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Designing meaningful continuous
representations of T cell receptor
sequences with deep generative models
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T Cell Receptor (TCR) antigen binding underlies a key mechanism of the
adaptive immune response yet the vast diversity of TCRs and the complexity of
protein interactions limits our ability to build useful low dimensional repre-
sentations of TCRs. To address the current limitations in TCR analysis we
develop a capacity-controlled disentangling variational autoencoder trained
using a dataset of approximately 100 million TCR sequences, that we name
TCR-VALID. We design TCR-VALID such that the model representations are
low-dimensional, continuous, disentangled, and sufficiently informative to
provide high-quality TCR sequence de novo generation. We thoroughly
quantify these properties of the representations, providing a framework for
future protein representation learning in low dimensions. The continuity of
TCR-VALID representations allows fast and accurate TCR clustering and is
benchmarked against other state-of-the-art TCR clustering tools and pre-
trained language models.

T Cell Receptors (TCRs) are protein complexes that are present on the
surface of T cells and are selected in the thymus to bind non-self
peptide antigens1. This forms an important arm of our adaptive
immune response with its ability to kill cells that have been infected or
have other mutations that may cause harm, for example in cancer.
Experimentally defined groups of TCRs with differing functional
properties can lead to differing phenotypes, such as diverging cell
states2. Tumor growth has been shown to be controlled in a way that
correlates with the TCR function3.

There are estimated to be 1015–1061 possible human TCR
proteins4,5, with approximately 1011 T cells in an individual, there is
consequently very limited overlap of TCR sequences between indivi-
duals. There is estimated to be an even larger space of possible anti-
gens that these TCRs can bind, such that TCR cross-reactivity is
thought to be essential6. This incredibly large state space with non-
injective interactions make it challenging to build general predictive
models for TCR-antigen interactions in an antigen agnostic manner.

It is becoming increasingly common to perform high-throughput
measurements of TCRs in biological samples7, but such data do not

often include information about the antigens thoseTCRs bind. Though
concurrent high-throughput measurements of TCRs and cognate
antigens are possible8,9 they require prior selection of antigens for
study, leading to bias.It is therefore important to build computational
tools to aid in clustering TCRs by functional properties, or by directly
predicting the antigen recognition of TCRs.

Clustering TCRs that are sufficiently similar to bind the same
antigen has been studied in the case where the antigen is known8. In
the antigen agnostic case, TCR clustering has been approached via
sequence-based evolutionary distance metrics between TCRs10,11, and
more recently via autoencoder12,13 and masked language models10,11.
The results of TCR-antigen screening can be used to train accurate
supervised classification models of TCR-antigen interactions (see, e.g.
refs. 8,13) and increasingly the performance of TCR-antigen classifi-
cation models beyond the scope of those studied antigens (out-of-
distribution), often by using both TCR and antigen information, has
been studied14–18. This was recently extended to a zero-shot setting for
predicting TCR-antigen interactions for TCRs and antigens that were
not seen in the training data17.
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It would bedesirable to have anatlas of TCRs that is able to cluster
TCRs in an antigen-agnostic manner, classify TCRs by known ability to
bind certain antigens, and to do so in an interpretable way. Further,
with the advent of TCR based therapeutics19 and the similarity of TCRs
to antibodies, such an atlas should be generative such that the atlas
provides a future route to de novo TCR/antibody design. Functional
data for antibodies and TCRs are often limited and costly to perform,
whichmakes Bayesian optimization a useful tool in this space to select
sequences for further design iterations20. Bayesian optimization
requires a low dimensional space in which a continuous function is
optimized21, and for that reason Bayesian optimization in the latent
space of deep autoencoders (DAEs) has gained recent interest for
complex data types22–25. We therefore set out with the following desi-
derata for a TCR atlas: (i) low-dimensional, (ii) interpretable, (iii) gen-
erative, (iv) smooth, (v) capable of clustering and classifying TCRs.

Masked languagemodels of proteins and TCRs typically use large
dimensional representations per amino acid10,26 which can be proble-
matic for representations of full protein sequences27, and are not
inherently generational in contrast with DAEs and auto-regressive
language models such as GPT-328. Although DAE representations of
TCRs have been developed12,13, the continuity of their latent spaces has
not been throughly investigated. Indeed, investigation of the con-
tinuity of latent spaces in general is often only studied on toy models
with known generative processes29. Disentangled Representation
Learning (DRL) aims to learn representations of high dimensional data
that improve the interpretability of models and their generational
capabilities. DRL approaches have been applied to TCRs30,31 but none
to our knowledge have fully explored the tradeoffs between the
landscape smoothness, interpretability, and sequence generation.

Here we train TCR-VALID (T Cell Receptor - Variational Auto-
encoder Landscape for Interpretable Disentangling), a capacity-
controlled Cβ-Variational AutoEncoder (VAE)32,33 model trained using
approximately 100million unique TCRs from a combination of α and β
chains. TCR-VALID is built with low-dimensional representations, the
disentanglement of which we quantitatively evaluate. We modify
continuity metrics from machine learning literature to our biological
context to measure the continuity of these representations in a sys-
tematic way. We benchmark TCR clustering and classification against
other tools, showing that TCRs with similar sequences embedded
closely in representational space provides state of the art TCR clus-
tering. TCR-VALID’s low dimensional, continuous, space provides a
future route to Bayesian optimization of TCRs in addition to its clus-
tering capabilities.

Results
Unsupervised learning of a TCR landscape via physicochemical
feature embedding
Though the state space of TCR-antigen interactions is very large and
wehave very fewmeasured interactionpairs involving a small subset of
antigens, we do have larger volumes of TCR sequence data in the
absence of known antigen pairings. We therefore hypothesized that
using the unlabeled TCR sequence data to build latent representations
of TCRs could then be used for downstream clustering, classification,
and de novo generation. TCRs aremade of two subunits, which for the
majority of TCRs are α and β TCR chains. Although these chains occur
in distinct pairs, single cell sequencing is typically required to resolve
the pairing and thus the datasets of paired TCR chains are much
smaller thandatasets of independent α and β chains. Consequently, we
chose tomodel TRA and TRB sequences independently in order to get
a larger sampling of the state space of each sequence type during
training.

The interaction of TCRs and antigen is primarily encoded by the
Complementarity Determining Regions (CDRs)1,34 of the TCR chains.
The first twoCDRs, CDR1 andCDR2, are encoded uniquely by a given V
gene, whereas the CDR3 region occurs at the site of V(D)J

recombination1 and includes quasi-random nucleotide insertions and
deletions. This leads to TCR chains being the product of a sparse dis-
crete space for the V gene selection and a denser discrete space for the
CDR3. This type of problem occurs often in biological sequence data
where there is a sparse family structure that is complicated by dense
variation at the sub-family level.

TCRs that bind the same antigen show biases to certain V gene
usage8, and so it is essential that information about V gene is encoded
into the latent space for TCR clustering and classification. We sought
to build a latent space that encodes the sparsediscrete V genes and the
highly variable CDR3 sequences in the same space such thatwe can co-
cluster TCRs with similar yet distinct V genes, thereby precluding
conditional-VAE models. The V gene can almost be uniquely encoded
by the CDR2 sequence, so we chose to use the amino acid sequence of
theCDR2 joinedby a gapcharacter to the theCDR3 todescribe a single
TCR chain (Fig. 1a). This is beneficial for encoding the biophysical
similarity of two V genes, rather than relying on a dictionary embed-
ding strategy13. The structural interaction of the CDR loops with the
antigen is dictated by local physical interactions driven by the physi-
cochemical properties of the amino acids of the loops. To capture this,
we encoded the amino acids into 7 physicochemical features (see
methods) forming a 2-D description for each TCR, and sought to learn
smooth, low dimensional representations of these physicochemically
encoded TCRs. We find that this physicochemical featurization of TCR
sequences, at baseline slightly improves our ability to cluster TCRs
over one hot encoding (see Supplementary Fig. 7) with the added
benefit of improved interpretability and dimension reduction.

