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Abstract

Learning multimodal representations involves integrating information from multiple 

heterogeneous sources of data. It is a challenging yet crucial area with numerous real-world 

applications in multimedia, affective computing, robotics, finance, human-computer interaction, 

and healthcare. Unfortunately, multimodal research has seen limited resources to study (1) 

generalization across domains and modalities, (2) complexity during training and inference, 

and (3) robustness to noisy and missing modalities. In order to accelerate progress towards 

understudied modalities and tasks while ensuring real-world robustness, we release MULTIBENCH, 

a systematic and unified large-scale benchmark for multimodal learning spanning 15 datasets, 

10 modalities, 20 prediction tasks, and 6 research areas. MULTIBENCH provides an automated 

end-to-end machine learning pipeline that simplifies and standardizes data loading, experimental 

setup, and model evaluation. To enable holistic evaluation, MULTIBENCH offers a comprehensive 

methodology to assess (1) generalization, (2) time and space complexity, and (3) modality 

robustness. MULTIBENCH introduces impactful challenges for future research, including scalability 

to large-scale multimodal datasets and robustness to realistic imperfections. To accompany 

this benchmark, we also provide a standardized implementation of 20 core approaches in 

multimodal learning spanning innovations in fusion paradigms, optimization objectives, and 

training approaches. Simply applying methods proposed in different research areas can improve 

the state-of-the-art performance on 9/15 datasets. Therefore, MULTIBENCH presents a milestone 

in unifying disjoint efforts in multimodal machine learning research and paves the way 

towards a better understanding of the capabilities and limitations of multimodal models, all 

the while ensuring ease of use, accessibility, and reproducibility. MULTIBENCH, our standardized 

implementations, and leaderboards are publicly available, will be regularly updated, and welcomes 

inputs from the community.
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1 Introduction

Our perception of the natural world surrounding us involves multiple sensory modalities: we 

see objects, hear audio signals, feel textures, smell fragrances, and taste flavors. A modality 
refers to a way in which a signal exists or is experienced. Multiple modalities then refer to 

a combination of multiple signals each expressed in heterogeneous manners [10]. Many real-

world research problems are inherently multimodal: from the early research on audio-visual 

speech recognition [48] to the recent explosion of interest in language, vision, and video 

understanding [48] for applications such as multimedia [102, 116], affective computing 

[101, 127], robotics [84, 91], finance [70], dialogue [126], human-computer interaction 

[47, 117], and healthcare [51, 172]. The research field of multimodal machine learning 

(ML) brings unique challenges for both computational and theoretical research given the 

heterogeneity of various data sources [10]. At its core lies the learning of multimodal 
representations that capture correspondences between modalities for prediction, and has 

emerged as a vibrant interdisciplinary field of immense importance and with extraordinary 

potential.

Limitations of current multimodal datasets:

Current multimodal research has led to impressive advances in benchmarking and modeling 

for specific domains such as language and vision [4, 103, 105, 132]. However, other 

domains, modalities, and tasks are relatively understudied. Many of these tasks are crucial 

for real-world intelligence such as improving accessibility to technology for diverse 

populations [62], accelerating healthcare diagnosis to aid doctors [78], and building reliable 

robots that can engage in human-AI interactions [16, 83, 137]. Furthermore, current 

benchmarks typically focus on performance without quantifying the potential drawbacks 

involved with increased time and space complexity [148], and the risk of decreased 

robustness from imperfect modalities [101, 123]. In real-world deployment, a balance 

between performance, robustness, and complexity is often required.

MULTIBENCH: In order to accelerate research in building general-purpose multimodal 

models, our main contribution is MULTIBENCH (Figure 1), a systematic and unified large-

scale benchmark that brings us closer to the requirements of real-world multimodal 

applications. MULTIBENCH is designed to comprehensively evaluate 3 main components: 

generalization across domains and modalities, complexity during training and inference, and 

robustness to noisy and missing modalities:

1. Generalization across domains and modalities: MULTIBENCH contains a diverse 

set of 15 datasets spanning 10 modalities and testing for 20 prediction tasks 

across 6 distinct research areas. These research areas include important tasks 

understudied from a multimodal learning perspective, such as healthcare, 

finance, and HCI. Building upon extensive data-collection efforts by domain 

experts, we worked with them to adapt datasets that reflect real-world relevance, 

present unique challenges to multimodal learning, and enable opportunities in 

algorithm design and evaluation.
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2. Complexity during training and inference: MULTIBENCH also quantifies potential 

drawbacks involving increased time and space complexity of multimodal 

learning. Together, these metrics summarize the tradeoffs of current models as a 

step towards efficiency in real-world settings [142].

3. Robustness to noisy and missing modalities: Different modalities often display 

different noise topologies, and real-world multimodal signals possibly suffer 

from missing or noisy data in at least one of the modalities [10]. MULTIBENCH 

provides a standardized way to assess the risk of decreased robustness 

from imperfect modalities through a set of modality-specific and multimodal 

imperfections that reflect real-world noise, thereby providing a benchmark 

towards safe and robust deployment.

Together, MULTIBENCH unifies efforts across separate research areas in 

multimodal learning to enable quick and accurate benchmarking across a wide 

range of datasets and metrics.

To help the community accurately compare performance and ensure reproducibility, 

MULTIBENCH includes an end-to-end pipeline including data preprocessing, dataset splits, 

multimodal algorithms, evaluation metrics, and cross-validation protocols. This includes 

an implementation of 20 core multimodal approaches spanning innovations in fusion 

paradigms, optimization objectives, and training approaches in a standard public toolkit 

called MULTIZOO. We perform a systematic evaluation and show that directly applying these 

methods can improve the state-of-the-art performance on 9 out of the 15 datasets. Therefore, 

MULTIBENCH presents a step towards unifying disjoint efforts in multimodal research and 

paves a way towards a deeper understanding of multimodal models.

Most importantly, our public zoo of multimodal benchmarks and models will ensure ease of 

use, accessibility, and reproducibility. Finally, we outline our plans to ensure the continual 

availability, maintenance, and expansion of MULTIBENCH, including using it as a theme for 

future workshops and competitions and to support the multimodal learning courses taught 

around the world.

2 MULTIBENCH: The MULTISCALE MULTIMODAL BENCHMARK

Background:

We define a modality as a single particular mode in which a signal is expressed or 

experienced. Multiple modalities then refer to a combination of multiple heterogeneous 

signals [10]. The first version of MULTIBENCH focuses on benchmarking algorithms for 

multimodal fusion, where the main challenge is to join information from two or more 

modalities to perform a prediction (e.g., classification, regression). Classic examples for 

multimodal fusion include audio-visual speech recognition where visual lip motion is fused 

with speech signals to predict spoken words [48]. Multimodal fusion can be contrasted 

with multimodal translation where the goal is to generate a new and different modality 

[162], grounding and question answering where one modality is used to query information 

in another (e.g., visual question answering [4]), and unsupervised or self-supervised 
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multimodal representation learning [109, 143]. We plan future versions of MULTIBENCH to 

study these important topics in multimodal research in Appendix I.

Each of the following 15 datasets in MULTIBENCH contributes a unique perspective to 

the various technical challenges in multimodal learning involving learning and aligning 

complementary information, scalability to a large number of modalities, and robustness to 

realistic real-world imperfections.

2.1 Datasets

Table 1 shows an overview of the datasets provided in MULTIBENCH. We provide a brief 

overview of the modalities and tasks for each of these datasets and refer the reader to 

Appendix C for details.

Affective computing studies the perception of human affective states (emotions, sentiment, 

and personalities) from our natural display of multimodal signals spanning language 

(spoken words), visual (facial expressions, gestures), and acoustic (prosody, speech tone) 

[124]. It has broad impacts towards building emotionally intelligent computers, human 

behavior analysis, and AI-assisted education. MULTIBENCH contains 4 datasets involving 

fusing language, video, and audio time-series data to predict sentiment (CMU-MOSI [181]), 

emotions (CMU-MOSEI [183]), humor (UR-FUNNY [64]), and sarcasm (MUSTARD [24]). 

Complementary information may occurs at different moments, requiring models to address 

the multimodal challenges of grounding and alignment.

Healthcare: Modern medical decision-making often involves integrating complementary 

information and signals from several sources such as lab tests, imaging reports, and patient-

doctor conversations. Multimodal models can help doctors make sense of high-dimensional 

data and assist them in the diagnosis process [5]. MULTIBENCH includes the large-scale 

MIMIC dataset [78] which records ICU patient data including time-series data measured 

every hour and other demographic variables (e.g., age, gender, ethnicity in the form of 

tabular numerical data). These are used to predict the disease ICD-9 code and mortality 

rate. MIMIC poses unique challenges in integrating time-varying and static modalities, 

reinforcing the need of aligning multimodal information at correct granularities.

Robotics: Modern robot systems are equipped with multiple sensors to aid in their 

decision-making. We include the large-scale MUJOCO PUSH [90] and VISION&TOUCH [92] 

datasets which record the manipulation of simulated and real robotic arms equipped with 

visual (RGB and depth), force, and proprioception sensors. In MUJOCO PUSH, the goal is 

to predict the pose of the object being pushed by the robot end-effector. In VISION&TOUCH, 

the goal is to predict action-conditional learning objectives that capture forward dynamics 

of the different modalities (contact prediction and robot end-effector pose). Robustness is 

important due to the risk of real-world sensor failures [89].

Finance: We gathered historical stock data from the internet to create our own dataset 

for financial time-series prediction across 3 groups of correlated stocks: STOCKS-F&B, 

STOCKS-HEALTH, and STOCKS-TECH. Within each group, the previous stock prices of a set 

of stocks are used as multimodal time-series inputs to predict the price and volatility of 
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a related stock (e.g., using Apple, Google, and Microsoft data to predict future Microsoft 

prices). Multimodal stock prediction [136] presents scalability issues due to a large number 

of modalities (18/63/100 vs 2/3 in most datasets), as well as robustness challenges arising 

from real-world data with an inherently low signal-to-noise ratio.

Human Computer Interaction (HCI) studies the design of computer technology and 

interactive interfaces between humans and computers [43]. Many real-world problems 

involve multimodal inputs such as language, visual, and audio interfaces. We use the ENRICO 

(Enhanced Rico) dataset [40, 93] of Android app screens (consisting of an image as well 

as a set of apps and their locations) categorized by their design motifs and collected for 

data-driven design applications such as design search, user interface (UI) layout generation, 

UI code generation, and user interaction modeling.

Multimedia: A significant body of research in multimodal learning has been fueled by the 

large availability of multimedia data (language, image, video, and audio) on the internet. 

MULTIBENCH includes 3 popular large-scale multimedia datasets with varying sizes and levels 

of difficulty: (1) AV-MNIST [161] is assembled from images of handwritten digits [88] and 

audio samples of spoken digits [94], (2) MM-IMDB [8] uses movie titles, metadata, and 

movie posters to perform multi-label classification of movie genres, and (3) KINETICS [80] 

contains video, audio, and optical flow of 306,245 video clips annotated for 400 human 

actions. To ease experimentation, we split KINETICS into small and large partitions (see 

Appendix C).

2.2 Evaluation Protocol

MULTIBENCH contains evaluation scripts for the following holistic desiderata in multimodal 

learning:

Performance: We standardize evaluation using metrics designed for each dataset, 

including MSE and MAE for regression to accuracy, micro & macro F1-score, and AUPRC 

for classification.

Complexity: Modern ML research unfortunately causes significant impacts to energy 

consumption [142], a phenomenon often exacerbated in processing high-dimensional 

multimodal data. As a step towards quantifying energy complexity and recommending 

lightweight multimodal models, MULTIBENCH records the amount of information taken in 

bits (i.e., data size), number of model parameters, as well as time and memory resources 

required during the entire training process. Real-world models may also need to be small 

and compact to run on mobile devices [131] so we also report inference time and memory on 

CPU and GPU (see Appendix D.2).

Robustness: Real-world multimodal data is often imperfect as a result of missing entries, 

noise corruption, or missing modalities entirely, which calls for robust models that can still 

make accurate predictions despite only having access to noisy and missing signals [101, 

123]. To standardize efforts in evaluating robustness, MULTIBENCH includes the following 

tests: (1) Modality-specific imperfections are independently applied to each modality taking 

into account its unique noise topologies (i.e., flips and crops of images, natural misspellings 
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in text, abbreviations in spoken audio). (2) Multimodal imperfections capture correlations 

in imperfections across modalities (e.g., missing modalities, or a chunk of time missing in 

multimodal time-series data). We use both qualitative measures (performance-imperfection 

curve) and quantitative metrics [149] that summarize (1) relative robustness measuring 

accuracy under imperfections and (2) effective robustness measuring the rate of accuracy 

drops after equalizing for initial accuracy on clean test data (see Appendix D.3 for details).

3 MULTIZOO: A Zoo of Multimodal Algorithms

To complement MULTIBENCH, we release a comprehensive toolkit, MULTIZOO, as starter code 

for multimodal algorithms which implements 20 methods spanning different methodological 

innovations in (1) data preprocessing, (2) fusion paradigms, (3) optimization objectives, and 

(4) training procedures (see Figure 2). To introduce these algorithms, we use the simple 

setting with 2 modalities for notational convenience but refer the reader to Appendix E 

for detailed descriptions and implementations. We use x1,x2 for input modalities, z1,z2 for 

unimodal representations, zmm for the multimodal representation, and y for the predicted 

label.

3.1 Data Preprocessing

Temporal alignment [26] has been shown to help tackle the multimodal alignment problem 

for time-series data. This approach assumes a temporal granularity of the modalities (e.g., at 

the level of words for text) and aligns information from the remaining modalities to the same 

granularity. We call this approach WORDALIGN [26] for temporal data where text is one of the 

modalities.

3.2. Fusion Paradigms

Early and late fusion: Early fusion performs concatenation of input data before using a 

model (i.e.,Zmm = x1, x2 ) while late fusion applies suitable unimodal models to each modality 

to obtain their feature representations, concatenates these features, and defines a classifier to 

the label (i.e.,zmm = z1, z2 ) [10]. MULTIZOO includes their implementations denoted as EF and 

LF respectively. Tensors are specifically designed to tackle the multimodal complementarity 

challenge by explicitly capturing higher-order interactions across modalities [179]. Given 

unimodal representations z1,z2 , tensors are defined as zmm = z1

1 ⊗ z2

1  where ⊗ denotes 

an outer product. However, computing tensor products is expensive since their dimension 

scales exponentially with the number of modalities so several efficient approximations have 

been proposed [71, 101, 106]. MULTIZOO includes Tensor Fusion (TF) [179] as well as the 

approximate Low-rank Tensor Fusion (LRTF) [106].

Multiplicative Interactions (MI) generalize tensor products to include learnable parameters 

that capture multimodal interactions [77]. In its most general form, MI defines a bilinear 

product zmm = z1Wz2 + z1
⊤U + Vz2 + b where W,U ,Z , and b are trainable parameters. 

By appropriately constraining the rank and structure of these parameters, MI recovers 

HyperNetworks [61] (unconstrained parameters resulting in a matrix output), Feature-wise 

linear modulation (FiLM) [120, 188] (diagonal parameters resulting in vector output), and 
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Sigmoid units [37] (scalar parameters resulting in scalar output). MULTIZOO includes all 3 as 

MI-MATRIX, MI-VECTOR, and MI-SCALAR respectively.

Multimodal gated units learn representations that dynamically change for every input [25, 

167, 171]. Its general form can be written as zmm = z1 ⊙ ℎ z2 , where ℎ represents a function 

with sigmoid activation and ⊙ denotes element-wise product. ℎ z2  is commonly referred 

to as “attention weights” learned from z2 to attend on z1. Attention is conceptually similar 

to MI-VECTOR but recent work has explored more expressive forms of ℎ such as using 

a Query-Key-Value mechanism [167] or fully-connected layers [25]. We implement the 

Query-Key-Value mechanism as NL GATE [167].

Temporal attention models tackle the challenge of multimodal alignment and 

complementarity. Transformer models [158] are useful for temporal data by automatically 

aligning and capturing complementary features at different time-steps [154, 174]. We 

include the Multimodal Transformer (MULT) [154] which applied a Crossmodal Transformer 

block using z1 to attend to z2 (and vice-versa) to obtain a multimodal representation 

zmm = z1 2, z2 1 = CM z1, z2 , CM z2, z1 .

Algorithm 1

PyTorch code integrating MULTIBENCH datasets and MULTIZOO models.

from datasets.get_data import get_dataloader

from unimodals.common_models import ResNet, Transformer

from fusions.common_fusions import MultInteractions

from training_structures.gradient_blend import train, test

# loading Multimodal IMDB dataset

traindata, validdata, testdata = get_dataloader(‘multimodal_imdb’)

out_channels = 3

# defining ResNet and Transformer unimodal encoders

encoders = [ResNet(in_channels=1, out_channels, layers=5),

     Transformer(in_channels=1, out_channels, layers=3)]
# defining a Multiplicative Interactions fusion layer
fusion = MultInteractions([out_channels*8, out_channels*32], out_channels*32, ‘matrix’)
classifier = MLP(out_channels*32, 100, labels=23)
# training using Gradient Blend algorithm

model = train(encoders, fusion, classifier, traindata, validdata,
   epochs=100, optimtype=torch.optim.SGD, lr=0.01, weight_decay=0.0001)

# testing

performance, complexity, robustness = test(model, testdata)

Architecture search: Instead of hand-designing architectures, several approaches define 

a set of atomic operations (e.g., linear transformation, activation, attention, etc.) and use 

architecture search to learn the best order of these operations for a given task [122, 173], 

which we call MFAS.
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3.3 Optimization Objectives

In addition to the standard supervised losses (e.g., cross entropy for classification, 

MSE/MAE for regression), several proposed methods have proposed new objective 

functions based on:

Prediction-level alignment objectives tackle the challenge of alignment by capturing a 

representations where semantically similar concepts from different modalities are close 

together [9, 33, 91, 151]. Alignment objectives have been applied at both prediction and 

feature levels. In the former, we implement Canonical Correlation Analysis (CCA) [7, 145, 

166], which maximizes correlation by adding a loss term ℒCCA = − corr g1 z1 , g2 z2  where g1, 

g2 are auxiliary classifiers mapping each unimodal representation to the label.

Feature-level alignment: In the latter, contrastive learning has emerged as a popular 

approach to bring similar concepts close in feature space and different concepts far 

away [33, 91, 151]. We include REFNET [135] which uses a self-supervised contrastive 

loss between unimodal representations z1,z2 and the multimodal representation zmm, i.e., 

ℒcontrast = 1 − cos zmm, g1 z1 + 1 − cos zmm, g2 z2  where g1,g2 is a layer mapping each modality’s 

representation into the joint multimodal space.

Reconstruction objectives based on generative-discriminative models (e.g., VAEs) aim 

to reconstruct the input (or some part of the input) [91, 155]. These have been shown 

to better preserve task-relevant information learned in the representation, especially in 

settings with sparse supervised signals such as robotics [91] and long videos [155]. We 

include the Multimodal Factorized Model (MFM) [155] that learns a representation zmm that 

can reconstruct input data x1,x2 while also predicting the label, i.e., adding an objective 

ℒrec = g1 zmm − x1 2 + g2 zmm − x2 2 where g1,g2 are auxiliary decoders mapping zmm to each 

raw input modality. MFM can be paired with any multimodal model from section 3.2 (e.g., 

learning zmm via tensors and adding a term to reconstruct input data).

Improving robustness: These approaches modify the objective function to account for 

robustness to noisy [101] or missing [89, 111, 123] modalities. MULTIZOO includes MCTN 

[123] which uses cycle-consistent translation to predict the noisy/missing modality from 

present ones (i.e., a path x1 zmm x2 zmm x1, with additional reconstruction losses 

ℒrec = x1 − x1 2 + x2 − x2 2). While MCTN is trained with multimodal data, it only takes in 

one modality x1 at test-time which makes it robust to the remaining modalities.

3.4 Training Procedures

Improving generalization: Recent work has found that directly training a multimodal 

model is sub-optimal since different modalities overfit and generalize at different rates. 

MULTIZOO includes Gradient Blending (GRADBLEND), that computes generalization statistics 

for each modality to determine their weights during fusion [167], and Regularization by 

Maximizing Functional Entropies (RMFE), which uses functional entropy to balance the 

contribution of each modality to the result [53].
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3.5 Putting Everything Together

In Algorithm 1, we show a sample code snippet in Python that loads a dataset from 

MULTIBENCH (section C.2), defines the unimodal and multimodal architectures, optimization 

objective, and training procedures (section 3), before running the evaluation protocol 

(section 2.2). Our MULTIZOO toolkit is easy to use and trains entire multimodal models 

in less than 10 lines of code. By standardizing the implementation of each module 

and disentangling the individual effects of models, optimizations, and training, MULTIZOO 

ensures both accessibility and reproducibility of its algorithms.

4 Experiments and Discussion

Setup:

Using MULTIBENCH, we load each of the datasets and test the multimodal approaches in 

MULTIZOO. We only vary the contributed method of interest and keep all other possibly 

confounding factors constant (i.e., using the exact same training loop when testing a new 

multimodal fusion paradigm), a practice unfortunately not consistent in previous work. Our 

code is available at https://github.com/pliang279/MultiBench. Please refer to Appendix G 

for experimental details. MULTIBENCH allows for careful analysis of multimodal models and 

we summarize the main take-away messages below (see Appendix H for full results and 

analysis).

Benefits of standardization:

From Table 2, simply applying methods proposed outside of the same research area can 

improve the state-of-the-art performance on 9 of the 15 MULTIBENCH datasets, especially for 

relatively understudied domains and modalities (i.e., healthcare, finance, HCI).

Generalization across domains and modalities:

MULTIBENCH offers an opportunity to analyze algorithmic developments across a large suite 

of modalities, domains, and tasks. We summarize the following observations regarding 

performance across datasets and tasks (see details in Appendix H.7):

1. Many multimodal methods show their strongest performance on in-domain 

datasets and do not generalize across domains and modalities. For example, 

MFAS [122] works well on domains it was designed for (AV-MNIST and 

MM-IMDB in multimedia) but does not generalize to other domains such as 

healthcare (MIMIC). Similarly, MULT [154] performs extremely well on the 

affect recognition datasets it was designed for but struggles on other multimodal 

time-series data in the finance and robotics domains. Finally, GRADBLEND [167], 

an approach specifically designed to improve generalization in multimodal 

learning and tested on video and audio datasets (e.g., Kinetics), does not perform 

well on other datasets. In general, we observe high variance in the performance 

of multimodal methods across datasets in MULTIBENCH. Therefore, there still does 

not exist a one-size-fits-all model, especially for understudied modalities and 

tasks.
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2. There are methods that are surprisingly generalizable across datasets. These 

are typically general modality-agnostic methods such as LF. While simple, it 

is a strong method that balances simplicity, performance, and low complexity. 

However, it does not achieve the best performance on any dataset.

3. Several methods such as MFAS and CCA are designed for only 2 modalities 

(usually image and text), and TF and MI do not scale efficiently beyond 2/3 

modalities. We encourage the community to generalize these approaches across 

datasets and modalities on MULTIBENCH.

Tradeoffs between modalities:

How far can we go with unimodal methods? Surprisingly far! From Table 2, we observe 

that decent performance can be obtained with the best performing modality. Further 

improvement via multimodal models may come at the expense of around 2−3× the 

parameters.

Tradeoffs between performance and complexity:

In Figure 3(a), we summarize the performance of all methods in terms of performance 

and complexity. We find a strong tradeoff between these two desiderata: simple fusion 

techniques (e.g., LF) are actually appealing choices which score high on both metrics, 

especially when compared to complex (but slightly better performing) methods such as 

architecture search (MFAS) or Multimodal Transformers (MULT). While LF is the easiest to 

adapt to new datasets and domains, we encountered difficulties in adapting several possibly 

well-performing methods (such as MFAS or MULT) to new datasets and domains. Therefore, 

while their average performance is only slightly better than LF on all datasets (see Figure 

3(a)), they perform much better on well-studied datasets (see Figure 3(b)). We hope that the 

release of MULTIBENCH will greatly accelerate research in adapting complex methods on new 

datasets (see full results in Appendix H.8).

Tradeoffs between performance and robustness:

In Figure 4, we plot a similar tradeoff plot between accuracy and (relative & 

effective) robustness. As a reminder, relative robustness directly measures accuracy under 

imperfections while effective robustness measures the rate at which accuracy drops after 

equalizing for initial accuracy on clean test data (see Appendix D.3 for details). We 

observe a positive correlation between performance and relative robustness (see Figure 4(a)), 

implying that models starting off with higher accuracy tend to stay above other models 

on the performance-imperfection curve. However, we observe a negative best fit between 

performance and effective robustness (see Figure 4(b)) because several well-performing 

methods such as MULT, CCA, and MVAE tend to drop off faster after equalizing for initial 

accuracy on clean test data. Furthermore, very few models currently achieve both positive 

relative and effective robustness, which is a crucial area for future multimodal research (see 

full results in Appendix H.9).
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5 Related Work

We review related work on standardizing datasets and methods in multimodal learning.

Comparisons with related benchmarks:

To the best of our knowledge, MULTIBENCH is the first multimodal benchmark with such 

a large number of datasets, modalities, and tasks. Most previous multimodal benchmarks 

have focused on a single research area such as within affective computing [56], human 

multimodal language [177], language and vision-based question answering [50, 138], text 

classification with external multimodal information [60], and multimodal learning for 

educa-tion [65]. MULTIBENCH is specifically designed to go beyond the commonly studied 

language, vision, and audio modalities to encourage the research community to explore 

relatively understudied modalities (e.g., tabular data, time-series, sensors, graph and set data) 

and build general multimodal methods that can handle a diverse set of modalities.

Our work is also inspired by recent progress in better evaluation benchmarks for a suite 

of important tasks in ML such as language representation learning [163, 164], long-range 

sequence modeling [150], multilingual representation learning [72], graph representation 

learning [74], and robustness to distribution shift [85]. These well-crafted benchmarks have 

accelerated progress in new algorithms, evaluation, and analysis in their respective research 

areas.

Standardizing multimodal learning:

There have also been several attempts to build a single model that works well on a 

suite of multimodal tasks [95, 109, 143]. However, these are limited to the language and 

vision space, and multimodal training is highly tailored for text and images. Transformer 

architectures have emerged as a popular choice due to their suitability for both language and 

image data [27, 73] and a recent public toolkit was released for incorporating multimodal 

data on top of text-based Transformers for prediction tasks [60]. By going beyond 

Transformers and text data, MULTIBENCH opens the door to important research questions 

involving a much more diverse set of modalities and tasks while holistically evaluating 

performance, complexity, and robustness.

Analysis of multimodal representations:

Recent work has begun to carefully analyze and challenge long-standing assumptions in 

multimodal learning. They have shown that certain models do not actually learn cross-modal 

interactions but rather rely on ensembles of unimodal statistics [68] and that certain datasets 

and models are biased to the most dominant modality [22, 59], sometimes ignoring others 

completely [3]. These observations are currently only conducted on specific datasets and 

models without testing their generalization to others, a shortcoming we hope to solve using 

MULTIBENCH which enables scalable analysis over modalities, tasks, and models.
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6 Conclusion

Limitations:

While MULTIBENCH can help to accelerate research in multimodal ML, we are aware of the 

following possible limitations (see detailed future directions in Appendix I):

1. Tradeoffs between generality and specificity: While it is desirable to build 

models that work across modalities and tasks, there is undoubtedly merit 

in building modality and task-specific models that can often utilize domain 

knowledge to improve performance and interpretability (e.g., see neurosymbolic 

VQA [159], or syntax models for the language modality [31]). MULTIBENCH is 

not at odds with research in this direction: in fact, by easing access to data, 

models, and evaluation, we hope that MULTIBENCH will challenge researchers to 

design interpretable models leveraging domain knowledge for many multimodal 

tasks. It remains an open question to define “interpretability” for other modalities 

beyond image and text, a question we hope MULTIBENCH will drive research in.

2. Scale of datasets, models, and metrics: We plan for MULTIBENCH to be 

a continuously-growing community effort with regular maintenance and 

expansion. While MULTIBENCH currently does not include several important 

research areas outside of multimodal fusion (e.g., question answering [4, 63], 

retrieval [187], grounding [32], and reinforcement learning [110]), and is also 

limited by the models and metrics it supports, we outline our plan to expand in 

these directions in Appendix I.

Projected expansions of MULTIBENCH:

In this subsection, we describe concrete ongoing and future work towards expanding 

MULTIBENCH (see details in Appendix I).

1. Other multimodal research problems: We are genuinely committed to building a 

community around these resources and continue improving it over time. While 

we chose to focus on multimodal fusion by design for this first version to have 

a more coherent way to standardize and evaluate methods across datasets, we 

acknowledge the breadth of multimodal learning and are looking forward to 

expanding it in other directions in collaboration with domain experts. We have 

already included 2 datasets in captioning (and more generally for non-language 

outputs, retrieval): (1) Yummly-28K of paired videos and text descriptions of 

food recipes [114], and (2) Clotho dataset for audio-captioning [45] as well as a 

language-guided RL environment Read to Fight Monsters (RTFM) [188] and are 

also working towards more datasets in QA, retrieval, and multimodal RL.

To help in scalable expansion, we plan for an open call to the community for 

suggestions and feedback about domains, datasets, and metrics. As a step in 

this direction, we have concrete plans to use MULTIBENCH as a theme for future 

workshops and competitions (building on top of the multimodal workshops 

we have been organizing at NAACL 2021, ACL 2020, and ACL 2019, and 

in multimodal learning courses (starting with the course taught annually at 

Liang et al. Page 12

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2024 May 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://multicomp.cs.cmu.edu/naacl2021multimodalworkshop/
http://multicomp.cs.cmu.edu/acl2020multimodalworkshop/
http://multicomp.cs.cmu.edu/acl2018multimodalchallenge/
https://cmu-multicomp-lab.github.io/mmml-course/fall2020/


CMU). Since MULTIBENCH is public and will be regularly maintained, the existing 

benchmark, code, evaluation, and experimental protocols can greatly accelerate 

any dataset and modeling innovations added in the future. In our public GitHub, 

we have included a section on contributing through task proposals or additions 

of datasets and algorithms. The authors will regularly monitor new proposals 

through this channel.

2. New evaluation metrics: We also plan to include evaluation for distribution 

shift, uncertainty estimation, tests for fairness and social biases, as well as labels/

metrics for interpretable multimodal learning. In the latter, we plan to include 

the EMAP score [68] as an interpretability metric assessing whether cross-modal 

interactions improve performance.

3. Multimodal transfer learning and co-learning: Can training data in one dataset 

help learning on other datasets? MULTIBENCH enables easy experimentation of 

such research questions: our initial experiments on transfer learning found that 

pre-training on larger datasets in the same domain can improve performance 

on smaller datasets when fine-tuned on a smaller dataset: performance on the 

smaller CMU-MOSI dataset improved from 75.2 to 75.8 using the same late 

fusion model with transfer learning from the larger UR-FUNNY and CMU-

MOSEI datasets. Furthermore, recent work has shown that multimodal training 

can help improve unimodal performance as well [140, 170, 180]. While previous 

experiments were on a small scale and limited to a single domain, we plan 

to expand significantly on this phenomenon (multimodal co-learning) in future 

versions of MULTIBENCH.

4. Multitask learning across modalities: Multitask learning across multimodal tasks 

with a shared set of input modalities is a promising direction that can enable 

statistical strength sharing across datasets and efficiency in training a single 

model. Using MULTIBENCH, we also ran an extra experiment on multi-dataset 

multitask learning. We used the 4 datasets in the affective computing domain 

and trained a single model across all 4 of them with adjustable input embedding 

layers if the input features were different and separate classification heads for 

each dataset’s task. We found promising initial results with performance on 

the largest CMU-MOSEI dataset improving from 79.2 to 80.9 for a late fusion 

model and from 82.1 to 82.9 using a multimodal transformer model, although 

performance on the smaller CMU-MOSI dataset decreased from 75.2 to 70.8. We 

believe that these potential future studies in co-learning, transfer learning, and 

multi-task learning are strengths of MULTIBENCH since it shows the potential of 

interesting experiments and usage.

In conclusion, we present MULTIBENCH, a large-scale benchmark unifying previously 

disjoint efforts in multimodal research with a focus on ease of use, accessibility, and 

reproducibility, thereby paving the way towards a deeper understanding of multimodal 

models. Through its unprecedented range of research areas, datasets, modalities, tasks, 

and evaluation metrics, MULTIBENCH highlights several future directions in building more 

generalizable, lightweight, and robust multimodal models.
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Appendix

A: Broader Impact Statement

Multimodal data and models are ubiquitous in a range of real-world applications. 

MULTIBENCH and MULTIZOO is our aim to systematically categorize the plethora of datasets 

and models currently in use. While these contributions will accelerate research towards 

multimodal datasets and models as well as their real-world deployment, we believe that 

special care must be taken in the following regard to ensure that these models are safely 

deployed for real-world benefit:

Time & space complexity:

Modern multimodal datasets and models are large, especially when building on already large 

pretrained unimodal datasets and models such as BERT or ResNets. The increasing time 

and space complexity of these models can cause financial impacts resulting from the cost of 

hardware, electricity, and computation, as well as environmental impacts resulting from the 

carbon footprint required to fuel modern hardware. Therefore, there has been much recent 

interest in building lightweight machine learning models [142].

MULTIBENCH also provides several efforts in this direction:

1. Firstly, MULTIBENCH alleviates the need for separate research groups to repeat 

preprocessing efforts when beginning to work on a new multimodal dataset, 

which often takes significant time when large video & audio datasets and feature 

extractors are involved.

2. Secondly, our standardized implementation of core approaches in MULTIZOO 

prevents duplicate efforts in adapting approaches to new datasets. We found 

that while many authors of these multimodal methods released their code 

publicly on GitHub, there was still some effort needed to adapt their code 

and tune their models to achieve the best performance on our standardized 

implementation in MULTIZOO. By standardizing these experimentation efforts, 

we can facilitate the sharing of code and trained models, ensure reproducibility 

across implementations, and save time and effort in the future.

3. Finally, MULTIBENCH explicitly tests for complexity and encourages researchers 

to build lightweight models. While this has been less studied in multimodal 
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research, we hope that our efforts will pave the way for greener multimodal 

learning.

Privacy and security:

There may be privacy risks associated with making predictions from multimodal data of 

recorded human behaviors. The datasets potentially in question might include those in 

affective computing (recorded video data labeled for sentiment, emotions, and personality 

attributes), and healthcare (health data labeled for disease and mortality rate). Therefore, 

it is crucial to obtain user consent before collecting device data. In our experiments 

with real-world data where people are involved (i.e., healthcare and affective computing), 

the creators of these datasets have taken the appropriate steps to only access public 

data which participants/content creators have consented for released to the public (see 

details in Appendix C.2). We only use these datasets for research purposes. All data was 

anonymized and stripped of all personal (e.g., personally identifiable information) and 

protected attributes (e.g., race, gender).

To deploy these algorithms at scale in the real world, it is also important to keep data and 

features private on each device without sending it to other locations using techniques such as 

federated learning [96, 100], differential privacy [55], or encryption [35].

Social biases:

We acknowledge that there is a risk of exposure bias due to imbalanced datasets, especially 

when human-centric data and possibly sensitive labels are involved. For example, will 

models trained on imbalanced data disproportionately classify videos of a particular gender 

as displaying a particular emotion? Models trained on biased data have been shown to 

amplify the underlying social biases especially when they correlate with the prediction 

targets [108]. This leaves room for future work in exploring methods tailored for specific 

scenarios such as mitigating social biases in words [18], sentences [99], images [118], and 

other modalities. Future research in multimodal models should also focus on quantifying 

the trade-offs between fairness and performance [186]. MULTIBENCH enables the large-scale 

study of these crucial research questions and we outline some of our ongoing and future 

efforts in expanding the evaluation metrics in MULTIBENCH to take these into account in 

Appendix I.

Possible biases within each dataset:

In this section, we expand upon the previous two points regarding privacy and social biases 

by describing the possible biases in each domain/dataset included in MULTIBENCH.

1. Affective computing: Analysis of sentiment, emotions, and personality might 

carry biases if care is not taken to appropriately anonymize the video data 

used. In MULTIBENCH, all models trained on affect recognition datasets use only 

pre-extracted non-invertible features that rely on general visual or audio features 

such as the presence of a smile or magnitude of voice. Therefore the features 

used in this paper cannot be used to identify the speaker [181, 183]. Furthermore, 
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videos within the datasets all follow the creative commons license and follow fair 

use guidelines of YouTube. This license allows is the standard way for content 

creators to grant someone else permission to use and redistribute their work. 

We use no information regarding gender, ethnicity, identity, or video identifier 

in online sources. We emphasize that the models trained to perform automated 

affect recognition should not in any way be used to harm individuals and should 

only be used as a scientific study.

In addition to privacy issues, we also studied the videos collected in these 

affective computing datasets and found no offensive content. While there are 

clearly expressions of highly negative sentiment or strong displays of anger and 

disgust, there are no offensive words used or personal attacks recorded in the 

video. All videos are related to movie or product reviews, TED talks, and TV 

shows.

2. Healthcare: The MIMIC dataset [78] has been rigorously de-identified in 

accordance with Health Insurance Portability and Accountability Act (HIPAA) 

such that all possible personal information has been removed from the dataset. 

Removed personal information include patient name, telephone number, address, 

and dates. Dates of birth for patients aged over 89 were shifted to obscure their 

true age. Please refer to Appendix C.2.2 for de-identification details. Again, we 

emphasize that any multimodal models trained to perform prediction should only 

be used for scientific study and should not in any way be used for real-world 

prediction.

3. Finance: There is no personal/human data included and there is no risk of 

personally identifiable information and offensive content.

4. Robotics: There is no personal/human data included and there is no risk of 

personally identifiable information and offensive content.

5. HCI: There is no personal/human data included and there is no risk of personally 

identifiable information and offensive content.

6. Multimedia: For MM-IMDb and AV-MNIST, there is no personal/human data 

included and there is no risk of personally identifiable information and offensive 

content. For Kinetics, all videos within the dataset are obtained from public 

YouTube videos that follow the creative commons license which allows content 

creators to grant permission to use and redistribute their work. We use no 

information regarding gender, ethnicity, identity, or video identifier in online 

sources. We emphasize that the models trained to perform action recognition 

should not in any way be used to harm individuals and should only be used as a 

scientific study. We also checked to make sure that these videos do not contain 

offensive content. All videos are related to human actions and do not contain any 

offensive words/audio.

Overall, MULTIBENCH offers opportunities to study these potential issues at scale across 

modalities, tasks, datasets, and domains. We plan to continue expanding this benchmark to 

rigorously test for these social impacts to improve the safety and reliability of multimodal 

Liang et al. Page 16

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2024 May 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



models. For example, in Appendix I.3.3, we describe some concrete extensions to include 

evaluations for fairness and privacy of multimodal models trained on the datasets in 

MULTIBENCH. Our holistic evaluation metrics will also encourage the research community 

to quantify the tradeoffs between performance, complexity, robustness, fairness, and privacy 

in human-centric multimodal models.

B: Background: Multimodal Representation Learning

We first provide background focusing on multimodal representation learning and several 

core technical challenges in this area.

B.1 Problem Statement

We define a modality as a single particular mode in which a signal is expressed or 

experienced. Multiple modalities then refer to a combination of multiple signals each 

expressed or experienced in heterogeneous manners [10]. We distinguish between the 

possible temporal resolution of modalities that will impact the types of approaches used:

1. Static modalities include inputs without a time dimension such as images, tabular 

data (i.e., a table of numerical data).

2. Temporal modalities include those coming in a sequence with a time-dimension 

such as language (a sequence of tokens), video (a sequence of frames/audio 

features/optical flow features), or time-series data (a sequence of data points 

indexed by time).

The first version of MULTIBENCH focuses on benchmarks and algorithms for multimodal 
fusion, where the main challenge is to join information from two or more modalities to 

perform a prediction. Classic examples include audio-visual speech recognition where visual 

lip motion is fused with speech signals to predict spoken words [48]. Note that in fusion 

problems, it should be well-defined to predict the label with a single modality only, which 

marks an important distinction to tasks in question answering and grounding where one 

modality is used to query information in another (e.g., visual question answering [4] using 

a text question to query information in the image). We outline our plans to extend future 

versions of MULTIBENCH to include more multimodal challenges such as question answering, 

retrieval, and grounding in Appendix I.

Formally, the multimodal fusion problem is defined as follows. We suppose there is a 

set of M modalities drawn from a joint distribution p X1, …, XM, Y  where Xm is a random 

variable denoting data distributed according to modality m and Y  is a random variable 

representing the label. If modality m is a static modality, Xm is a random vector without the 

time dimension. If modality m is a temporal modality, Xm is a random vector with a time 

dimension which can be represented as follows: Xm = Xm
1 , Xm

2 , …, Xm
T  where T  is the number 

of time-steps in the temporal modality.

In multimodal fusion, a set of M modalities is drawn from a joint distribution p X1, …, XM, Y
where Xm is a random variable denoting data distributed according to modality m and 

Y  is a random variable representing the label. A multimodal dataset is a collection of 
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draws of (data, label) pairs from the joint distribution p X1, …, XM, Y . We denote a dataset 

as xi1, …, xiM, yi i = 1
n . These draws from the true distribution are possibly biased (e.g., 

across individuals, topics, or labels) and noisy (e.g., due to noisy or missing modalities). 

A multimodal model is a set of functions fm:m ∈ [M] ∪ fmm where each of the fm's are 

unimodal encoders, one for each modality, and fmm is a multimodal fusion network. The 

unimodal encoders are specially designed with domain knowledge to learn representations 

from each modality (e.g., convolutional networks for images, temporal models for time-

series data) resulting in unimodal representations z1, …, zM. The multimodal network is 

designed to capture information across unimodal representations and summarize it in a 

multimodal representation zmm that can be used to predict the label y. The goal of multimodal 

fusion is to learn a model with the lowest prediction error as measured on a held-out test 

set, while also balancing other potential objectives such as low complexity and robustness to 

imperfect data.

B.2 Technical Challenges

MULTIBENCH tests for the following holistic desiderata in multimodal fusion:

1. Performance: We summarize the following core challenges across all prediction 

tasks for multimodal learning with reference to Baltrusaitis et al., [10]. Solving 

these challenges is essential in any multimodal prediction problem, regardless of 

domain and task.

a. Unimodal structure and granularity: The information coming from 

each modality follows a certain underlying structure and invariance, 

which needs to be processed by suitable unimodal encoders. While 

there are certain generally adopted unimodal encoders for commonly 

studied modalities such as images and text, there remain challenges 

in designing unimodal encoders with the right types of inductive 

biases for other less-studied modalities such as tabular and time-series 

data. Representations extracted from unimodal encoders should contain 

task-relevant information from that modality, expressed at the right 

granularity.

b. Multimodal complementarity: The information coming from different 

modalities have varying predictive power by themselves and also 

when complemented by each other. We refer to these as higher-order 
interactions: first-order interactions define a predictive signal from a 

single granular unit of information in one modality to the label (e.g., 

the presence of a smile indicating positive sentiment); second-order 

interactions define a predictive signal from a pair of granular units 

of information across two modalities to the label (e.g., the presence 

of an eye-roll together with a positive word indicating sarcasm); and 

nth-order interactions extend the above definition to n modalities. There 

are many possible interactions that explain the labels in a dataset, out of 

which only some may generalize to unseen data. It remains a challenge 

to discover these higher-order interactions using suitably expressive 
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models. At the same time, the space of possible interactions is too large 

which requires suitable inductive biases in model design (see challenges 

regarding complexity in model design below).

c. Multimodal alignment: Information from different modalities often 

comes in different granularities. In order to learn predictive signals 

from higher-order interactions, there is a need to first identify the 

relations between granular units from two or more different modalities. 

This challenge requires a measure of the relationship between different 

modalities, which we call cross-modal alignment.

When dealing with temporal data, it also requires capturing possible 

long-range dependencies across time, which we call temporal 
alignment. For example, it requires aligning the presence of an eye-roll 

together with a positive word to recognize sarcasm even when both 

signals happen at different times. This challenge extends cross-modal 

alignment to the temporal dimension.

2. Complexity: The space of possible interactions is very large which requires 

suitable inductive biases in model design. While more expressive models may 

perform better, these often come at the cost of time and space complexity during 

training and inference. To enable real-world deployment of multimodal models 

in a variety of settings [142], there is a need to build lightweight models with 

cheap training and inference.

3. Robustness: Information from different modalities often display different noise 

topologies, and real-world multimodal signals possibly suffer from missing or 

noisy data in at least one of the modalities [10]. While most methods are trained 

on carefully curated and cleaned datasets, there is a need to benchmark their 

robustness in realistic scenarios. The core challenge here is to build models 

that still perform well despite the presence of unimodal-specific or multimodal 

imperfections.

Figure 5: 
MULTIBENCH provides a standardized machine learning pipeline across data processing, data 

loading, multimodal models, evaluation metrics, and a public leaderboard to encourage 

future research in multimodal representation learning. MULTIBENCH aims to present a 

milestone in unifying disjoint efforts in multimodal machine learning research and paves 

the way towards a better understanding of the capabilities and limitations of multimodal 

models, all the while ensuring ease of use, accessibility, and reproducibility.
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C: MULTIBENCH Datasets

MULTIBENCH provides a standardized machine learning pipeline that starts from data loading 

to running multimodal models, providing evaluation metrics, and a public leaderboard to 

encourage future research in multimodal representation learning (see Figure 5).

In this section, we provide additional details on the distribution, release, and maintenance of 

each of the datasets in MULTIBENCH as well as the maintenance of MULTIBENCH as a whole.

C.1 Dataset Selection

In this section, we discuss our choices of datasets in MULTIBENCH. We select each dataset 

based on its data collection method, input modalities, evaluation tasks, evaluation metric, 

and train/test splits that reflect real-world multimodal applications. We consulted with 

domain experts in each of the application areas to select datasets that satisfy the following 

properties:

1. Realism in data collection, input modalities, preprocessing, and task: Each of 

the datasets in MULTIBENCH reflect a subset of real-world sensory modalities 

collected in the wild. Realism is important since it brings natural noise 

topologies in each modality and in the prediction task. It is crucial that these 

datasets reflect real-world data such that capturing these imperfections through 

machine learning models can potentially bridge the gap towards real-world 

deployment.

2. Diversity in research area: We chose these research areas through a survey of 

recent research papers in multimodal learning across conferences in machine 

learning and beyond (e.g., HCI, NLP, vision, robotics conferences). Furthermore, 

we consulted with domain experts in applying multimodal learning to their 

respective application areas to determine areas of large potential. Through 

engaging with domain experts we were able to select research areas and datasets 

that reflected realism in data collection, input modalities, preprocessing, and 

tasks which present challenges for machine learning models and potential for 

real-world transfer of learned algorithms. These research areas that are designed 

to span both human-centric and data-centric machine learning. In the former, we 

selected HCI, healthcare, and robotics since these are fast-growing research areas 

with increasingly specialized tracks in machine learning conferences dedicated 

to them. In the latter, financial data analysis is an area with an inherently 

low signal-to-noise ratio reflecting extremely noisy, imperfect, and uncertain 

real-world datasets which provide challenges for current multimodal models. We 

also included several multimedia datasets due to the large resources publicly 

available on the internet which results in multimodal datasets of the largest scale.

3. Diversity in modalities: We started with a set of commonly studied modalities 

such as language, image, video, and audio. For each of the following research 

areas, we consulted with domain experts to choose datasets that are established, 

but not overstudied. More importantly, we aimed for diversity in modalities to 

truly test the generalization capabilities of modern multimodal models outside 
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of commonly studied domains and modalities. For example, while there is much 

work in HCI involving images and text, we chose a modality representing a set 

of mobile applications for coverage. Similarly, in robotics, we consulted with 

domain experts to obtain datasets with high-frequency force and proprioception 

sensors that provide a unique challenge to machine learning researchers.

4. Challenging for ML models: We aim to choose datasets where the current state-

of-the-art performance via machine learning models is still far from human 

performance (if human performance is provided, otherwise judged by a domain 

expert). This is to ensure that there is room for improvement through community 

involvement in this research area.

5. Community expansion: Finally, we would like to emphasize that we heavily 

encourage and actively seek out community participation in expanding 

MULTIBENCH to keep up with the incredible pace in multimodal machine learning 

research. We describe our plans for an open call for proposals of new research 

areas, datasets, and prediction tasks in section I.

Figure 6: 
Affective computing studies the perception of human affective states (emotions, sentiment, 

and personalities) from our natural display of multimodal signals spanning language (spoken 

words), visual (facial expressions, gestures), and acoustic (prosody, speech tone) [124]. 

MULTIBENCH contains 4 datasets in this category involving fusing language, video, and audio 
time-series data to predict sentiment (CMU-MOSI [181] and CMU-MOSEI [183]), emotions 

(CMU-MOSEI [183]), humor (UR-FUNNY [64]), and sarcasm (MUSTARD [24]).

C.2 Dataset Details

We provide details for each of the research areas and datasets selected in MULTIBENCH. 

In each of the categories, we describe the research area, the datasets and their associated 

data collection process, their access restrictions and licenses, and any data preprocessing or 

feature extraction we used following current work in each of these domains.

C.2.1 Affective Computing

1. MUSTARD is a multimodal video corpus for research in automated sarcasm discovery 

[24]. The dataset is compiled from popular TV shows including Friends, The Golden 

Girls, The Big Bang Theory, and Sarcasmaholics Anonymous. MUSTARD consists of 

audiovisual utterances annotated with sarcasm labels. Each utterance is accompanied by its 

context, which provides additional information on the scenario where the utterance occurs, 

thereby providing a further challenge in the long-range modeling of multimodal information. 

Sarcasm is specifically chosen as an annotation task since it requires careful modeling of 
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complementary information, particularly when the semantic information from each modality 

do not agree with each other.

Data collection: According to Castro et al., [24], they conducted web searches on 

YouTube using keywords such as Friends sarcasm, Chandler sarcasm, Sarcasm 101, and 

Sarcasm in TV shows to obtain videos with sarcastic content from three main TV shows: 

Friends, The Golden Girls, and Sarcasmaholics Anonymous. To obtain non-sarcastic videos, 

they used a subset of 400 videos from MELD, a multimodal emotion recognition dataset 

derived from the Friends TV series [128]. Videos from The Big Bang Theory were also 

collected by segmenting episodes using laughter cues from its audience.

Access restrictions: While we do not have the license to this dataset, it is a public 

dataset free to download by the research community from https://github.com/soujanyaporia/

MUStARD.

Licenses: MIT, see https://github.com/soujanyaporia/MUStARD/blob/master/LICENSES

Dataset preprocessing: We followed these preprocessing steps for each modality as 

suggested in the original paper [24]:

1. Language: Textual utterances are represented using pretrained BERT 

representations [42] as well as Common Crawl pre-trained 300-dimensional 

GloVe word vectors [119] for each token.

2. Visual: Visual features are extracted for each frame using a pool5 layer of 

an ImageNet [41] pretrained ResNet-152 [66] model. Every frame is first 

preprocessed by resizing, center-cropping, and normalizing it. We also use 

the OpenFace facial behavioral analysis tool [11] to extract facial expression 

features.

3. Audio: Low-level features from the audio data stream are extracted using the 

speech processing library Librosa [112]. We also extract COVAREP [39] features 

as is commonly used for the other datasets in the affective computing domain 

(see below).

Train, validation, and test splits: there are 414, 138, and 138 video segments in train, 

valid, and test data respectively, which gives a total of 690 data points.

2. CMU-MOSI is a collection of 2,199 opinion video clips each rigorously annotated 

with labels for subjectivity, sentiment intensity, per-frame, and per-opinion annotated 

visual features, and per-milliseconds annotated audio features [181]. Sentiment intensity 

is annotated in the range [−3,+3] which enables fine-grained prediction of sentiment beyond 

the classical positive/negative split. Each video is collected from YouTube with a focus 

on video blogs, or vlogs which reflect the real-world distribution of speakers expressing 

their behaviors through monologue videos. CMU-MOSI is a realistic real-world multimodal 

dataset for affect recognition and is regularly used in competitions and workshops.
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Data collection: According to Zadeh et al., [181], videos were collected from YouTube 

with a focus on video blogs indexed by #vlog. A total of 93 videos were randomly selected. 

The final set of videos contained 89 distinct speakers, including 41 female and 48 male 

speakers. Most of the speakers were approximately between the ages of 20 and 30 from 

different backgrounds (e.g., Caucasian, African-American, Hispanic, Asian). All speakers 

expressed themselves in English and the videos originated from either the United States of 

America or the United Kingdom.

Access restrictions: The authors are part of the team who collected the CMU-MOSI 

dataset [181] so we have the license and right to redistribute this dataset. CMU-MOSI was 

originally downloaded from https://github.com/A2Zadeh/CMU-MultimodalSDK.

Licenses: Permission is hereby granted, free of charge, to any person obtaining a 

copy of this software and associated documentation files (the “Software”), to deal in the 

Software without restriction, including without limitation the rights to use, copy, modify, 

merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit 

persons to whom the Software is furnished to do so, subject to the conditions in https://

raw.githubusercontent.com/A2Zadeh/CMU-MultimodalSDK/master/LICENSE.txt

Train, validation, and test splits: Each dataset contains several videos, and each video 

is further split into short segments (roughly 10 − 20 seconds) that are annotated. We split the 

data at the level of videos so that segments from the same video will not appear across train, 

valid, and test splits. This enables us to train user-independent models instead of having a 

model potentially memorizing the average affective state of a user. There are 52, 10, and 

31 videos in train, valid, and test data respectively. Splitting up these videos gives a total of 

1,284, 229, and 686 segments respectively for a total of 2,199 data points.

Dataset preprocessing: We follow current work [103, 183] and apply the following 

preliminary feature extraction for the CMU-MOSI dataset:

1. Language: Glove word embeddings [119] were used to embed a sequence 

of individual words from video segment transcripts into a sequence of word 

vectors that represent spoken text. The Glove word embeddings used are 300-

dimensional word embedding trained on 840 billion tokens from the common 

crawl dataset, resulting in a sequence of dimension T  × 300 after alignment. The 

timing of word utterances is extracted using P2FA forced aligner [176]. This 

extraction enables alignment between text, audio, and video.

2. Visual: We use the library Facet [75] to extract a set of visual features including 

facial action units, facial landmarks, head pose, gaze tracking, and HOG features. 

These visual features are extracted from the full video segment at 30Hz to form 

a sequence of facial gesture changes throughout time, resulting in a sequence of 

dimension T  × 35. In addition to Facet, OpenFace facial behavioral analysis tool 

[11] is used to extract the facial expression features which include facial Action 

Units (AU) based on the Facial Action Coding System (FACS) [49].
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3. Audio: The software COVAREP [39] is used to extract acoustic features 

including 12 Mel-frequency cepstral coefficients, pitch tracking and voiced/

unvoiced segment features [46], glottal source parameters [28], peak slope 

parameters and maxima dispersion quotients [79]. These visual features are 

extracted from the full audio clip of each segment at 100Hz to form a sequence 

that represents variations in tone of voice over an audio segment, resulting in a 

sequence of dimension T  × 74.

3. UR-FUNNY is the first large-scale multimodal dataset of humor detection in human 

speech [64]. UR-FUNNY is a realistic representation of multimodal language (including 

text, visual and acoustic modalities). This dataset opens the door to understanding and 

modeling humor in a multimodal framework, which is crucial since humor is an inherently 

multimodal communicative tool involving the effective use of words (text), accompanying 

gestures (visual), and prosodic cues (acoustic). UR-FUNNY consists of more than 16,000 

video samples from TED talks which are among the most diverse idea-sharing channels 

covering speakers from various backgrounds, ethnic groups, and cultures discussing a 

variety of topics from discoveries in science and arts to motivational speeches and everyday 

events. The diversity of speakers, topics, and unique annotation targets make it a realistic 

dataset for multimodal language modeling.

Data collection: According to Hasan et al., [64] 1,866 videos and their transcripts in 

English were collected from the TED portal, chosen from 1,741 different speakers and 

across 417 topics. The laughter markup is used to filter out 8257 humorous punchlines from 

the transcripts. The context is extracted from the prior sentences to the punchline (until 

the previous humor instances or the beginning of the video is reached). Using a similar 

approach, 8,257 negative samples are chosen at random intervals where the last sentence 

is not immediately followed by a laughter marker. After this negative sampling, there is a 

homogeneous 50% split in the dataset between positive and negative humor examples.

Access restrictions: This is a public dataset free to download by the research community 

from https://github.com/ROC-HCI/UR-FUNNY. The authors of the dataset also note that 

videos on www.ted.com are publicly available for download [64].

Licenses: No license was provided with this dataset.

Dataset preprocessing: We follow current work [103, 183] and apply the same 

preliminary feature extraction as the CMU-MOSI dataset described above.

Train, validation, and test splits: Each dataset contains several videos, and each video 

is further split into short segments (roughly 10 − 20 seconds) that are annotated. We split the 

data at the level of videos so that segments from the same video will not appear across train, 

valid, and test splits. This enables us to train user-independent models instead of having a 

model potentially memorizing the average affective state of a user. There are 1,166, 300, and 

400 videos in train, valid, and test data respectively. Splitting up these videos gives a total of 

10,598, 2,626, and 3,290 segments respectively for a total of 16,514 data points,
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4. CMU-MOSEI is the largest dataset of sentence-level sentiment analysis and emotion 

recognition in real-world online videos [102, 183]. CMU-MOSEI contains more than 65 

hours of annotated video from more than 1,000 speakers and 250 topics. Each video is 

annotated for sentiment as well as the presence of 9 discrete emotions (angry, excited, fear, 

sad, surprised, frustrated, happy, disappointed, and neutral) as well as continuous emotions 

(valence, arousal, and dominance). The diversity of prediction tasks makes CMU-MOSEI a 

valuable dataset to test multimodal models across a range of real-world affective computing 

tasks. The dataset has been continuously used in workshops and competitions revolving 

around human multimodal language.

Data collection: According to Zadeh et al., [183], videos from YouTube are automatically 

analyzed for the presence of one speaker in the frame using face detection to ensure the 

video is a monologue and rejecting videos that have moving cameras. A diverse set of 250 

frequently used topics in online videos is used as the seed for acquisition. The authors 

restrict the number of videos acquired from each channel to a maximum of 10 and limit 

the videos to have manual and properly punctuated transcriptions. After manual quality 

inspection, they also performed automatic checks on the quality of video and transcript using 

facial feature extraction confidence and forced alignment confidence, before balancing the 

gender in the dataset using the data provided by annotators (57% male to 43% female).

Access restrictions: The authors are part of the team who collected the CMU-MOSEI 

dataset [183] so we have the license and right to redistribute this dataset. CMU-MOSEI was 

originally downloaded from https://github.com/A2Zadeh/CMU-MultimodalSDK.

Figure 7: 
Healthcare: Medical decision-making often involves integrating complementary signals 

from several sources such as lab tests, imaging reports, and patient-doctor conversations. 

Multimodal models can help doctors make sense of high-dimensional data and assist them 

in the diagnosis process [5]. MULTIBENCH includes the MIMIC dataset [78] which records 

ICU patient data including time-series data measured every hour and other tabular numerical 
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data about the patient (e.g., age, gender, ethnicity) to predict mortality rate and the disease 

ICD-9-code. Figure adapted from [165].

Licenses: Permission is hereby granted, free of charge, to any person obtaining a 

copy of this software and associated documentation files (the““Software”), to deal in the 

Software without restriction, including without limitation the rights to use, copy, modify, 

merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit 

persons to whom the Software is furnished to do so, subject to the conditions in https://

raw.githubusercontent.com/A2Zadeh/CMU-MultimodalSDK/master/LICENSE.txt

Dataset preprocessing: We follow current work [103, 183] and apply the same 

preliminary feature extraction as the CMU-MOSI and UR-FUNNY datasets described 

above.

Train, validation, and test splits: Each dataset contains several videos, and each video 

is further split into short segments (roughly 10 − 20 seconds) that are annotated. We split the 

data at the level of videos so that segments from the same video will not appear across train, 

valid, and test splits. This enables us to train user-independent models instead of having 

a model potentially memorizing the average affective state of a user. There are a total of 

16,265, 1,869, and 4,643 segments in train, valid, and test datasets respectively for a total of 

22,777 data points.

C.2.2 Healthcare

1. MIMIC-III (Medical Information Mart for Intensive Care III) [78] is a large, freely-

available database comprising de-identified health-related data associated with over 40,000 

patients who stayed in critical care units of the Beth Israel Deaconess Medical Center 

between 2001 and 2012. Following [129], we organized numerous patient data into two 

major modalities (using the 17 features in feature set A in [129]): time series modality, 

which is a set of medical measurements of the patient taken every 1 hour in a period of 

24 hours where each measurement is a vector of size 12 (12 different measured numerical 

values); static modality, which is a set of medical information about the patient, represented 

in a vector of size 5. We use these modalities for 3 tasks: mortality prediction (6-class 

prediction on whether the patient dies in 1 day, 2 day, 3 day, 1 week, 1 year, or longer than 

1 year), and 2 ICD-9 code predictions (binary classification on whether the patient fits any 

ICD-9 code in group 1 (140 − 239) and binary classification on whether the patient fits any 

ICD-9 code in group 7 460 − 519).

Data collection: According to Johnson et al., [78], MIMIC contains data associated 

with 53,423 distinct hospital admissions for adult patients (aged 16 years or above) 

admitted to critical care units between 2001 and 2012, as well as 7,870 neonates admitted 

between 2001 and 2008. The data covers 38,597 distinct adult patients and 49,785 hospital 

admissions. Data was also downloaded from several sources, including archives from critical 

care information systems, hospital electronic health record databases, and Social Security 

Administration Death Master File.
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Privacy: Before data was incorporated into the MIMIC-III database, it was first de-

identified in accordance with Health Insurance Portability and Accountability Act (HIPAA) 

standards using structured data cleansing and date shifting. The de-identification process 

removed all eighteen identifying data elements listed in HIPAA, such as patient name, date 

of birth (for patients over 89 of age), telephone number, address, and dates. Protected health 

information was also removed from text fields, such as diagnostic reports and physician 

notes. We refer the reader to [129] for full de-identification details.

Access restrictions: We do not have the license and right to redistribute this dataset. 

Accessing MIMIC requires the completion of a training course and approval for access 

on PhysioNet (https://physionet.org/about/database/). However, we provide our own data 

preprocessing scripts for MIMIC, which transform the raw data into the standardized format 

for multimodal data and perform standardized splitting into the train, validation, and test 

splits. For a new user getting started with MIMIC data, all they would need to do is to 

complete the training course and obtain approval of access for scientific research from 

PhysioNet before they can use our public code to load all extracted features from the raw 

dataset in a version that can directly be used for machine learning studies.

Licenses: MIT, see https://github.com/mit-lcp/mimic-code/blob/main/LICENSE

Dataset preprocessing: We followed the instructions on https://mimic.physionet.org/

gettingstarted/access/ to download the dataset in the form of raw tables, then generated 

preprocessed data following the steps described in https://github.com/USC-Melady/

Benchmarking_DL_MIMICIII (which takes 1 − 2 weeks running time) to get the data 

used for experiments. Specifically, we will use data in the file 24hrs/series/imputed-

normed-ep_1_24-stdized.npz. When accessing this data from our code repo, set the 

imputed_path of the npz file above in the get_data.py and the script will generate the 

PyTorch data loader for the tasks (where we will normalize the data).

Train, validation, and test splits: We split the data into train/valid/test sets randomly 

(using a fixed random seed) in a 80 : 10 : 10 ratio (so 28,970 train, 3,621 valid, and 3,621 

test data points) for a total of 36,212 data points.

C.2.3 Robotics

1. MUJOCO PUSH is a planar pushing task, in which a 7-DoF Panda Franka robot is 

pushing a circular puck with its end-effector in simulation. We estimate the 2D position 

of the unknown object on a table surface, while the robot intermittently interacts with the 

object. Similar to VISION&TOUCH, planar pushing is a contact-rich task. However, instead of 

estimating robot states, this dataset is estimating the state of the object the robot is currently 

interacting with. While other robotics datasets have also studied planar pushing [14, 175], 

Yu et al., [175] use a Vicon tracker (instead of raw RGB images) while Bauza et al., [14] 

only collect visual and proprioceptive data.

Data collection: According to Lee et al. [90], this dataset consists of 1000 trajectories 

with 250 steps at 1.0 × 101 Hz, of a simulated Franka Panda robot arm pushing a circular 

Liang et al. Page 27

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2024 May 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://physionet.org/about/database/
https://github.com/mit-lcp/mimic-code/blob/main/LICENSE
https://mimic.physionet.org/gettingstarted/access/
https://mimic.physionet.org/gettingstarted/access/
https://github.com/USC-Melady/Benchmarking_DL_MIMICIII
https://github.com/USC-Melady/Benchmarking_DL_MIMICIII


puck in MuJoCo [152]. The pushing actions are generated by a heuristic controller that tries 

to move the end-effector to the center of the object. The multimodal inputs are gray-scaled 

images (1 × 32 × 32) from an RGB camera, forces (and binary contact information) from a 

force/torque sensor, and the 3D position of the robot end-effector. The task is to predict the 

2-D planar object pose which we measure by MSE.

Access restrictions: While we do not have the license to this dataset, it is a public 

dataset free to download by the research community from https://github.com/brentyi/

multimodalfilter/.

Licenses: MIT, see https://github.com/brentyi/multimodalfilter/blob/master/LICENSE.

Dataset preprocessing: Training, validation, and test data are each in their own files and 

can be used directly after downloading. Data is normalized using mean and variance from 

the train set.

Train, validation, and test splits: This dataset contains 1000 training data, 10 validation 

data, and 300 test data. Each data point is split into 29 time-series sequences of length 16. 

The total number of data points for training, validation, and test are 29,000, 290, and 8,700 

for a total of 37990 data points.

Figure 8: 
Robotics: Modern robot systems are equipped with multiple sensors to aid in their decision-

making. We include the large-scale MUJOCO PUSH [90] and VISION&TOUCH [92] datasets 

which record the manipulation of real and simulated robotic arms equipped with visual 

(RGB and depth), force, and proprioception sensors. In MUJOCO PUSH, the goal is to predict 

the pose of the object being pushed by the robot end-effector. In VISION&TOUCH, the goal 

is to predict action-conditional learning objectives that capture forward dynamics of the 

Liang et al. Page 28

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2024 May 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/brentyi/multimodalfilter/
https://github.com/brentyi/multimodalfilter/
https://github.com/brentyi/multimodalfilter/blob/master/LICENSE


different modalities (contact prediction and robot end-effector pose). Figure adapted from 

[91].

2. VISION&TOUCH is a real-world robot manipulation dataset that collects visual, force, and 

robot proprioception data (as well as the robot actions) for a peg insertion task. The robot 

is a 7-DoF, torque-controlled Franka Panda robot, which has a triangle peg attached to its 

end-effector. Rigidly attached to the table in front of the robot is a box with a triangle 

hole. The robot attempts to insert the peg into the hole, a contact-rich manipulation task 

that has been studied for decades due to its relevance in manufacturing. Vision, force, and 

proprioception are feedback modalities shown to be complementary and concurrent during 

contact-rich manipulation [17].

Data collection: According to Lee et al., [92], the data is collected by running on the robot 

a random policy (that takes random actions) as well as a heuristic policy (that attempts peg 

insertion). Four sensor modalities are available, including robot proprioception, an RGB-D 

camera, and a force-torque sensor. The proprioceptive input is the robot end-effector pose 

as well as linear and angular velocity. They are computed using forward kinematics. RGB 

images and depth maps are recorded from a fixed camera (Kinect v2 camera) pointed at the 

robot. Input images to our model are down-sampled to 128×128. The force sensor provides 

6-axis feedback on the forces and moments along the x, y, z axes. The OptoForce force 

sensor is mounted between the last joint and the peg. The robot action data is also collected 

at every timestep. The robot action is the Cartesian end-effector position displacement and 

z-axis roll rotation of the end-effector. There are 150 trajectories collected, each with 1000 

timesteps of data collected. While the dataset originally was intended for representation 

learning for reinforcement learning, We use 2 tasks from the VISION&TOUCH datasets: (1) 

predicting binary contact in the next time step and (2) predicting end-effector position 

measured in MSE.

Access restrictions: While we do not have the license to this dataset, it is a public 

dataset free to download by the research community from https://github.com/stanford-iprl-

lab/multimodal_representation/.

Licenses: MIT, see https://github.com/stanford-iprl-lab/multimodal_representation/blob/

master/LICENSE.
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Figure 9: 
Finance: We scrape historical stock data from the internet and create our own dataset for 

financial time-series prediction across 3 groups of correlated stocks: STOCKS-F&B, STOCKS-

HEALTH, and STOCKS-TECH. Within each group, the previous stock prices of a set of stocks are 

used as multimodal input to predict the squared return of a related stock (e.g., using Apple, 

Google, and Microsoft historical data to predict future prices of Microsoft).

Dataset preprocessing: Dataset has already been pre-processed and can be downloaded 

directly at https://github.com/stanford-iprl-lab/multimodal_representation/. The dataset 

comes as a zipped file with 3000 hdf5 files, each with 50 timesteps of data. In order to 

get action-conditional contact as well as robot end-effector position, the dataset uses the 

contact and end-effector position data from the next timestep. Since the data from the first 

time step cannot be used, only 49 of 50 timesteps of data per file can be used.

Train/validation split: This dataset uses a 80 ∶ 20 training and validation split. There are 

117600 training data points and 29400 validation data points. Since the original dataset does 

not contain test data, we report validation performance instead of test performance for this 

dataset.

C.2.4 Finance

We created the following financial datasets which consist of historical stock data retrieved 

from publicly available online financial databases. We record the opening price of each stock 

from 2000–06-01 to 2021–02-28, which creates a total of 5218 time steps. Details of each 

dataset are described in its own section below.
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1. STOCKS-F&B consists of 18 selected stocks from S&P 500 stocks categorized 

by GICS as Restaurants or Packaged Foods & Meats. We select MCD, SBUX, HSY, 

and HRL for initial experiments on this dataset, record their opening prices, and 

preprocess the data following the preprocessing procedures below.

2. STOCKS-HEALTH consists of 63 selected stocks from S&P 500 stocks categorized 

by GICS as Health Care. We select MRK, WST, CVS, MCK, ABT, UNH, and TFX for 

initial experiments on this dataset, record their opening prices, and preprocess 

the data following the preprocessing procedures below.

3. STOCKS-TECH consists of 100 selected stocks from S&P 500 stocks categorized 

by GICS as Information Technology or Communication Services. We select 

AAPL, MSFT, AMZN, INTC, AMD, and MSI for initial experiments on this dataset, 

record their opening prices, and preprocess the data following the preprocessing 

procedures below.

Figure 10: 
Human Computer Interaction (HCI) studies the design and use of computer technology 

with a focus on the interactive interfaces between humans and computers. We use the ENRICO 

(Enhanced Rico) dataset [40, 93] of Android app screens (consisting of an image as well 

as a set of apps and their locations) categorized by their design motifs and collected for 

data-driven design applications such as design search, user interface (UI) layout generation, 

UI code generation, and user interaction modeling. Figure adapted from [40, 93].

Access restrictions: The datasets were collected from Yahoo Finance, which is publicly 

available but does not allow redistribution of their data. We provide automated download 

and preprocessing scripts for this dataset.
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Licenses: We could not find a finance dataset with a free redistribution license 

that includes historical financial data. As such, we provide automated download and 

preprocessing scripts as part of this project, which utilizes the open-source pandas-

datareader to download raw finance data. We used the open-source code at https://

github.com/pydata/pandas-datareader/blob/master/pandas_datareader/yahoo/components.py. 

The automated scripts we provide are licensed under an MIT License.

Dataset preprocessing: Data is downloaded, converted to returns, and normalized. 

Labels are converted to squared returns. Each time series is split in chronological order, 

where the test split corresponds to the latest prices. For each data point, 500 previous returns 

are used to predict the squared return of the next day. The first 500 time steps are not 

predicted since they do not have 500 previous steps. We consider each stock as a modality; 

unimodal datasets have the input stock identical to the target stock. To keep memory usage 

practical for MULT [154] models, we evenly separate the stocks into 3 groups and use each 

group as a modality when preprocessing for MULT [154].

Train, validation, and test splits: We split the data according to time. There are 3200 

continuous days of stock prices in the train data (2002–06-04 start to 2015–02-18 end date), 

500 continuous days of stock prices in the valid data (2015–02-19 start to 2017–02-10 

end date), and 1017 continuous days of stock prices in the test data (2017–02-13 start to 

2021–02-26 end date).

C.2.5 HCI

1. ENRICO (Enhanced Rico) [93] is a dataset of Android app screens categorized by their 

design motifs. ENRICO was collected to help data-driven design applications such as design 

search, UI layout generation, UI code generation, and user interaction modeling. ENRICO 

is a subset of RICO [40], which is a large dataset of app screens collected by the automated 

and semi-automated “crawling” of Android apps available on the Google Play Store.

The RICO and ENRICO datasets have been used as benchmarks for data-driven models 

of design in scaffolding the creation of mobile apps. These constitute a set of relevant 

examples that help designers understand best practices and trends in building human-

centered interfaces. Building multimodal models on these examples will enable systems that 

can predict whether a UI design will achieve its targeted goals even before it is deployed to 

millions of people. In the long run, this will enable the large-scale creation of personalized 

UI designs that can automatically adapt to diverse users and contexts.

The authors of ENRICO employed two main modalities for app classification: (1) the app 

screenshot and (2) the view hierarchy. The app screenshot is given in the form of an image. 

The view hierarchy is a type of metadata associated with some UI screens that describe the 

spatial and structural layout of UI elements. This view hierarchy can be treated as a set since 

it contains an unordered collection of UI elements each containing metadata and their spatial 

and structural layout.

Data collection: The original RICO dataset was collected using a combination of manual 

(i.e., crowdworkers) and automated (i.e., app crawler) methods. More information about how 

Liang et al. Page 32

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2024 May 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/pydata/pandas-datareader/blob/master/pandas_datareader/yahoo/components.py
https://github.com/pydata/pandas-datareader/blob/master/pandas_datareader/yahoo/components.py


the apps were downloaded and captured is available in the RICO paper [40]. The ENRICO 

dataset is a subset of RICO that was created by first randomly sampling 10000 screens 

from RICO and labeling a highquality subset (1460 screens) that can be categorized into 20 

design categories. More information about the collection and annotation process is available 

in the ENRICO paper [93].

Access restrictions: While we do not have the license to this dataset, it is a public 

dataset free to download by the research community from https://github.com/luileito/enrico.

Licenses: MIT, see https://github.com/luileito/enrico/blob/master/LICENSE

Dataset preprocessing: We extract the following features from each modality:

1. Image: The authors of ENRICO used a VGG-16 network (augmented with batch 

normalization and dropout) to encode app screenshots. To reduce overfitting 

on the relatively small dataset (1460 examples), we use a VGG-11 network pre-

trained on ImageNet, with a frozen feature extraction network and a slimmed-

down classifier network.

2. Set: We followed prior modeling approaches [40, 93] to represent the view 

hierarchy as a set of UI elements spatially rendered as a “wireframe” (similar to 

a semantic map). The wireframe was then fed into the same VGG-11 network 

used to encode the screenshot. Another possibility, which we briefly explored, 

is to use a set encoder [184] to use a permutation invariant function to compute 

a pooled representation of the set of mobile applications. We found that the 

CNN-based approach resulted in better performance, as it allowed the network 

to be initialized from a pre-trained checkpoint, although our experiments were 

initial and there is still ample room for future work to explore better encoders for 

this set modality.

Train, validation, and test splits: The original paper doesn’t provide official splits 

for training, validation, and testing. We used a known seed to deterministically shuffle the 

dataset and create splits for training (65%, 947 examples), validation (15%, 219 examples), 

and testing (20%, 292 examples).

C.2.6 Multimedia

1. AV-MNIST is a multimodal dataset created by paring audio of a human reading digits 

from the FSDD dataset [1] with written digits in the MNIST dataset [88] with a task to 

predict the digit into one of 10 classes (0 − 9). Since existing models can already complete 

the digit recognition task from either modality quite well, one common practice in previous 

work [161] is to increase the difficulty by removing 75% of energy in the visual modality 

via PCA and adding noise from ESC-50 [125] to the audio modality, such that models 

have to leverage information from both modalities to make accurate predictions. ESC-50 is 

a realistic dataset collected from real-world audio of various everyday objects. Therefore, 

AV-MNIST serves as a good starting point of a relatively simple multimodal dataset but with 

underlying challenges of complementarity and noisy data. In fact, the method of injecting 
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real-world background noises into the audio modality also inspired more tests for robustness 

included in MULTIBENCH. AV-MNIST has served as a popular benchmark for evaluating the 

effectiveness of multimodal fusion models [122, 161].

Data collection: According to Vielzeuf et al., [161], AV-MNIST starts with the entirety of 

the MNIST image and FSDD audio datasets. The audio samples are augmented by adding 

randomly chosen ‘noise’ samples from the ESC-50 dataset [125], to reach the same number 

of examples as in MNIST (55000 training, 5000 validation, and 10000 testing examples).

Access restrictions: This dataset is programmatically generated by combining 2 

unimodal datasets: MNIST and FSDD (with the additional audio signal from ESC-50). 

While we do not have the license to these datasets, they are public datasets free to download 

by the research community.

Licenses: MNIST is released with a Creative Commons Attribution-Share Alike 3.0. 

FSDD is released with a Creative Commons Attribution-ShareAlike 4.0 International 

license. ESC-50 is released with a Creative Commons Attribution Non-Commercial license. 

All of these licenses allow redistribution of the datasets.

Dataset preprocessing: To create the dataset, we downloaded MNIST from http://

yann.lecun.com/exdb/mnist/, FSDD from https://github.com/Jakobovski/free-spoken-digit-

dataset, ESC-50 from https://github.com/karolpiczak/ESC-50, and generated AV-MNIST 

with the scripts provided in https://github.com/slyviacassell/_MFAS/blob/master/datasets/

avmnist_gen.py. Note that since the official implementation of the preprocessing is not 

released, our preprocessing, as well as all other existing preprocessing scripts, may differ 

from the original preprocessing in some details (such as keeping at most or at least 25% 

of energy in the image modality, and some parameters in adding noise to audio), so the 

performance of models in our version of AV-MNIST should not be compared directly with 

the performance of models on AV-MNIST in other papers.

No preprocessing is done for the image modality. For audio, it is converted to a 112x112 

Spectogram. See the code in https://github.com/slyviacassell/_MFAS/blob/master/datasets/

avmnist_gen.py for details.

Train, validation, and test splits: Data splits for AV-MNIST follow that of the MNIST 

dataset, with 55000 training, 5000 validation, and 10000 testing examples.

2. MM-IMDB is the largest publicly available multimodal dataset for genre prediction on 

movies [8]. MM-IMDB starts from the movies of the MovieLens 20M dataset and expands 

this dataset by collecting genre, poster, and plot information for each movie. The final 

dataset contains ratings for 25,959 movies. MM-IMDB is a realistic real-world multimodal 

dataset and is a popular benchmark for multimodal learning [8, 81, 122].

Data collection: According to Arevalo et al., [8], MM-IMDB dataset is built with the 

IMDb ids provided by the Movielens 20M dataset that contains ratings of 27,000 movies. 

Using the IMDbPY 3 library, movies that do not contain their poster image were filtered 
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out. The resulting dataset comprises 25,959 movies along with their plot, poster, genres, and 

other 50 additional metadata fields such as year, language, writer, director, aspect ratio, etc. 

The task is to perform multilabel classification into one of 23 movie genres.

Access restrictions: While we do not have the license to this dataset, it is a public 

dataset free to download by the research community from http://lisi1.unal.edu.co/mmimdb/ 

and https://github.com/johnarevalo/gmu-mmimdb/.

Licenses: MIT, see https://github.com/johnarevalo/gmu-mmimdb/blob/master/LICENSE

Dataset preprocessing: We used the same method as [8] to extract features from texts 

and images.

1. Text: We used the pretrained Google Word2vec1 to extract text features. The 

final vocabulary contains 41,612, which is the intersection of Google word2vec 

words and the MM-IMDB plots. We converted all text to lowercase following 

existing work.

2. Image: All images were scaled, and cropped when required, to 160 × 256 pixels 

keeping the aspect ratio. A VGG-16 model [139] is applied as the image feature 

extractor. This CNN consists of 5 convolutional layers of 5,3,3,3,3 squared 

filters and 2 × 2 pool sizes. Each convolutional layer has 16 hidden units. The 

convolutional layers are connected with a MaxoutMLP on top.

Figure 11: 
Multimedia: A significant body of research in multimodal learning has been fueled by the 

large availability of multimedia data (language, image, video, and audio) on the internet. 

MULTIBENCH includes 3 popular large-scale multimedia datasets with varying sizes and levels 

of difficulty: (1) Audio-Visual MNIST (AV-MNIST) [161] is assembled from images of 

handwritten digits [88] and audio samples of spoken digits [94], (2) Multimodal IMDb 

(MM-IMDB) [8] uses movie titles, metadata, and movie posters to perform multi-label 

classification to a set of movie genres, and (3) KINETICS [80] contains video and audio of 

1 https://code.google.com/archive/p/word2vec/ 
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306,245 video clips annotated for 400 human actions. To ease experimentation, we split 

KINETICS into small and large partitions (see Appendix C). Figure adapted from [8, 80].

Train, validation, and test splits: The MM-IMDb dataset is split by genre into train, 

valid, and test datasets containing 15552, 2608, and 7799. The split was performed so that 

training, valid and test sets comprise 60%, 10%, 30% samples of each genre respectively.

3. KINETICS is a series of large-scale curated video clips covering a diverse range of human 

actions. We use the original Kinetics-400 dataset [80] which contains 400 human action 

classes, with at least 400 video clips for each action. Each clip lasts around 10s and is taken 

from a different YouTube video. This is one of the largest publicly available multimodal 

datasets with a total of 306,245 video clips spanning 400 human actions. Therefore, KINETICS 

is suitable for testing the scalability of multimodal models to extremely large datasets. 

Furthermore, recognizing human actions is a core challenge in a variety of applications such 

as human-AI interaction, robotics, and human behavior analysis.

The sheer scale of the KINETICS dataset means that even the simplest models take up to 

several weeks to finish training. To enable multimodal learning from video and audio while 

also increasing access across researchers with limited computing resources, we subsample 

the KINETICS dataset into small and large partitions:

KINETICS-S: We subsampled 5 human actions: archery, breakdancing, crying, dining, singing 
and retained all video clips annotated for these 5 actions. We selected these actions 

randomly out of the 400 actions in Kinetics-400. This gave us a total of 2624 video clips in 

the small version of the dataset. Training a basic supervised learning model on KINETICS-S 

takes roughly 2 hours on a single GPU.

KINETICS-L: This represents the entire KINETICS-400 dataset with 306,245 video clips 

spanning 400 human actions. Training a basic supervised learning model on KINETICS-L 

takes roughly 2 weeks on a single GPU.

Data collection: We refer the reader to Kay et al., [80] for a detailed description of 

the dataset collection process. Briefly, the authors (1) started with a list of human actions 

from sources spanning existing action datasets, motion capture, and crowdsourcing, (2) 

obtained candidate clips from YouTube and extracted temporal positions within a video, 

(3) performed manual labeling for human actions with Amazon’s Mechanical Turk, and (4) 

cleaning up and de-noising the selected videos.

Access restrictions: While we do not have the license to this dataset, it is a public 

dataset free to download by the research community from https://deepmind.com/research/

open-source/kinetics.

Licenses: Creative Commons Attribution 4.0 International, so we are free to share, copy, 

and redistribute the material in any medium or format, see https://deepmind.com/research/

open-source/kinetics.
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Dataset preprocessing: We downloaded links from https://deepmind.com/research/

open-source/kinetics and preprocessed them with the torchvision Kinetics scripts.

We processed the video and audio modalities as follows:

1. Video: We use 150 × 224 × 224 × 3 input clips, created with a frame skip of 2, 

a center crop with shape (224,224), and the normalization step required for using 

torchvision.models.

2. Audio: We use log-scaled mel spectrograms with 763 temporal frames by 40 

Mel filters, element-wise averaging 2-channel waveforms to yield single channel 

ones.

Train, validation, and test splits: We use the 80.5/6.5/13 split provided by the original 

dataset, taking all the data points in our chosen classes. This yields 2112, 171, and 341 data 

points in train, validation, and test splits respectively for KINETICS-S and 246527, 19906, and 

39812 data points in train, validation, and test splits respectively for KINETICS-L.

C.3 Documentation

We provide documentation for MULTIBENCH in the form of datasheets for datasets [54]:

1. Motivation

a. For what purpose was the dataset created? Was there a specific task in 
mind? Was there a specific gap that needed to be filled? Please provide 
a description.

Learning multimodal representations involves integrating information 

from multiple heterogeneous sources of data. It is a challenging yet 

crucial area with numerous real-world applications in multimedia, 

affective computing, robotics, finance, and healthcare. Unfortunately, 

current research focuses primarily on a fixed set of modalities and tasks 

without a concrete understanding of generalization across domains and 

modalities, complexity during training and inference, and robustness 

to noisy and missing modalities. In order to standardize multimodal 

research and accelerate progress towards understudied modalities and 

tasks while ensuring real-world robustness, we release MULTIBENCH, a 

systematic and unified large-scale benchmark for multimodal learning 

spanning 15 datasets, 10 modalities, 20 prediction tasks, and 6 research 

areas. MULTIBENCH provides an automated end-to-end machine learning 

pipeline that simplifies and standardizes data loading, experimental 

setup, and model evaluation. To enable holistic evaluation, MULTIBENCH 

summarizes both performance as well as the potential drawbacks 

involving increased time and space complexity and risk of decreased 

robustness from other modalities. To accompany MULTIBENCH, we 

also provide a standardized implementation of 20 core approaches 

in multimodal learning unifying innovations in fusion paradigms, 

optimization objectives, and training approaches.
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MULTIBENCH datasets present significant challenges of scalability 

to large-scale multimodal datasets and robustness to realistic 

imperfections, which present fruitful opportunities for future research. 

We hope that MULTIBENCH will present a milestone in unifying disjoint 

efforts in multimodal machine learning research and paves a way 

towards a better understanding of the capabilities and limitations of 

multimodal models, all the while ensuring ease of use, accessibility, 

and reproducibility. MULTIBENCH, our standardized implementation, and 

leaderboards are publicly available, will be regularly updated, and 

welcomes inputs from the community.

b. Who created the dataset (e.g., which team, research group) and on 
behalf of which entity (e.g., company, institution, organization)?

MULTIBENCH is created primarily by the MultiComp Lab in the 

Language Technologies Institute and Machine Learning Department 

of the School of Computer Science at Carnegie Mellon University, in 

collaboration with several other researchers in the Human-Computer 

Interaction Institute and Computer Science Department at Carnegie 

Mellon University as well as at Johns Hopkins University, Stanford 

University, and UT Austin. The creation of MULTIBENCH is for purely 

research purposes only.

c. Who funded the creation of the dataset? If there is an associated grant, 
please provide the name of the grantor and the grant name and number.

This material was based upon work partially supported by the National 

Science Foundation (Awards #1722822 and #1750439) and National 

Institutes of Health (Awards #R01MH125740, #R01MH096951, 

#U01MH116925, and #U01MH116923), NSF IIS1763562, and ONR 

Grant N000141812861. Any opinions, findings, and conclusions, or 

recommendations expressed in this material are those of the author(s) 

and do not necessarily reflect the views of the National Science 

Foundation or National Institutes of Health, and no official endorsement 

should be inferred.

d. Any other comments?

No.

2. Composition

a. What do the instances that comprise the dataset represent (e.g., 
documents, photos, people, countries)? Are there multiple types of 
instances (e.g., movies, users, and ratings; people and interactions 
between them; nodes and edges)? Please provide a description.

We describe each dataset in detail in Appendix C.2. MULTIBENCH 

provides a comprehensive suite of multimodal datasets to benchmark 

current and proposed approaches in multimodal representation learning. 
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It covers a diverse range of research areas (affective computing, 

healthcare, robotics, finance, HCI, and multimedia), dataset sizes 

(small, medium, and large), input modalities (in the form of ℓ: 

language,i: image,v: video,a: audio,t: time-series,ta: tabular,o: optical 

flow,f: force sensor,p: proprioception sensor,s: set), and prediction 

tasks (affect recognition, robot manipulation, stock prediction, design 

interface, action recognition, movie genre prediction, and digit 

prediction).

b. How many instances are there in total (of each type, if appropriate)?

We describe each dataset’s statistics in detail in Appendix C.2. We 

chose datasets to span small, medium, and large sizes. The smallest 

dataset contains 1,460 instances (and training a model takes roughly 

a few minutes on a single GPU) while the largest one contains 

306,245 instances (and training a model takes roughly 2 weeks on a 

single GPU). This enables accessibility for researchers with limited 

computational resources, while also allowing for large-scale studies of 

multimodal datasets and models.

c. Does the dataset contain all possible instances or is it a sample (not 
necessarily random) of instances from a larger set? If the dataset is a 
sample, then what is the larger set? Is the sample representative of the 
larger set (e.g., geographic coverage)? If so, please describe how this 
representativeness was validated/verified. If it is not representative of 
the larger set, please describe why not (e.g., to cover a more diverse 
range of instances, because instances were withheld or unavailable).

Each of the datasets is collected in different ways that we detail in 

Appendix C.2. To summarize, each dataset consists of samples from a 

larger set since it is impossible to include all videos/stock data/medical 

data/robotics data in the world. Each dataset is collected with the aim to 

be representative of the entire population.

d. What data does each instance consist of? “Raw” data (e.g., unprocessed 
text or images) or features? In either case, please provide a description.

We describe in detail the raw data and processed features for each 

dataset in Appendix C.2. To summarize, MULTIBENCH contains both 

raw modality data as well as processed data with predefined feature 

extractors following current work.

e. Is there a label or target associated with each instance? If so, please 
provide a description.

We describe in detail the labels for each dataset in Appendix C.2. To 

summarize, MULTIBENCH contains 6 research areas with a total of 15 

prediction tasks spanning affect recognition, robot manipulation, stock 
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prediction, design interface, action recognition, movie genre prediction, 

and digit prediction.

f. Is any information missing from individual instances? If so, please 
provide a description, explaining why this information is missing 
(e.g., because it was unavailable). This does not include intentionally 
removed information, but might include, e.g., redacted text.

No, all datasets are provided in full. For robustness tests, we do inject 

noise and imperfections into each dataset to simulate the performance 

of machine learning models on real-world imperfections (see Appendix 

D.3 for details).

g. Are relationships between individual instances made explicit (e.g., 
users’ movie ratings, social network links)? If so, please describe how 
these relationships are made explicit.

We describe in detail the relationships between modalities for each 

dataset in Appendix C.2.

h. Are there recommended data splits (e.g., training, development/
validation, testing)? If so, please provide a description of these splits, 
explaining the rationale behind them.

Yes, MULTIBENCH provides a data loading pipeline that directly loads 

train, validation, and test splits according to current work. We provide 

these details for each dataset in Appendix C.2.

i. Are there any errors, sources of noise, or redundancies in the dataset? If 
so, please provide a description.

We do not know of any errors in each of the datasets included 

in MULTIBENCH. However, we will always be on the lookout 

for potential issues and update them via https://cmu-multicomp-

lab.github.io/multibench/ and https://github.com/pliang279/MultiBench.

j. Is the dataset self-contained, or does it link to or otherwise rely on 
external resources (e.g., websites, tweets, other datasets)? If it links 
to or relies on external resources, a) are there guarantees that they 
will exist, and remain constant, over time; b) are there official archival 
versions of the complete dataset (i.e., including the external resources 
as they existed at the time the dataset was created); c) are there any 
restrictions (e.g., licenses, fees) associated with any of the external 
resources that might apply to a future user? Please provide descriptions 
of all external resources and any restrictions associated with them, as 
well as links or other access points, as appropriate.

Most of the datasets in MULTIBENCH have been collected, stored, 

processed, and are self-contained. There are some datasets that depend 

on external resources which we explain below:
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i. MIMIC: We depend on the original dataset to be 

hosted on https://mimic.physionet.org/gettingstarted/access/. 

Unfortunately, since we are not allowed to redistribute the 

raw data and users need to complete training to access the 

raw data, we are unable to provide a self-contained version of 

the MIMIC dataset. We are currently planning to add several 

new multimodal datasets in the healthcare domain that can be 

self-contained after appropriate de-identification.

ii. Finance: Yahoo Finance prohibits the redistribution 

of their data. We depend on the original data 

to be hosted on Yahoo Finance and provide 

automated downloading and preprocessing scripts for 

the datasets based on pandas-datareader, which has 

original code at https://github.com/pydata/pandas-datareader/

blob/master/pandas_datareader/yahoo/components.py

k. Does the dataset contain data that might be considered confidential 
(e.g., data that is protected by legal privilege or by doctor-patient 
confidentiality, data that includes the content of individuals’ non-public 
communications)? If so, please provide a description.

From the authors of MIMIC [78]: “The project was approved by 

the Institutional Review Boards of Beth Israel Deaconess Medical 

Center (Boston, MA) and the Massachusetts Institute of Technology 

(Cambridge, MA). Requirement for individual patient consent was 

waived because the project did not impact clinical care and all protected 

health information was de-identified.”

To the best of our knowledge, all other datasets do not contain 

confidential data and are publicly available for research purposes.

l. Does the dataset contain data that, if viewed directly, might be 
offensive, insulting, threatening, or might otherwise cause anxiety? If 
so, please describe why.

We reviewed the datasets and found no offensive content. While there 

are clearly expressions of highly negative sentiment or strong displays 

of anger and disgust in the affective computing videos, there are no 

offensive words used or personal attacks recorded in the video. All 

videos are related to movie or product reviews, TED talks, and TV 

shows.

m. Does the dataset relate to people? If not, you may skip the remaining 
questions in this section.

Yes, the healthcare, affective computing, and Kinetics (multimedia) 

datasets relate to people. The other datasets in MULTIBENCH do not.
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n. Does the dataset identify any subpopulations (e.g., by age, gender)? If 
so, please describe how these subpopulations are identified and provide 
a description of their respective distributions within the dataset.

The following datasets relate to people:

i. Affective computing: These datasets do not identify any 

subpopulations in their modeling decisions. However, the raw 

data comes in the form of videos publicly available and free 

to download from YouTube. Sub-population and demographic 

information can be inferred from these raw videos.

ii. MIMIC: According to the authors [78]: “The median age of 

adult patients is 65.8 years and 55.9% patients are male.”

iii. Kinetics: This dataset does not identify any subpopulations. 

However, the raw data comes in the form of videos publicly 

available and free to download from YouTube. Sub-population 

and demographic information can be inferred from these raw 

videos.

o. Is it possible to identify individuals (i.e., one or more natural persons), 

either directly or indirectly (i.e., in combination with other data) from 

the dataset? If so, please describe how.

The following datasets relate to people:

i. Affective computing: One can see the person in the raw video, 

but the dataset contains no personal information. We do not 

explicitly use information regarding gender, ethnicity, identity, 

or video identifier in online sources. All pre-extracted features 

are non easily invertible and only rely on general visual or 

audio features such as the presence of a smile or magnitude of 

voice [181, 183].

ii. MIMIC: The MIMIC dataset has been rigorously de-

identified in accordance with Health Insurance Portability and 

Accountability Act (HIPAA) such that all possible personal 

information has been removed from the dataset. Removed 

personal information includes patient name, telephone 

number, address, and dates. Dates of birth for patients aged 

over 89 were shifted to obscure their true age. Please refer 

to Appendix C.2.2 for de-identification details. Again, we 

emphasize that any multimodal models trained to perform 

prediction should only be used for scientific study and should 

not in any way be used for real-world prediction.

iii. Kinetics: One can see the person in the raw video, but the 

dataset does not contain direct personal information. We do 
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not explicitly use information regarding gender, ethnicity, 

identity, or video identifier in online sources.

p. Does the dataset contain data that might be considered sensitive in any 
way (e.g., data that reveals racial or ethnic origins, sexual orientations, 
religious beliefs, political opinions or union memberships, or locations; 
financial or health data; biometric or genetic data; forms of government 
identification, such as social security numbers; criminal history)? If so, 
please provide a description.

MULTIBENCH contains datasets with financial and healthcare data. 

However, all these datasets are publicly available for research 

purposes. Healthcare data (MIMIC) has been rigorously de-identified 

in accordance with the Health Insurance Portability and Accountability 

Act (HIPAA) such that all possible personal information (patient name, 

telephone number, address, and dates, date of birth) has been removed 

from the dataset. Please refer to Appendix C.2.2 for de-identification 

details.

q. Any other comments?

No.

3. Collection Process

a. How was the data associated with each instance acquired? Was the data 
directly observable (e.g., raw text, movie ratings), reported by subjects 
(e.g., survey responses), or indirectly inferred/derived from other data 
(e.g., part-of-speech tags, model-based guesses for age or language)? If 
data was reported by subjects or indirectly inferred/derived from other 
data, was the data validated/verified? If so, please describe how.

We include the collection process for each dataset in Appendix C.2.

b. What mechanisms or procedures were used to collect the data 
(e.g., hardware apparatus or sensor, manual human curation, software 
program, software API)? How were these mechanisms or procedures 
validated?

We include these details in Appendix C.2.

c. If the dataset is a sample from a larger set, what was the sampling 
strategy (e.g., deterministic, probabilistic with specific sampling 
probabilities)?

We include sampling methods for each dataset in Appendix C.2.

d. Who was involved in the data collection process (e.g., students, 
crowdworkers, contractors) and how were they compensated (e.g., how 
much were crowdworkers paid)?

We include annotation details for each dataset in Appendix C.2.
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e. Over what timeframe was the data collected? Does this timeframe 
match the creation timeframe of the data associated with the instances 
(e.g., recent crawl of old news articles)? If not, please describe the 
timeframe in which the data associated with the instances was created.

We include timeframes for each dataset in Appendix C.2.

f. Were any ethical review processes conducted (e.g., by an institutional 
review board)? If so, please provide a description of these review 
processes, including the outcomes, as well as a link or other access 
point to any supporting documentation.

From the authors of MIMIC [78]: “The project was approved by 

the Institutional Review Boards of Beth Israel Deaconess Medical 

Center (Boston, MA) and the Massachusetts Institute of Technology 

(Cambridge, MA). Requirement for individual patient consent was 

waived because the project did not impact clinical care and all protected 

health information was de-identified.”

g. Does the dataset relate to people? If not, you may skip the remainder of 
the questions in this section.

Yes, the healthcare, affective computing, and Kinetics (multimedia) 

datasets relate to people. The other datasets in MULTIBENCH do not.

h. Did you collect the data from the individuals in question directly, or 
obtain it via third parties or other sources (e.g., websites)?

Affective computing and Kinetics datasets are collected from YouTube 

videos that follow the creative commons license and follow fair use 

guidelines of YouTube. According to the authors for the MIMIC dataset 

[78]: “Data was downloaded from several sources, including archives 

from critical care information systems, hospital electronic health record 

databases, and Social Security Administration Death Master File.”

i. Were the individuals in question notified about the data collection? If 
so, please describe (or show with screenshots or other information) how 
the notice was provided, and provide a link or other access point to, or 
otherwise reproduce, the exact language of the notification itself.

Affective computing and Kinetics datasets are collected from YouTube 

videos that follow the creative commons license and follow fair use 

guidelines of YouTube. This is the standard way for content creators 

to grant someone else permission to use and redistribute their work. 

According to the authors for the MIMIC dataset [78]: “The project was 

approved by the Institutional Review Boards of Beth Israel Deaconess 

Medical Center (Boston, MA) and the Massachusetts Institute of 

Technology (Cambridge, MA). Requirement for individual patient 

consent was waived because the project did not impact clinical care 

and all protected health information was de-identified.”
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j. Did the individuals in question consent to the collection and use of 
their data? If so, please describe (or show with screenshots or other 
information) how consent was requested and provided, and provide a 
link or other access point to, or otherwise reproduce, the exact language 
to which the individuals consented.

Affective computing and Kinetics datasets are collected from YouTube 

videos that follow the creative commons license and follow fair use 

guidelines of YouTube which allows content creators to grant someone 

else permission to use and redistribute their work. According to the 

authors for the MIMIC dataset [78]: “Requirement for individual 

patient consent was waived because the project did not impact clinical 

care and all protected health information was de-identified.”

k. If consent was obtained, were the consenting individuals provided with 
a mechanism to revoke their consent in the future or for certain uses? If 
so, please provide a description, as well as a link or other access point 
to the mechanism (if appropriate).

N/A.

l. Has an analysis of the potential impact of the dataset and its use on data 
subjects (e.g., a data protection impact analysis) been conducted? If so, 
please provide a description of this analysis, including the outcomes, as 
well as a link or other access point to any supporting documentation.

N/A.

m. Any other comments?

N/A.

4. Preprocessing/cleaning/labeling

a. Was any preprocessing/cleaning/labeling of the data done (e.g., 
discretization or bucketing, tokenization, part-of-speech tagging, SIFT 
feature extraction, removal of instances, processing of missing values)? 
If so, please provide a description. If not, you may skip the remainder 
of the questions in this section.

Yes, we followed the convention in prior research for any preprocessing 

done to the datasets. We explain these steps in Appendix C.2.

b. Was the “raw” data saved in addition to the preprocessed/cleaned/
labeled data (e.g., to support unanticipated future uses)? If so, please 
provide a link or other access point to the “raw” data.

Yes, we include the raw data in MULTIBENCH in addition to the 

preprocessed features. The raw data (usually in the form of raw 

text, videos, audio, time series etc) are useful for users to perform 

their own feature extraction and also for robustness tests on raw data 

itself (e.g., imperfections in the raw text through spelling errors and 
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missing words). There are certain cases where we are not allowed to 

distribute the raw data: for MIMIC where users must undergo training 

to download the raw data, and for finance datasets where Yahoo 

Finance is publicly available but does not allow redistribution of raw 

data. For both of these datasets, we provide automated download and 

preprocessing scripts once the raw data is downloaded through the 

correct procedure by each user (see details in Appendix C.2).

c. Is the software used to preprocess/clean/label the instances available? If 

so, please provide a link or other access point.

Yes, we provided all links and references to preprocessing steps in 

Appendix C.2.

d. Any other comments?

No.

5. Uses

a. Has the dataset been used for any tasks already? If so, please provide a 
description.

Yes, MULTIBENCH contains several datasets that have been used in 

the multimodal ML community. We provide links to the original 

repositories of each dataset and their original citations in Appendix C.2.

b. Is there a repository that links to any or all papers or systems that use 
the dataset? If so, please provide a link or other access point.

We provide links to the original repositories of each dataset and their 

original citations in Appendix C.2. We also include references to 

general multimodal methods implemented in MULTIZOO in Appendix E. 

Many of these methods have been tested by their original authors on a 

small subset of datasets in MULTIBENCH. In addition to these references, 

the leading authors maintain a reading list on topics in multimodal ML 

at [98] which contains links to papers, datasets, code, academic courses, 

conferences, and workshops relevant to the multimodal ML community.

c. What (other) tasks could the dataset be used for?

In addition to building multimodal models for the prediction tasks, 

datasets in MULTIBENCH can also be used for:

i. Unsupervised learning across multimodal data/unsupervised 

pre-training of multimodal models.

ii. Interpreting relationships between modalities.

iii. Designing models for robustness to noisy and missing 

modalities.

iv. Investigating alignment between modalities.
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v. Other multimodal tasks including but not limited to: co-

learning, translation, retrieval, and grounding [10].

d. Is there anything about the composition of the dataset or the way 
it was collected and preprocessed/cleaned/labeled that might impact 
future uses? For example, is there anything that a future user might 
need to know to avoid uses that could result in unfair treatment of 
individuals or groups (e.g., stereotyping, quality of service issues) or 
other undesirable harms (e.g., financial harms, legal risks) If so, please 
provide a description. Is there anything a future user could do to 
mitigate these undesirable harms?

We are careful to outline all possible risks associated with each dataset 

in Appendix C.2 and also in our broader impact statement (Appendix 

A). We acknowledge that there could be risks regarding the privacy and 

security of data, as well as the real-world deployment of these methods 

whenever human-centric data is involved (e.g., in healthcare, affective 

computing, and multimedia). We discussed data demographics in the 

previous section and it should be taken into consideration when making 

claims regarding the generalization of models to new users. We also 

emphasize that these multimodal datasets and methods should only be 

used for research purposes and not for actual real-world deployment 

until research can sufficiently verify their safety. Finally, we are 

carefully working with domain experts towards better understanding 

biases in these multimodal datasets and models as well as their real-

world safety.

e. Are there tasks for which the dataset should not be used? If so, please 
provide a description.

Yes, we emphasize that all multimodal models trained to perform 

prediction on these datasets should not in any way be used to harm 

individuals and should only be used as a scientific study. They should 

not be deemed safe for real-world deployment. In particular, the models 

used to make predictions of affective states, human actions, health 

indicators, and financial indicators are particularly sensitive and should 

not be used to inform any real-world decisions. All results must only 

be used as a scientific study of machine learning methods. See more 

details in Appendix A.

f. Any other comments?

No.

6. Distribution

a. Will the dataset be distributed to third parties outside of the entity (e.g., 
company, institution, organization) on behalf of which the dataset was 
created? If so, please provide a description.
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Yes, the benchmark will be distributed to the public research 

community for theoreticians and practitioners to experiment on 

multimodal data.

b. How will the dataset be distributed (e.g., tarball on website, API, 
GitHub)? Does the dataset have a digital object identifier (DOI)?

We plan to distribute MULTIBENCH via our public GitHub: https://

github.com/pliang279/MultiBench. We also include a landing website 

page on https://cmu-multicomp-lab.github.io/multibench/ that includes 

an introduction to the benchmark, links to the relevant papers on 

multimodal datasets and algorithms, and a public leaderboard to keep 

track of current progress on these multimodal tasks.

c. When will the dataset be distributed?

The dataset is currently available for use.

d. Will the dataset be distributed under a copyright or other intellectual 
property (IP) license, and/or under applicable terms of use (ToU)? If 
so, please describe this license and/or ToU, and provide a link or other 
access point to, or otherwise reproduce, any relevant licensing terms or 
ToU, as well as any fees associated with these restrictions.

We release the benchmark and code under an MIT license: see https://

github.com/pliang279/MultiBench/blob/main/LICENSE, which allows 

for sharing and distribution of the code for research purposes. Each of 

the datasets in MULTIBENCH has their own licenses which we detail in 

Appendix C.2.

e. Have any third parties imposed IP-based or other restrictions on 
the data associated with the instances? If so, please describe these 
restrictions, and provide a link or other access point to, or otherwise 
reproduce, any relevant licensing terms, as well as any fees associated 
with these restrictions.

Yes, MULTIBENCH brings together a collection of several existing 

datasets in the multimodal research that were built by their individual 

authors who have original licenses for these datasets. We only included 

the datasets with licenses that allow for redistribution (MIT or Creative 

Commons license) and are freely downloadable for research purposes. 

We detailed all dataset licenses in Appendix C.2.

f. Do any export controls or other regulatory restrictions apply to 
the dataset or to individual instances? If so, please describe these 
restrictions, and provide a link or other access point to, or otherwise 
reproduce, any supporting documentation.

We are not aware of any such restrictions.

g. Any other comments?
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No.

7. Maintenance

a. Who is supporting/hosting/maintaining the dataset?

The dataset is supported and hosted by the team of authors at CMU. 

The team will also lead the maintenance and expansion of MULTIBENCH. 

The team will also work with the other collaborators on the paper who 

are domain experts in each research area MULTIBENCH covers, such as 

robotics, HCI, healthcare, and finance.

b. How can the owner/curator/manager of the dataset be contacted (e.g., 
email address)?

We provide all contact addresses at https://cmu-multicomp-

lab.github.io/multibench/.

c. Is there an erratum? If so, please provide a link or other access point.

All erratum and updates to the dataset will be tracked via GitHub 

commit histories at https://github.com/pliang279/MultiBench. We will 

also provide updates via our landing page https://cmu-multicomp-

lab.github.io/multibench/.

d. Will the dataset be updated (e.g., to correct labeling errors, add new 
instances, delete instances)? If so, please describe how often, by whom, 
and how updates will be communicated to users (e.g., mailing list, 
GitHub)?

Yes, we plan for long-term maintenance and expansion of the dataset. 

All erratum and updates to the dataset will be tracked via GitHub 

commit histories at https://github.com/pliang279/MultiBench. We will 

also provide updates via our landing page https://cmu-multicomp-

lab.github.io/multibench/. Please refer to Appendix C.5 for details.

e. If the dataset relates to people, are there applicable limits on 
the retention of the data associated with the instances (e.g., were 
individuals in question told that their data would be retained for a fixed 
period of time and then deleted)? If so, please describe these limits and 
explain how they will be enforced.

The individuals in question were not notified about the data collection. 

For YouTube videos, they are released under a creative commons 

license which is the standard way for content creators to grant someone 

else permission to use and redistribute their work. According to the 

authors for the MIMIC dataset [78]: “The project was approved by 

the Institutional Review Boards of Beth Israel Deaconess Medical 

Center (Boston, MA) and the Massachusetts Institute of Technology 

(Cambridge, MA). Requirement for individual patient consent was 
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waived because the project did not impact clinical care and all protected 

health information was de-identified.”

f. Will older versions of the dataset continue to be supported/hosted/
maintained? If so, please describe how. If not, please describe how its 
obsolescence will be communicated to users.

Yes, we will maintain a GitHub history for all updates and older 

versions of datasets and code in MULTIBENCH.

g. If others want to extend/augment/build on/contribute to the dataset, 
is there a mechanism for them to do so? If so, please provide a 
description. Will these contributions be validated/verified? If so, please 
describe how. If not, why not? Is there a process for communicating/
distributing these contributions to other users? If so, please provide a 
description.

Yes, we will create a system where users can create pull requests on 

GitHub to include their datasets and models. The authors will verify 

that the additions are in the scope of multimodal learning and do not 

break the current experimental code. We will work with these authors to 

ensure that their data and algorithms can be included in MULTIBENCH.

h. Any other comments?

No.

C.4 Benchmark Distribution

We plan to distribute the MULTIBENCH benchmark via our public GitHub: https://github.com/

pliang279/MultiBench. We also include a landing website page on https://cmu-multicomp-

lab.github.io/multibench/ that includes an introduction to the benchmark, links to the 

relevant papers on multimodal datasets and algorithms, and a public leaderboard to keep 

track of current progress on these multimodal tasks.

The GitHub and webpage will also allow feedback from the research community in 

suggesting and adding new datasets and algorithms. Finally, we plan to include a list of 

planned future updates to MULTIBENCH on the webpage along with their target release dates.

C.5 Hosting and Maintenance

We have a long-term plan to continue the expansion and maintenance of MULTIBENCH. Here 

we summarize the main directions we plan to expand towards and leave details and other 

areas of future work to Appendix I.

• Maintenance: MULTIBENCH will be continuously hosted via GitHub which 

provides stable access to code and a landing page website. We guarantee that 

MULTIBENCH will be available for a long time through our distribution channels. 

The authors themselves are also actively working on multimodal learning 

in affective computing, robotics, healthcare, human-computer interaction, and 
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multimedia. The authors are also involved in efforts in applying multimodal 

machine learning to finance. As a result of these long-term collaborative research 

efforts, the authors will continue to maintain and expand on the datasets and code 

provided in MULTIBENCH.

• Expansion of datasets: We plan to include more datasets for multimodal fusion 

as well as more research areas in multimodal learning such as retrieval, question 

answering, grounding, and reinforcement learning. While these research areas 

are very different, we hope that insights in multimodal representations can be 

shared across them.

• Expansion of evaluation: To enable holistic evaluation, we plan to build on top 

of our metrics by adding robustness to distribution shift, uncertainty measures, 

tests for fairness and social biases, as well as labels/metrics for interpretable 

multimodal learning.

• Expansion of datasets: We plan to encourage students taking the multimodal 

machine learning course at CMU (https://cmu-multicomp-lab.github.io/mmml-

course/fall2020/) to use the benchmark and add their proposed datasets and 

models to it.

• Expansion of methods: The authors currently collect a very up-to-date 

reading list of core multimodal papers https://github.com/pliang279/awesome-

multimodal-ml and plan to continuously update MULTIZOO with new multimodal 

methods proposed by the community.

C.6 Author Statement

The authors carefully reviewed the information present in this document. To the best of our 

knowledge, the datasets in MULTIBENCH can be used for research purposes, following the 

methodology and licenses described in the dataset section (Appendix C.2).

C.7 License

Each of the datasets included in MULTIBENCH includes their own licenses which we detail in 

Appendix C.2.. We release all preprocessing code across all datasets using the MIT license. 

All other codes for multimodal algorithms in MULTIZOO as well as evaluation scripts, are 

also released via an MIT license: see https://github.com/pliang279/MultiBench/blob/main/

LICENSE, which allows for sharing and distribution of the code for research purposes.

C.8 Metadata

We have included structured metadata for MULTIBENCH on our landing page: https://cmu-

multicomp-lab.github.io/multibench/.

C.9 Persistence of MULTIBENCH

MULTIBENCH is publicly hosted on https://github.com/pliang279/MultiBench. For larger 

datasets that cannot be uploaded to GitHub, we plan to upload the processed dataset to 
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CMU Box. We are still exploring the best options for sharing large datasets. Users need to 

download these processed datasets, place them into a correct folder, and run the MULTIBENCH 

data loader and machine learning pipeline.

D: MULTIBENCH Evaluation Protocol

To enable holistic evaluation, MULTIBENCH offers a comprehensive evaluation methodology 

to assess (1) generalization across domains and modalities, (2) complexity during training 

and inference, and (3) robustness to noisy and missing modalities: We describe the 

evaluation protocol for each desiderata in detail in each of the following subsections:

D.1 Performance

MULTIBENCH provides standardized evaluation using metrics designed for each dataset, 

ranging from MSE and MAE for regression to accuracy, micro & macro F1-score, and 

AUPRC for classification on each dataset. To assess for generalization, we compute the 

variance of a particular model’s performance across all datasets in MULTIBENCH on which it 

is tested. We split these results on multiple datasets into in-domain datasets and out-domain 
datasets. In-domain datasets refer to model performance on datasets that it was initially 

proposed and tested on, while out-domain datasets refer to model performance on the 

remaining datasets. Comparing out-domain vs in-domain performance, as well as variance in 

performance across datasets as a whole, allow us to summarize the generalization statistics 

of each multimodal model.

D.2 Complexity

Modern ML research, unfortunately, causes significant impacts to energy consumption 

[142], a phenomenon often exacerbated in processing high-dimensional multimodal data. As 

a step towards quantifying energy complexity and recommending lightweight multimodal 

models, MULTIBENCH records the amount of information taken in bits (i.e., data size), 

number of model parameters, and time and memory resources required during the entire 

training process. To enforce consistency, the training time measured for all models on each 

dataset is run on the same CPUs and GPUs. We report training memory by measuring 

peak memory usage of the python process during the entire training process using python 

memory_profiler toolkit (https://pypi.org/project/memory-profiler/). When counting the 

number of parameters when training a model, we only count the parameters in persistent 

modules during training and does not count the ephemeral networks or modules created in 

the middle of the training process (such as the networks trained for determining weights in 

GRADBLEND or the fusion architectures created as part of the architecture search process in 

MFAS).

In addition to training time and resources, real-world models may need to be small and 

compact to run on mobile devices [131]. To account for this, MULTIBENCH also records 

inference time and parameters. We report inference time by measuring the time it takes for 

the trained model to complete inference on the entire test set of the dataset. In some cases, 

only parts of the parameters used in training are counted towards the inference parameters 
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(for example, the parameters in decoders of MVAE and MFM are part of training parameters 

but not part of inference parameters).

D.3 Robustness to Imperfect Data

Real-world multimodal data is often imperfect as a result of missing entries, noise 

corruption, or missing modalities entirely. For example, multimodal dialogue systems 

trained on acted TV shows are susceptible to poor performance when deployed in the real 

world where users might be less expressive in using facial gestures. This calls for robust 

models that can still make accurate predictions despite only having access to a (possibly 

noisy [101]) subset of signals [123]. To standardize efforts in evaluating the robustness 

of multimodal models, MULTIBENCH includes the following robustness tests as part of the 

evaluation:

D.3.1 Modality-specific Imperfections

Modality-specific imperfections are independently applied to each modality taking into 

account the unique noise topologies in that source of data (i.e., flips and crops of images, 

natural misspellings in text, abbreviations in spoken audio). We describe all the modality-

specific imperfections we implement in MULTIBENCH in the following:

Language: Imperfections in the language modality can occur at various granularities 

spanning the character, word, phrase, and sentence levels. With reference to [15], many 

of these imperfections occur at the raw text data level and are usually results of spelling 

errors on a QWERTY keyboard as well as abbreviations in written, typed, and spoken text. 

Given a word w of length n and a fixed probability p ∈ (0, 1), we implement the following 

language-specific imperfections:

1. Spelling errors: note that spelling mistakes are different from intentionally 

changed word forms (e.g. abbreviation used in instant messaging service) since 

they are unintentional [144]. We simulate typos by replacing each letter with a 

letter having an adjacent position on a QWERTY keyboard with probability p.

2. Short message noise: Short Message Service (SMS) data usually include 

intentional corruptions of words and phrases like abbreviations, phonetic 

substitutions, omission of characters and words, and dialectal and informal 

usages [144]. We implement the following:

a. Simulate sticky keys: given a number m, choosing m letters of a word 

randomly to repeat with probability p.

b. Simulate quick typing: given a number m, choosing m letters of a word 

randomly to omit with probability p.

3. Random permutation of letters: swapping adjacent two letters is a common 

natural noise when typing quickly [15]. Random permutation of the entire 

word or the majority of letters is a form of synthetic noise. We implement the 

following:

Liang et al. Page 53

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2024 May 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



a. Swap two random adjacent letters (except for the first and the last letter) 

with probability p.

b. (b) Permute the middle chunk of a word: denote the middle chunk (all 

letters except the first and the last letter) as w[1:n], with probability 

p, produce a permutation f with the first and last letter fixed, i.e.

f(0) = 0, f(n) = n. The shuffled word is w′ with w′[f(i)] = w[i] for all 

i ∈ [n].

Image: Given a RGB image X ∈ ℤW × H × 3 where W  and H are the height and width of 

the image, let R, G, B be the W × H matrices of three color channels. We implement the 

following robustness tests in the image modality:

1. Noises in digital images: various noises are naturally prevalent in digital images 

during image acquisition, coding, transmission, and processing steps [19]. We 

implement the following:

a. Gaussian/electronic noise that normalizes histogram with respect to the 

gray values. We add Gaussian noise as a W × H matrix with each entry 

following Gaussian distribution N(0, p).

b. Impulse valued/salt-and-pepper noise that has dark pixels in bright 

regions and bright pixels in dark regions. To add salt-and-pepper noise, 

for each pixel x ∈ X, we convert x = 0 (white) or x = 255 (black) into a 

dead pixel with uniform distribution with probability p.

c. Periodic noise such that it looks like some repeating patterns are 

exposed on top of the affected image. We add periodic noise by 

exposing the original image to periodic patterns with probability p.

2. Color errors:

a. Convert the image to grayscale: 0.3R + 0.59G + 0.11B with probability 

p.

b. Decrease the contrast with probability p.

c. Negate the color: let X′ be the inverted image then ