stable weekly sleep parameter estimates (Supplementary
Section 1.3.2).We found that aminimumof 22 h of wear time per day for at
least 3 days were required to ensure the intra-class correlation was greater
than 0.75 between the weekly average sleep duration from incomplete and
perfect wear data.Moreover, we tried tomitigate the weekend effect by only
including the participants who had at least one weekday and one weekend
day during the device wear. Shift workers and participants whose data had
daylight saving cross-overswere also excluded, as circadiandisruption is not
the focus of our paper.

Descriptive analyses were performed on the device-measured sleep
parameters in the UK Biobank to quantify variations by age, sex, device-
measured physical activity level, self-reported chronotype and insomnia
symptoms. Estimated marginal means, adjusted for age and sex, were also
calculated for different self-rated health groups and self-reported insomnia
symptoms.

This research has been conducted using the UK Biobank Resource
under Application Number 59070. The UK Biobank received ethical
approval fromtheNationalHealth ServiceNationalResearchService (Ref 21/
NW/0157).Written informed consentwas obtained fromall the participants.

Health association analysis
The associations of overnight sleep duration and sleep efficiency with
incident mortality were assessed using Cox proportional hazards
regression. All-cause mortality was determined using death registry
data (obtained by UK Biobank from NHS Digital for participants in
England and Wales and from the NHS Central Register, National
Records of Scotland, for participants in Scotland). Participants were
censored at the earliest of UK Biobank’s record censoring date for
mortality data (2021-09-30 for participants in England and Wales and
2021-10-31 for participants in Scotland, with country assigned based
on baseline assessment centre). Cox models used age as the timescale,
and the main analysis was adjusted for sex, ethnicity, Townsend
Deprivation Index, educational qualifications, smoking status, alcohol
consumption and overall activity. See Supplementary Section 1.3.1 for
the full specification of the analysis.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The data for the Newcastle cohort is available from direct download via
https://zenodo.org/record/1160410#.Y-O65i-l1qs. The data for other
cohorts can be requested by contacting the corresponding host institute.

Code availability
All the sleep staging models and analysis scripts are freely available for
academic use on GitHub: https://github.com/OxWearables/asleep.
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