We chose to base our TCR-VALID architecture (Fig. 1a) on a
capacity-controlled disentangling Cβ-VAE33, using a dataset of
approximately 100 million TCR sequences (methods: data). Given our
reasonably short sequences, we were able to make use of light-weight
convolutional neural networks (CNNs) for the encoder and decoder to
learn the highly non linear patterns that underlie the the key features
of a given TCR. We explored the properties of the latent representa-
tions of TCRs (Fig. 1c) and the ability of the decoder to generate
physicochemical representations of TCRs in a continuous space which
ultimately form position weight matrices (PWMs) of TCRs (Fig. 1b,
methods).

Balancing landscape continuity with sequence reconstruction
accuracy
Our VAE models on the physicochemical representations of TCRs
generate a continuous space of physicochemical representations, and
since these representations can be converted to PWMs (methods)
these PWMs are themselves continuous and not discrete. This allows
for smallmotions in latent space to slowly change the properties of the
generated TCR sequence rather than discretely change specific amino
acids. However, the sparse structure of the TCR space driven by the
relatively small number of V genes can generate large regions of dis-
continuity in the latent space. This can cause challenges when clus-
tering TCRs which may be similar in their CDR3 and V gene
physicochemical properties, yet are distinct entities. It can also cause
challenges in generationofTCRsdue to regions of the latent space that
do not correspond to the true manifold of physicochemically fea-
sible TCRs.

For β-VAEs, one tunes the relative weight of the reconstruction
loss and Kullback-Leibler divergence that forces the multivariate nor-
mal distribution on the latent space, where β = 1 corresponds to a
standard VAE. Importantly, due to the TCR physicochemical repre-
sentations being continuous, one cannot measure the exact bits of
difference between the input and reconstruction, meaning that β = 1
does not carry the same meaning as in a typical VAE (see e.g. ref. 35).
The capacity controlled VAE33 allows one to control the quantity of
information in the latent space via the capacity term, C. This allows us
to tune the smoothness of the latent space in a principledway, larger C
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leading to better reconstruction at the expense of landscape con-
tinuity (Fig. 2a). We found this capacity limiting approach aids in pre-
venting posterior collapse in the low C regime. The capacity term is
simpler to implement and interpret than other methods of controlling
the information in the latent space that rely on dynamically tuning the
terms of the training loss36,37.

We sought to quantitatively evaluate the continuity of latent
TCR landscapes as a function of the information stored in the latent
space. We aimed for all points between any pair of TCRs in the latent
landscape to smoothly represent the manifold of feasible TCRs,
driven by both discrete V genes and dense CDR3 sequences.
Inspired by the latent transversals employed to evaluate simple
image datasets29,33, we developed a TCR latent transversal metric
(methods). Briefly, we randomly select two unique TCR sequences
with identical CDR3s and different CDR2s and embed them into our
latent landscape with our trained encoder, and linearly interpolate
between those two embedded TCRs in the latent space generating
TCR PWMs along the trajectory (Fig. 2a). The distance Dcdr2 mea-
sures the difference between the CDR2 of the generated TCR and
the closest observed CDR2 in the reference library, thereby mea-
suring proximity to the true data manifold such that increases in
this distance along a traversal indicate discontinuities in the latent
landscape. Additionally we measure Dcdr3, which is the distance
from the interpolated decoded CDR3 along the traversal to the
CDR3 of the two endpoint TCRs. In order to not penalize models
with lower ability to encode information due to lower capacity term
C, which will systematically have worse reconstruction accuracy
even at the traversal endpoints, we normalize Dcdr3 to the distances
endpoints (details in methods). We do not expect CDR3 to change
along the trajectory and thus expectDcdr3 to be small for a smoothly
encoded latent space.

In order to balance the landscape smoothness with the amount of
information the Cβ-VAE latent landscape can encode we tuned the
capacity C on a randomly sampled reduced dataset of ~4 million TRB
chains. For the lowest C of 1 nat per latent dimension, we required a
greaterweighting of the capacity control termβ in the loss to reach the
capacity (methods). Analyzing the average distances Dcdr2 and Dcdr3

over many Monte Carlo selected latent space traversals for a range of
latent space information capacities we find that capacity of 2 or fewer
nats per dimension leads to smooth, continuous latent representations
(Fig. 2d). By visualizing the latent trajectories for an autoencoder and a
hyperparameter-optimized TCR-VALID model with capacity of 2 nats
per dimension, we can see that the learned latent landscape strays
considerably further from the manifold of physicochemically feasible
TCRs for autoencoders (Fig. 2b) as is reflected in the Dcdr2 and Dcdr3

metrics.

Latent dimensions are disentangled and allow for principled
TCR generation
Another key objective of TCR-VALID is to provide an interpretable TCR
landscapewhichwould enable characterizationof themanifold of TCR
sequences. Interpretability of TCR latent space can be defined as the
ability to encode biological and physicochemical intuition and rea-
sonability into our model output38. Unlike many datasets used to
quantitatively benchmark disentangling properties, not all the ground
truth generative factors for TCR sequences are known, labeled, or
independent.

TCRs are generated biologically via the process of V(D)J recom-
bination, wherein V and J genes are recombined with nucleotides
deleted from their ends and quasi-random non-germline encoded
nucleotides inserted at the joining sites. In β chains, a D gene is addi-
tionally inserted between V and J, but hard to align due to its short

Fig. 1 | TCR-VALID: Learningaphysicochemically informed latent landscape for
TCR sequences. TCRs interact with peptide:MHC antigens on Antigen Presenting
Cells (APC) primarily via the CDR loops of their variable region a, since the V gene
usage can be encodedalmost uniquely via its CDR2 and remaining diversity is in the
CDR3, we use these sequence regions to encode a single TCR chain, and subse-
quently use physicochemical features of the amino acids to represent the

sequence. b TCR-VALID architecture diagram: physicochemically encoded TCR
sequences are used as input to train a CβVAE to learn a continuous 16D latent
representation of TCR sequences. c Diagram illustrating the tradeoffs between
representation learning approaches for TCR sequences. TCR-VALID aims tobalance
those tradeoffs in order to provide learned landscape smoothness, interpretability
without compromising TCR sequence reconstruction quality.
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length and the CDR3 deletions. We hypothesized that the latent space
of TCR-VALID could be able to disentangle V and J gene usage and the
mean physicochemical properties of the quasi-random insert region
between the V and J genes. Given that the training objectives of TCR-
VALID do not explicitly aim to disentangle these predetermined gen-
erative factors they likely encode factors beyond those we study,
particularly properties relating to the non-mean properties of the
insert region.

A well disentangled representation would encode distinct gen-
erative factors in non-overlapping subsets of dimensions. To quanti-
tatively benchmark TCR-VALID’s performance and tune its hyper-
parameters, we employed a disentangling score39 that has been iden-
tified as robust and broadly applicable40. Importantly, this scoring
scheme accounts for generative factors that are unknown, but still
encoded within the latent space. Briefly this scoring schememeasures
the importance of individual latent dimensions for predicting exclu-
sively a single generative factor combined with a weight term
accounting for total contribution of the latent term to generative
factor prediction (details in methods).

We trained random forest (RF)models41 on the previously trained
Cβ-VAE latent representations from the sub-sampled TRB training set
with a range of capacities C to predict the three key TCR generative
factors for the associated TCRs (Fig. 3a, methods). The feature
importances can then be used to both score the disentanglement
(Fig. 3d) and be visualized via Hinton diagrams showing which
dimensions encode differing generative factors and how strongly
(Fig. 3b). TCRs projected into the latent dimensions for TCR-VALID
(C = 2) that encode primarily V gene or J gene usage show clear

structural stratification by V gene in these dimensions without any
further dimension reduction (Fig. 3c, top), and those same features are
mixed in latent dimensions not identified as encoding V/J genes and
encode still unknown TCR factors (Fig. 3c, bottom). The TCR-VALID
model that displays both the highest disentangling score and lowest
reconstruction loss was the samemodel that presented the smoothest
learned landscapewith capacity of 2 nats per dimension. One potential
flaw in the disentangling score, is that it aggregates all generative
factors into a single score40. We found via hyper-parameter tuning that
capacity 2 gives the best balance between disentangling score and
sequence reconstruction accuracy as captured by the reconstruction
loss (Fig. 3d), whilst PCA and autoencoder models sacrifice recon-
struction accuracy or latent landscape disentangling.

TCR-VALID performs fast and accurate antigen specific TCR
clustering
TCR sequences that are projected closely into the latent landscape of
TCR-VALID have closely related physicochemical features whichmight
underlie their binding mechanisms to the same antigen peptides42.
Along with the disentangling and interpretability properties of TCR-
VALID, we sought to benchmark its TCR-antigen clustering capabilities
against current state of the art approaches, some of which were
developed for the sole purpose of TCR-antigen pair clustering. We
fixed C =2, determined to give us the optimal smoothness and disen-
tangling properties and trained a TCR-VALIDmodel on the full training
dataset of approximately 100 million unique TRA and TRB chains
(methods: data) in order to evaluate its TCR-Antigen clustering
capabilities.

Fig. 2 | TCR-VALID learns a smooth and realistic embedding of TCRs.
a Illustration of TCR latent transversals to evaluate embedding landscape
smoothness: two TCR sequences (CDR2-3) with identical CDR3 but differing CDR2
are embedded into the learned latent space. A linear interpolation between TCRs in
latent space is then decoded back into sequence space and evaluated. b The dis-
tance between TCR-VALID (red) and auto-encoder (black) decoded interpolated
TCRs and training TCR sequences for CDR2 (Dcdr2 metric, top) and CDR3 (Dcdr3,
bottom) n = 100 interpolated points per trajectory, c UMAP embedding for subset

of TCR training sequences for auto-encoder (top) and TCR-VALID (bottom) colored
by V gene usage (left panel) and sequence length (right panel). dAverageddistance
over the whole trajectory for many Monte Carlo selected latent space transversals
for bothCDR2 (Dcdr2 metric, top) andCDR3 (Dcdr3 metric, top). Box plots are shown
with lines for quartiles, whiskers extend to 1.5 times the interquartile range, and
outliers above or below the whiskers are displayed as points. n = 310 traversals per
boxplot. Source data for b–d are provided as a Source Data file.
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Weused a comprehensive labeled TCR-antigen dataset (methods)
of high quality paired-chain TCRs that bind a wide range of antigens to
evaluate our model’s generalizability.

Given that most TCRs cannot easily be clustered, evaluating TCR
clustering performance must account for both the quality of the TCR-
antigen clusters produced and the ability to capture many different
TCR-antigen interactions. Our benchmarking uses two parameters
which are very similar to those used in other works43,44 (Fig. 4a,
methods): clustering precision that measures the percentage of clus-
tered TCRs in ‘pure’ clusters (methods) and a clustering Critical Suc-
cess Index (CSI) that measures the percentage of all TCRs that are in
‘pure’ clusters. The comparison in Fig. 4 shows performance with a
minimal cluster size of 3 unique TCRs; performance with a minimal
cluster size of 2 is shown in Supplementary Figs. 2–6. Another con-
founder for TCR clustering tool comparisons is that different TCR
clustering tools use only TRB, TRA, or paired chain information, and
some tools use only the CDR3 or some subset of the CDRs. In order to
compare the most tools possible, we focus on TRB clustering with the
most CDR regions possible. We also compared varying combinations
of TCR chain and CDR usage in Supplementary Fig. 1.

Most TCRclustering tools have somenotionof a clustering radius,
that broadly determines how far apart TCRs can be for TCRs to be co-
clustered. For a small radius few TCRs are clustered but those that are
are placed in high quality clusters (high precision, low CSI). As the
radius increases clusters get larger and greater innumber such thatCSI
increases at some cost in precision, until eventually precision and CSI
drop to zero. It is therefore only fair to compare tools in both precision
and CSI, and ideally as a function of the tools’ radius where one exists.
For tools that create representations or distance graphswe either used
their own radius where one existed (‘threshold’ for iSMART45), or used
DBSCAN46 with its distance parameter ε (ESM26, TCR-BERT10, tcr-dist47,

deepTCR13). For clusTCR and GLIPH2 we were unable to tune any
effective radius, so we only tracked precision and CSI at default set-
tings. Additionally clusTCR and GLIPH2 allowed TCRs to be placed in
more than one cluster and this was adjusted as described in the
methods to allow for a fairer comparison with other tools, though we
investigated the effect of this correction across several datasets
(Supplementary Figs. 2–6).

We find that without spike-in the TCR-VALID curve overlaps
with sequence-based approaches designed in part by human guided
feature selection such as tcr-dist47 and iSMART45 indicating similar
performance along our key metrics of CSI and precision. The TCR-
VALID curve is consistently above GLIPH243 and deepTCR13, a deep
learning model with larger latent space (Fig. 4c, left panel) indi-
cating that it outperforms them on this pair of benchmarks. Further,
we benchmarked TCR-VALID against recent general protein
transformer-based models26 and TCR specific transformer models10

(Fig. 4c, left panel) that learn high dimensional embeddings of TCR
sequences (methods) and found the curve of our approach is above
these approaches.

In addition to profiling the clustering performance on the refer-
ence dataset, following the work of Huang et al.43 we tested the
robustness of the TCR clustering approaches by spiking in irrelevant
TCRs from a CD4 TCR reference set43. We measured the decay in both
CSI and precision for the top performing tools without spike-in (tcr-
dist, iSMART,TCR-VALID), the fastest tool (clusTCR), and GLIPH2. We
find that the performance of every TCR clustering tool decays upon
increasing spike in fold of irrelevant TCRs (Fig. 4c & d) as indicated by
the curves collapsing to 0. Our results align with the recent findings
that many of the TCR clustering tools produce similar clusters48 and
that more attention must be paid to the strength of the use case for
each tool. We find that some tools are very sensitive to the labeled

Fig. 3 | TCR-VALID learns a disentangled interpretable latent landscape.
a Quantitatively evaluating the disentangling of TCR-VALID by training random
forests to predict TCR-intrinsic factors in the learned latent dimension and com-
puting a Disentangling Score39 on their feature importances. b Hinton diagrams
illustrating the relative importance of latent dimensions from trained networks at
predicting TCR intrinsic features. Square size indicates relative importance, rows
indicate latent dimensions and columns indicate respectively mean insert

physicochemical properties, V gene and J gene. c Plotting the learned latent land-
scapes with the feature they best encode (top) show a smooth yet disentangled
landscape for V (left) and J (right) genes. If we plot the none encoded feature in the
inappropriate dimensions the organization is lost (bottom), d Disentangling score
versus reconstruction loss for TCR-VALID hyperparameter range versus PCA and
autoencoder approaches. Source data for b–d are provided as a Source Data file.
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TCR-antigen reference they are trained or tested against (supple-
mentary Fig. 2).

Since a common use case for TCR clustering is to identify clusters
across multiple large TCR repertoires from different individuals it is
important that the clustering algorithm scales well with data volume.
We benchmarked the time complexity of TCR clustering algorithms,
finding that TCR-VALID scales better than tcrdist349 and iSMART
(Fig. 4b). clusTCR scales better than TCR-VALID but has lower clus-
tering performance. clusTCR’s speed is derived largely from the use of
approximate nearest neighbor clustering methods, which may offer a
performance boost over DBSCAN if used with the fixed size repre-
sentations of TCR-VALID. TCR-VALID embedding speed places a lower
bound on the clustering speed and this lower bound scales similarly to
clusTCR (methods, Supplementary Fig. 8). We were unable to bench-
mark GIANA50 due to its licensing restrictions, though Hudson et al.48

benchmarked GIANA against other tools and found its speed was
similar to iSMART and GLIPH2 and its clustering performance similar
to clusTCR.

Disentangled representation provides cluster interrogation and
de novo generation within clusters
TCR-VALID’s disentangled representation allows us to probe which
dimensions, and associated quantities, independent clusters of TCRs
that bind the same antigen differ. We find that the two largest clusters
(large cluster n = 363, small cluster n = 40 unique sequence) we iden-
tify from with TCR-VALID bind HLA-A*02:01 GILGFVFTL (influenza)
peptide (Fig. 5b, left panel).

We confirm that the two clusters share V gene usage (TRBV19) but
differ in J gene usage. As expected, the insert region is variable both
within a cluster and between clusters. As validation of the disen-
tangling and interpretability of our learned latent landscape, we
showed that in dimensions that encode mean insert physicochemical

properties (0,8) and J gene usage (12) the two clusters clearly segre-
gate. Conversely, given that the clusters largely share V gene usage,
alongdimension 1 that encodesV genewefind the twoclusters overlap
(Fig. 5b, right panel). These results highlight the benefits of the inter-
pretable learned landscapewhen relatingTCR-antigenbinding clusters
in an unsupervised fashion to both recover known TCR features such
as V,J gene usage and learn biophysical properties such as mean phy-
sicochemical insert value which underlie different binding
mechanisms.

We demonstrate de novo TCR sequence design for a TCR asso-
ciated with each of the two large flu clusters by using the mean of the
TCR representation of the TCRs belonging to each cluster (Fig. 5a) and
decoding these back into physicochemical property via the trained
decoder. The decoder output of a physicochemical map is then con-
verted into probability of amino acid identity (Fig. 5c,methods). These
designed sequences display motifs that have previously been identi-
fied in similar datasets with a supervised approach8.

Latent representations provide universal feature extractor for
TCR classification with uncertainty-estimation
TCR clustering is particularly useful in extracting putative groups of
functionally similar TCRs in an antigen agnostic way, however there
are some antigens forwhichmany cognate TCRs are known. In those
cases, we can build meaningful classification models by learning
antigen specific non-linear mappings from the TCR sequences,
rather than relying purely on proximity in a physicochemical latent
space, see e.g., refs. 8,13. This can be particularly useful for TCRs
that recognize common viral antigens, which can be clonally
expanded in samples taken during an immune response. It can be
useful to identify these to characterize response to infection or in
the context of a tumor to understand the role of bystander (not
tumor reactive) TCRs51–53.

Fig. 4 | TCR-VALID clusters TCR-antigen pairs quickly with state of the art
performance. a Illustration of considerations when comparing TCR clustering
approaches (clockwise from top left): clustering speed, clustering precision (c-
precision), clustering Critical Success Index (c-CSI), clustering radius/threshold,
TCR sequence features. b Clustering time benchmarking of TCR-VALID versus
other TCR clustering approaches as a function of number of sequences clustered.
c Clustering precision versus Clustering-Critical Success Index (details inmethods)

for TCR-VALID versus TCR clustering tools for increasing spike fold of irrelevant
TCRs. TCR clustering curves represent increasing clustering radius from left to
right. d Clustering precision versus Clustering Critical Success Index for tcr-dist,
iSMART and tcrvalid for increasing spike folds (0–5×) illustrating the effect of
irrelevant TCR spike in on the respective tools. Source data forb–d are provided as
a Source Data file.
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One problemwith classificationmodels in biological data settings
is how the models behave on data that is out-of-distribution (OOD) as
opposed to in-distribution (ID)54,55. In the case of TCR-pMHC interac-
tions, models are trained on a limited subset of the large state-space of
TCRs and antigens. A corollary of this is that models trained on TCRs
binding a limited set of antigens are likely to perform poorly when
evaluated on large repertoires of TCRs. This is because most TCRs are
unlikely to bind any of the antigens associatedwith the training data. It
is therefore important to either: (a) buildmodels capable of predicting
any TCR binding to any antigen; or (b) understand the confidence of a
models prediction on both ID and OOD TCRs to limit the rate of
confident predictions on OOD TCRs dwarfing the predictions of TCRs
that truly bind antigens of interest.

Tackling question (a) has been approached by learning repre-
sentations of both the TCR and peptide, using classifiers directly from
the sequenceor features of the sequence16–18 or using autoencoders14,15.
These models still underperform on OOD peptides14–18, though Gao
et al.17 recently used ameta-learning approach to perform state-of-the-
art TCR-pMHC binding prediction for OOD peptides. Due to the rela-
tively small volume of TCR-pMHC data available, such strategies are
still not expected to perform with complete accuracy in the full state-
space of TCR-pMHC interactions. Therefore it is still important to
consider model confidence in such strategies when predicting pMHC
labels on large repertoires of TCRs. For this reason, and that we here
focus on a low-dimensional TCR representation model, we instead
focus only on question (b) in the context ofmodels that classify pMHC
labels using only TCR as input. Namely, how well do models’ con-
fidence on their predictions allow one to separate the regions of TCR
space it knows about (in the region where its training data was, ID)
from those it does not (where there was no training data, OOD).

Due to the low dimensionality and capacity limit of TCR-VALID, its
TCR representations are densely encoded into the latent space with
some loss in information of the representations from the original data.
One may expect this leads to poor classification and OOD detection
performance. We studied: i) classifier performance for ID antigen
labels using TCR-VALID representations of ID TCRs, ii) classifier per-
formance at distinguishing whether a TCR is ID or OOD, that is are the
model’s certainties in its predictions useful for evaluating whether to
trust the model’s predictions, and iii) can the performance at OOD
detection be improved using unlabeled TCR data and their TCR-VALID
representations.

We split the TCRs in the antigen labeled TCR dataset into two
groups: those TCRs that bind an HLA*02 pMHC (ID) and those that
don’t (OOD). We then trained a small classifier to predict the antigen
label of the HLA-A*02 associated TCRs in amulti-class setting (Fig. 6a).
We evaluated the models’ confidences in their predictions for ID and
OOD TCRs (Fig. 6b). We evaluate a model’s OOD detection by finding
the AUROC between the model’s confidence (methods) on test TCRs
from the ID TCRs and OOD TCRs. We compared our models perfor-
mance in ID classification and OOD detection with a popular TCR
classifier, deepTCR13, in its classifier mode (Fig. 6c). DeepTCR trains
directly on TCR sequences and genes and has a final representation
size of 256 dimensions prior to the multi-layer-perceptron layers. This
is in contrast with the pre-trained TCR-VALID model with representa-
tions having just 16 dimensions and with a constrained informational
capacity.

To improve our OOD detection we utilize a portion of the unla-
beled, random repertoire, TCRs and the method of Lee et al.56 to add
an auxiliary loss to force the classification probabilities to the antigen
targets to bemore uniformwhen samples come fromthe unlabeled set

Fig. 5 | TCR-VALID can be used to both identify TCR-Antigen binding modes
and generate meta TCR sequences. a Unique TCRs can be embedded and clus-
tered in TCR-VALID latent space, their 16D representations can then be averaged to
create meta representation of the TCR cluster. This meta representation can then
be decoded to generate the meta-TCR sequence representative of the cluster.
b TCRs from validated TCR-antigen pairs embedded into the learned latent land-
scape (left) and TCRs from the two largest flu clusters (Large clustern = 369 unique
TCRs and Small cluster n = 39 unique TCRs) embedded into learned latent

landscape. Violin plots of latent dimensions of TCR-VALID model for two flu clus-
ters above illustrating separation of clusters along Mean Insert Physicochemical
properties and J gene usage but overlapping for V gene usage (right). White dot,
median. Box edges, 25th and 75th quartiles. Whiskers, 1.5 × the IQR of the box edge.
c TCR PWMs generated from the mean TCR-VALID representations of the two
largest flu clusters, illustrating conserved CDR3motif and gene usage. Source data
for b are provided as a Source Data file.
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(methods). These loss terms are balanced by a parameter α. Tuning α
from zero, where there is noOODdetection improvement included, to
larger values of αwhere the output distribution is progressively forced
to be uniform for unlabeled data.

We find that while the auxiliary task is trained only on random
repertoire TCRs, OOD detection improves not only for random TCRs
but also for the non-HLA-A*02 TCRs for α = 1 compared with α = 0
(median AUROC 0.808 vs 0.763, two-sided Mann–Whitney U = 7,
p = 6.6e−4, two-tailed, n1 = n2 = 10) with no appreciable drop in classi-
fication performance on the in-distribution task (median AUROC
0.940 vs 0.945, two-sided Mann–Whitney U = 29, p = 0.06). This pro-
cess leads to TCR-VALID with α = 1 performing OOD detection better
than deepTCR (median AUROC 0.808 vs 0.792, two-sided
Mann–Whitney U= 12, p = 2.3e−3) and with similar in-distribution
classification to deepTCR, though with statistically lower performance
(median AUROC 0.945 vs 0.956, two-sided Mann–Whitney U = 15,
p = 4.6e−3). This method for improving OOD detection using unla-
beled TCRs could be applied to other TCR classification models,
improving the informative predictive score of whether a new TCR of
interest is ID for the model, aiding users identify potential false posi-
tives, particularly for repertoire TCRs which is a common use case.

Discussion
In this study we present TCR-VALID, a CβVAE trained using approxi-
mately 100 million unique TCR sequences to learn smooth, inter-
pretable, and low-dimensional representations of TCRs with

generative ability. TCR-VALID is fast, lightweight, and provides state of
the art clustering of TCRs by antigen binding properties via its repre-
sentations without need for retraining, and these representations can
be used for TCR classification and OOD detection.

One future use of TCR-VALID’s disentangled TCR physicochem-
ical landscape is expected to be for circumventing some of the current
limitations in TCR repertoire profiling. Namely, an inability to relate
unique yet similar TCRs seen across individuals. This is often the case
in disease settings, where due to limited TCR overlap between indivi-
duals few TCRs are found shared between individuals despite a shared
disease and therefore assumed TCR response. TCR-VALID provides
fast and accurate clustering of functionally similar TCRs, allowing it to
be quickly applied over many TCRs from large repertoires. Clusters of
TCRs present in patients with shared disease, or under the same
treatment, may provide a tool to reveal TCRs involved in those con-
ditions. The disentangled space gives route to understand the con-
served nature of those similar TCRs.

Other auto-encoding frameworks have been applied to TCR
data12–14,30. They have previously either been: limited to antigen-labeled
TCR data thereby limiting the scope of TCR sequence diversity cap-
tured in the representations; have not investigated the disentangled
nature in a quantitative manner; or, have not investigated the clus-
tering capabilities within the latent space. We applied robust validated
metrics from the DRL literature40 and quantitatively assessed our
learned latent space smoothness, to optimally choose the information
bottleneckof TCR-VALID. To thebest of our knowledge this is themost

Fig. 6 | TCR-VALID performs strong classification and OOD detection despite
low dimensional representations and information bottleneck. a schematic of
the experimental set-up. labeledTCRs are divided intoHLA-A*02- (ID) andnonHLA-
A*02 (OOD) associated groups of TCRs, and unlabeled TCRs (bkgOOD). An
uncertainty aware classifier is trained on representations from the pre-trained TCR-
VALIDmodel. The classifier has the joint task (weightedbyα) of classifyingwhich ID
peptide the TCR binds and making predictions more uniform for bkgOOD TCRs.
The model is evaluated on the classification task, and the ability to distinguish ID
and OOD (bkgOOD, or OOD) TCRs based on the model confidence. b Model con-
fidence for TCR-VALID with various parameters α, and for DeepTCR. Model con-
fidence is calculated for the test data of the ID TCRs (test-ID; n = 3530, ten 12.5%

Monte Carlo test sets of 2817 TCRs; n = 3420 for DeepTCR due to internal removal
of 93 TCRs) and the OOD TCRs (n = 8760; confidence on 876 TCRs for models
trained on each of ten folds). c AUROC displayed as box-plot over ten Monte-Carlo
cross-validation splits for the three tasks: classification of ID TCRs (test-ID), OOD
detection (test-ID vs OOD) and bkgOOD detection (test-ID vs test-bkg-OOD).
Increasing α from 0 to 1 has no statistical change in ID classification (median
AUROC0.940 vs 0.945, two-sidedMann–WhitneyU = 29, p =0.06, n1 = n2 = 10), but
large improvements in OOD detection for both bkgOOD and OOD TCRs. Box plots
are shown with lines for quartiles, whiskers extend to 1.5 times the interquartile
range, and outliers above or below the whiskers are displayed as points. Source
data for b,c are provided as a Source Data file.
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comprehensive investigation of TCR sequence latent space using the
quantitative tools of DRL.

Other approaches have shown promise in the DRL literature such
as FactorVAE57 and β-TCVAE58 that further reinforce the disentangling
objective of β-VAE by adding further terms to the training loss based
on latent dimension correlations and an additional discriminator
respectively. These tools may provide an increase to the disentangling
abilities of TCR representations.

In thisworkwehave shown that the key generative factors for TCR
sequences can be well disentangled by a Cβ VAE in a small number of
dimensions, with well quantified smoothness, and with good recon-
struction accuracy. This smooth, low dimensional, generative space
may open up possibilities for latent space optimization of TCR
sequences, which would be an exciting avenue for future research.

Methods
Data
We collected two sets of TCR data, an unlabeled set of TCRs from
repertoire-level data, that is without corresponding antigen-binding
information, and a set of antigen-labeled TCRs for which the cognate
antigen is known.

We collected repertoire level TCR data from the iReceptor
Gateway59 (https://gateway.ireceptor.org/login) and VDJServer60

(https://www.vdjserver.org). These data include TRB and TRA chains,
that are predominantly unpaired.

We collected paired-chain TCRs with known cognate antigens
from two sources; those associated with8 and VDJdb61,62. For VDJdb
we collected all human paired-chain TCRs with a quality ‘score’ of at
least 1 (accessed October 2021). In order to investigate the effect of
TCR-antigen reference data sets for TCR clustering we equally
benchmarked clustering tools with the TCR-antigen reference data
set from ref. 43 before and after filtering for quality scores of at least
1 as mapped from VDJdb. To undertake irrelevant TCR spike-in
benchmarking we followed the process set out in ref. 43, briefly we
collected the same CD4 reference data set and created 10 replicates
for each spike in fold ranging from 1-5× the GLIPH2 reference data
set size n = 3262. These irrelevant TCRs were then each given a
unique hashed cognate antigen value and then concatenated with
the labeled TCR-antigen reference data sets for downstream
scoring.

Data preparation. The ingested TCR data is in the AIRR schema
(https://docs.airr-community.org/en/v1.2.1/datarep/rearrangements.
html). We clean the ingested data to train the model on high-quality
TCR sequences. Thefirst step in thequality control pipeline is selecting
the locus of the TCR, as either TRB or TRA, and chains that are True for
‘productive’ and ‘vj_in_frame’, and False in ‘stop codon’. Several criteria
were used to evaluate the quality of the junction sequences of the
TCRs. The amino acid junction sequence must have a length greater
than or equal to 7, a length less than 24. We required that the junction
must start with the amino acid C, end with the amino acid F, and not
contain X, *, or U. Very few sample TCRs have the CDR1 and
CDR2 sequences labeled. However, a large percentage are labeledwith
the column named ‘v_call’, which gives the V gene that encodes for the
CDR1 and CDR2 sequences. We thus use ‘v_call’ to annotate CDR1 and
CDR2. To prevent ambiguous ‘v_call’s affecting the quality of CDR
labels we restrict TCR chains to those for which the ‘v_call’ contains a
single V genewhile allowing formultiple alleles of a single V gene. After
filtering ambiguous ‘v_call’s we assume all V alleles are *01 as the
CDR2 sequence between alleles of the same V gene are almost always
identical. To assign CDR1 and CDR2 to each chain we first retrieve the
amino acid sequences for each of the TRV genes from (https://www.
imgt.org/genedb/). This database provides sequences for all human
TRV genes, including each allele, for each gene we retain only *01
alleles. For each sequence we use ANARCI63 to apply IMGT numbering,

and retrieve the IMGT CDR1 and CDR2 regions for each sequence.
These CDR1 and CDR2 definitions for each v gene are then joined into
the dataset via the ‘v_call’. TCR chains for which any of: ‘v_sequen-
ce_end’, ‘cdr3_end’, ‘j_sequence_start’, ‘cdr3_sequence_end’ are null are
removed. We define the insert amino acid sequence as the (in-frame)
codons in the cdr3 nucleotide sequence which are encoded by 1 or
more non-V/J encoded nucleotide, as determined by AIRR sequence
schema fields: ‘v_sequence_end’, ‘j_sequence_start’, ‘cdr3_start’,
‘cdr3_end’.

Labeled data subsets. When running clustering experiments we tes-
ted various different subsets of the data, and used differing features as
inputs for clustering. We select whether to use:

• chains: TRB, TRA or paired-chain TCRs
• feature: CDR3, CDR2+3, or CDR1+2+3.

We then subsequently only keep TCRs that bind antigens with at
least 3 TCRs in the dataset, keep TCRs with length of less than 28
residues (CDR3,CDR3+2) or 35 (CDR3+2+1), and then removed dupli-
cate TCRs based on the feature and chains that were to be used in an
ML model.

Unsupervised training data sets. We train models in two regimes: in
thefirst caseweuse a small fraction of the TRBTCRdata (hereon called
smallTRB) to allow us to sweep hyperparameters in a reasonable
timeframe and for the final TRA and TRBmodels we use all of the TRA
and TRB data respectively (largeTRA, largeTRB) for training the mod-
els. In both cases we remove duplicated sequences and split the data
into train, validation and test sets with sizes 80%,10%,10% respectively.
Exact number of unique sequences: largeTRB (94519890), largeTRA
(5176669), smallTRB (4253395).

TCR sequence formats and physicochemical projection
TCR sequences were represented as a combination of CDR regions
(CDR3, CDR3+2, or CDR3+2+1). The CDR regions were joined with gap
characters, and this was applied to either TRA-alone, TRB-alone to
generate a feature for that TCR chain, and for paired-chain format the
features for each chain were joined with a gap character.

To embed amino acid sequences of the TCR sequence, repre-
sented by the CDR combination being used, into physicochemical
space we project using a normalized version of the physicochemical
properties for each amino acid as they appear in Table 1 of ref. 64. Each
amino acid is converted into a vector of 8 values, the seven physico-
chemical properties and a reserved feature indicating if the amino acid
is a gap character, and normalize the values using z-score for each
feature over the 20 amino acids. We can denote this space
as f aja 2 amino acids

� �
.

After each amino acid in a sequence is converted a sequence is
then represented by a 2D array with the length of the original
amino acid sequence and width 8. We pad the end of the amino
acid sequence with gaps such that all input data have the same
array size, maximal size included is indicated in the following
section and differs depending on which CDRs are included. This
physicochemical encoding for a given sequence can be written as x
where xi,j = f

ai
j where ai is the amino acid of the ith amino acid in the

sequence.
We find that this physicochemical representation of TCRs is at

baseline, before trainingof TCR-VALID, as capable as one-hot encoding
at capturing relevant features for TCR-antigen clustering for all refer-
ence data sets when both are reduced to 16 PCA features and then
clustered usingDBSCAN (Supplementary Fig. 7). In fact we find that for
high quality filtered TCR-antigen datasets such as our tcrvalid internal
reference and the GLIPH2 filtered reference (VDJDB quality metric of 1
or above) that physicochemical representations outperform one hot
encoding for TCR clustering.
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A physicochemical representation of an amino acid sequence can
be uniquely projected back to the original sequence, but with any
minor alteration to physicochemical property at a given position the
amino acid at the position can no longer be uniquely identified and
must instead be a probability distribution over the amino acids. This
probability assignment is made via a distance metric δ( ⋅ , ⋅ ) on each
physicochemical feature vector and the features of the true amino
acids, subsequently normalized to a probability distribution. Namely,

for a physicochemical representation ~x , ~xi,j = f
i
j , the probability for

each amino acid for position i is Pðai =ajf iÞ= δ f i,f a
� �

=
P

aδ f i,f a
� �

.

For the distance metric we used δ f i,f a
� �

= 1= f i � f a
��� ���

1
+ ε

� �
with

ε = 1e−6. This allows anyphysicochemical featurearray tobe converted
to a PWM over amino acids.

Capacity-controlled VAE models
Architecture. TCR sequences projected into physicochemical arrays,
x, are fed into an encodermodel qθμ ,θσ

ðzjX Þ=N ðzjμðX ; θμÞ,σ2ðX ;θσÞÞ to
generate latent space samples z, which are subsequently decoded
by pϕ(X∣z).

Since our input sequences are fairly short (≤28) we utilize a
lightweight 3 layer CNN for our encoder with He normalization and
stride of 1 for all 1D convolutions, with 32,64,128 channels and
kernel widths 5,3,3. All convolutional layers are followed by Batch
Normalization65 and leaky ReLU activation. Following the the con-
volution the output is flattened to a vector and two single feed
forward layers with output dimension 16 are used to construct the
mean and log variance for the sampling of the latent representation
to be passed to the decoder. For the decoder a ReLU activated feed
forward layer constructs a 28 × 128 array on which 3 1D deconvo-
lution layers are applied with channels 128,64,32 and kernel widths
3,3,5, and each is followed by Batch Normalization65 and leaky ReLU.
Final reconstructed physicochemical representation is generated
by an 8 channel deconvolution layer with kernel width of 1 without
activation.

Training regime. The loss function is that described byBurgess et al.33:
L=Lrecon + β∣LKL � nLC∣, where nL is the number of latent dimensions
used and the loss terms used for sample xi were Lrecon =
EqðzjxiÞ½MSE ðxi � pϕðX jzÞÞ� and
LKL =DKLðN ðμðxi;θμÞ,σ2ðxi;θσÞÞjjN ð0,1ÞÞ. In contrast to Burgess et al.33

we do not adjust the capacity C during training, thereby fixing an
average number of nats of information that a dimension of the latent
space should aim to encode. We use a value of β sufficient to enforce
the average capacity is close to the objective, β = 1 was sufficient for
C ≥ 2 whereas β = 10 was required for C = 1. We note that since MSE loss
is used for the reconstruction loss β = 1 does not carry the same
meaning in terms of the ELBO that it does in the context of a Bernoulli
output for binary X, see e.g., ref. 35.

We minimize the loss using the Adam optimizer66 with a learning
rate of 1e−3. For the smallTRB and largeTRA models we use early
stopping on the validation data split with a patience of 10 epochs and
restore the weights to the epoch at minimal validation loss. For the
largeTRB model due to the size of data we used checkpointing at 10
epoch intervals and used the checkpointed model at approximate
minima of the validation loss.

Training, validation and test datasets were saved in parquet
format in either raw sequence format, ingested using
HuggingFace’s67 read_parquet method and converted to physico-
chemical properties on the fly (for small TRB and largeTRA), or (for
largeTRB) TRB sequences were first converted to physicochemical
arrays in and saved in parquet format and then ingested using the
read_parquet method.

Metrics
Clustering metrics. A ‘pure’ cluster is one in which the modal antigen
label of TCRs is the label of >90% of TCRs in the cluster, following the
definition in ref. 43. If we consider such TCR clones to be ‘clustering
true positives’, c-TP, while TCRs in clusters which don’t fit this defini-
tion as ‘clustering false positives’, c-FP, and equivalently TCRs that
aren’t clustered at all to be ‘clustering false negatives’, c-FN, we can
make the following analogies between clustering and classification
metrics:

c-Precision. Of all clustered TCR clones, the percentage of TCR clones
that are clustered into clusters that are ‘pure’. Which can be written:

c-Precision =
c-TP

c-TP + c-FP
ð1Þ

c-CSI: The Critical Success Index, of all TCRs how many were placed
into ‘pure’ clusters:

c-CSI =
c-TP

c-TP + c-FP + c-FN
ð2Þ

Minimal cluster sizes. In order to score the ability of a given TCR
distance-metric in combination with a given clustering algorithm to
accurately cluster TCRs, we take an approach similar to that of ref. 44
smaller clusters can skew the model performance metrics. We there-
fore chose to only consider clusters with at least 3 TCRs present.
However, we also consider (Supplementary Fig. 2) the case where TCR
clusters of only 2 TCRs are allowed and find that physicochemical
properties alone perform as well as ismart and tcrdist on TRB chains
with CDR123 considered.

Continuity metrics. We project two TCR sequences with identical
CDR3s but differing CDR2 into physicochemical space (x1, x2) and then
into amodels latent space (z1, z2).We then linearly interpolate between
z1 and z2 via : zi =

i
N�1 z1 +

N�1�i
N�1 z2 for i = 0, 1, , . . . ,N − 1. Interpolated

latent space representations zi are then decoded to physicochemical
property maps ~xi.

Inspired by Berthelot et al.29 we devise measures of how far
interpolatedTCRs differ from the truemanifold and expected pathway
of TCRs between our endpoints. We identify if the CDR2 region of the
interpolated TCR remains close to the true manifold of possible TRBV
CDR2s andwhether the CDR3 region differs significantly from the true
CDR3 of both TCR1 and TCR2.

The distance of an interpolated TCR physicochemical repre-
sentation to a true TRBV CDR2 can be written:

Ci,q =d q, ~xi,CDR2
� �

ð3Þ

q?i = arg min
q

Ci,q ð4Þ

Di,cdr2 =Ci,q?i
ð5Þ

where q is the physicochemical representation of the qth true CDR2
and d is a distance metric in the physicochemical space and ~xi,CDR2 is
the CDR2 region of the physicochemical representation ~xi. For d we
use dðx, yÞ=Pjkf x,j � f y,jk1.Di,cdr2 is the distance from an interpolated
TCRCDR2 to the nearest true CDR2.We can average this quantity over
a trajectory to get a score the the trajectory (smaller is better):

Dcdr2 =
1
N

XN�1

i=0

Di,cdr2 : ð6Þ
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We can also assess how far the CDR3 changed from the true CDR3 at
each point on the trajectory:

Di,cdr3 =d x0,CDR3, ~xi,CDR3

� � ð7Þ

Dcdr3,raw =
1
N

XN�1

i=0

Di,cdr3 ð8Þ

Dcdr3 =
1
N

2
Di,cdr3 +DN�1,cdr3

XN�1

i=0

Di,cdr3 ð9Þ

where x0,CDR3 is the physicochemical representation of the CDR3of the
original TCR sequence.Dcdr3 is themean distance along the trajectory,
normalized to the error in reconstruction at the start and end point of
the trajectory. This is required to normalize across models with dif-
ferent reconstruction accuracy since we wish to assess changes in the
manifold matching, rather than measure reconstruction accuracy
which varies as capacity of the model is varied.

To compare models we generate many TCR interpolations and
score them via Dcdr2 and Dcdr3. We generate TCR pairs with the same
CDR2 but different CDR3, and in particular for each model we gener-
ated 310 interpolations - we chose 31 randomCDR3s selected from the
test set, and for each CDR3 interpolated between 10 random pairs of
CDR2s of length 6 amino acids.

Disentanglement Metric. We train random forest classifiers
(sklearn68) with TCR latent space representations as features and V or J
gene as labels. In order to create the mean insert physicochemical
valueweaverage the physicochemical properties of all the amino acids
attributed to the insert region as defined in the data preparation sec-
tion. This value is then used to train a randomforest regressor. In order
to evaluate our classifiers we score them using weighted one versus
‘rest’ AUCROCwith stratified 5 fold cross validation. Hyperparameters
for the random forest are chosenbasedon the cross-validation andRFs
are retrained with those parameters on the full dataset. For training
data for the RFswe use a randomselection of 100k TCRs.We then take
the random forest feature importances and apply the disentanglement
metric as in Eastwood and Willliams39.

Uncertainty aware classification
We used TCR-VALID models to generate representations for the TRB
and TRA chains of paired chain TCRs in our labeled dataset restricted
to TCRs with binding to antigens for which at least 100 unique TCRs
were present in the dataset (8 antigens), and for 100k random unique
chains from each of the unlabeled TRA and TRB datasets. The labeled
data were further split into HLA-A*02 binding TCRs and non-HLA-A*02
binding TCRs. We built a feed-forward neural network with the fol-
lowing layers: dropout (25% retention), dense (128, ReLU), dropout
(40% retention), dense (128, ReLU), dropout (40% retention), dense (8,
softmax). We constructed input batches of 32 labeled TCRs and 512
randomly selected unlabeled TCRs and trained the neural network
with loss function56:

L=EPinðx̂,ŷÞ �
X
c

I ŷ,cωc logðPθ ðy= cjx̂ÞÞ
" #

+αEPoutðx̂Þ
X
c

KL U∣∣ logðPθ ðy= cjx̂ÞÞ
� �" # ð10Þ

Where we apply weights, ωc, to the cross-entropy loss to combat
dataset imbalance, I ŷ,c is the indicator function, and α is a tunable
hyperparameter. ωc are calculated using sklearnǹs ‘compute_class_-
weight’ function. We only trained the model on the HLA-A*02

associated TCRs, and used the non-HLA-A*02 TCRs as an OOD test
set. During training we apply an early stopping criteria with a patience
of 5 epochs on the validation set. 75% of the in-distribution data was
used for training, and 12.5% for validation and testing respectively.

AUROC for in-distribution peptide classification are calculated in
a one vs rest fashion per peptide on the left out test set. As a measure
for detecting OOD we data we calculate the classifier confidence as
NmaxfPθg=ðN � 1Þ, where Pθ are the multiclass probabilities for a
sample and N is the number of classes. We then use these confidence
scores as effective probabilities for measuring whether data is ID or
OOD and use these probabilities to construct an ROC curve and cal-
culate the AUROC for OOD detection. Reported AUROC are calculated
as themean over 10Monte Carlo cross-validation splits. p-values andU
statistics between AUROCof differentmethods are calculated over the
Monte-Carlo splits via a two-sided Mann-Whitney U test, and the
(common-language) effect size between two groups of 10 values can
be calculated from the quoted U statistics by U/100.

Comparator methods
Physicochemical properties. We project the residues of TCRs into
their physicochemical properties, constructing a 2D image for each
TCR as we do for VAE input, and then flatten these 2D images to 1D
vectors. These 1D representations are constructed for the subset of
labeled TCRdata of interest, and clustering is then performed on these
representations via Euclidean distance via DBSCAN46 via scikit-learn’s
implementation68 (similarly for all DBSCAN implementations dis-
cussed below).

PCA on physicochemical properties. These 1D physicochemical
representations are constructed for the subset of labeled TCR data of
interest, and for a subset of the unlabeled TCRs. We fit PCA to the
unlabeled TCR representations, and project antigen-labeled TCRs into
the PCA dimensions. TCR clustering is then performed on PCA repre-
sentationswithDBSCAN.Weuse inverse PCA transform toprojectTCR
representations in PCA space back into physicochemical space, and
subsequently convert from physicochemical space to probability dis-
tribution over residues to construct generated TCRs logos, via
weblogo69, from any position in the PCA latent space.

PCA on one-hot encoding. We one-hot encode the TCR sequence
residues of the same format as those projected into physicochemical
space with a gap character and concatenate them into a 1D array. We
then fit PCA to the unlabeled one-hot encoded TCR sequence repre-
sentations into the same number of dimensions as TCR-VALID latent
dimensions (and the physicochemical properties PCA) before under-
taking the same TCR clustering procedures using DBSCAN.

tcr-dist. We used tcr-dist47 (https://github.com/phbradley/tcr-dist,
SHA: 1f5509a, license:MIT) to extract the tcr-dist distances between all
pairs of clones in each set of input data with a minor modification to
allow the computation to be parallelized while returning the same
TCR-TCR distance matrix (all code shared, see Code Availability). We
then used the TCR-TCR distance matrices saved by tcr-dist to employ
our own clustering on the resulting graph, in this paper we used
DBSCAN and we performed such clustering for TRB-only, TRA-only
andpaired-chainclustering.We found this tobe faster than theoriginal
tcr-dist, and DBSCAN has previously been found to be the best clus-
tering algorithmon the tcr-dist graphbyothers44. Thiswas essential for
comparison across many thresholds and datasets including spike-in.
For timing we used the more recent and significantly faster tcrdist349,
with post-hoc DBSCAN for timing of clustering.

iSMART. We use iSMART45 (https://github.com/s175573/iSMART, SHA:
1f2cbd2, license: GPL3.0) to cluster TRB-only data, as it was not
designed to cluster TRAor paired-chain TCRdata.We tune the internal
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distance parameter, threshold, within their clustering method to
tune the size of the clusters.

GLIPH2. We use the GLIPH2 webtool43 (http://50.255.35.37:8080) to
cluster TRB-only data. As the webtool was not designed to cluster TRA
or paired-chain TCR data. We process the reference datasets and spike
in datasets to fit the webtools format and set subject to NA and count
to 1. The output of the GLIPH2 webtool clustering is then processed to
account for the multiple assignment that the tool allows, that is TCR
clones can be assigned to more than one cluster which makes fair
comparisonwith other tools challenging. Namely, for TCRs assigned to
more than one cluster we only kept the occurrence of each TCR from
the largest cluster inwhich it is found and removed the other duplicate
occurrences. The newly formed singleton clusters from the duplicate
removal were then re-assigned as unclustered. A comparison of the
clustering performance with and without this correction can be found
in Supplementary Figs. 2–6.

DeepTCR-VAE. In order to use deepTCR13 to cluster TCRs (TRB and
TRA chains), we train and embed a deepTCR VAE using the TCR-
antigen reference dataset as described in ref. 13 for clustering TCRs.
We then used the representations to cluster TCR-antigen pairs using
DBSCAN for minimum cluster size of 3. We found this tool required
large amounts of RAMand so limited our analysis to clusteringwithout
further spike-in data.

clusTCR. We use clusTCR44 to cluster TRB-only data, as it was not
designed to cluster TRA or paired-chain TCR data. The output of the
clustcr clustering is then processed like GLIPH2 clustering output to
account for the multiple assignment that the tool allows.

TCR-BERT. We use TCR-BERT10 in two modes, their internal clustering
method and DBSCAN clustering applied to a distance graph defined by
distance between the TCR-BERT embeddings. TCR-BERT embeddings
are calculated from the output of the eighth layer of the transformer
model, as usedwithin the original publication due to this layer’s outputs
being optimal10.Weuse the scriptembed_and_cluster.py to perform
tcr-bert clustering, tuning the Leiden resolution to adjust the cluster
sizes. It is worth noting that this clustering assigns a cluster to all TCRs,
in contrast to DBSCAN which allows TCRs to not belong to any cluster.
We also collected the TCR-BERT embeddings from the output of the
eighth layer (using ‘mean’ aggregation as per the tcr-bert default) and
used Euclidean distance between these embedding representations to
build a distance graph on which we could apply DBSCAN clustering.

ESM. We used ESM-1b26 to generate representations of TCR sequences
in several ways. We gave the TCR sequences as input with either the
CDR3 alone, or the CDR2 and CDR3 joined with a single gap. To gen-
erate TCRdistances from theTCR representations generatedbyESM1b
we employ Euclidean distances between the representations, either on
the entire representation (flattened to 1D) or the mean-pooled repre-
sentation. DBSCAN is used as the clustering algorithm on this TCR
distance metric.

DeepTCR-classification. DeepTCR was used in its classifier mode as
described in ref. 13, trained only on the HLA-A*02 associated TCRs.
Model performance on in-distribution TCRs, and OOD (non-HLA-A*02
associated TCRs) was evaluated using Monte Carlo 10 fold cross vali-
dation. 75% of the in-distribution data was used for training, and 12.5%
for validation and testing respectively. Model confidence was calcu-
lated in the same manner as for TCR-VALID.

Spike in TCR-clustering
As in ref. 43, in order to test the robustness of out TCR clustering
approaches we spiked in irrelevant TCRs at folds 1-5x the reference

data set size. In order to truly account for the spike in TCRs as irrele-
vant we labeled themwith unique hashed values as their peptide label.
In this way they cannot form pure clusters of their own and are
counted against the purity of any cluster of labeled antigen.

Timing analysis
We benchmarked timing of various TCR clustering approaches we
used the python package time. Performance was evaluated on a 16-
core CPU for all tools. For tcrdist we used the faster, numba opti-
mized, implementation of tcr-dist (tcr-dist3). For TCR-VALID we
separately timed the embedding, clustering via DBSCAN, and dis-
tance matrix calculation, for tcr-dist3 we also additionally calcu-
lated the distance matrix timing without clustering. Timing was
calculated as the mean over 5 repeats for fewer than 10,000 TCRs
(or 400 TCRs for iSMART and tcr-dist3) otherwise as a single repeat
for larger numbers of TCRs.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Collected repertoire level TCR data from the iReceptor Gateway59

(https://gateway.ireceptor.org/login) and VDJServer60 (https://www.
vdjserver.org) and is publicly available. A list of the repertoire_id`s of
the repertoires used in this study are included in our github (https://
github.com/peterghawkins-regn/tcrvalid). Collected paired-chain
TCRs with known cognate antigens from two sources; those asso-
ciated with8 (https://doi.org/10.1126/sciadv.abf5835, https://github.
com/regeneron-mpds/TCRAI/tree/main/data) and VDJdb61,62 (all
human paired-chain TCRs with a quality ‘score’ of at least 1 (accessed
October 2021) https://vdjdb.cdr3.net) are also publicly available, the
dataset has been deposited in our Github repository. We additionally
collected TCR-antigen reference data, andCD4 spike inTCRs, from the
supplementarymaterial ofHuang et al.43 (10.1038/s41587-020-0505-4),
the dataset and spike-in splits used are available in our Github repo-
sitory. Source data are provided with this paper.

Code availability
The tcrvalid package, and pre-trained models, are available at https://
github.com/peterghawkins-regn/tcrvalid under Apache-2.0 license.
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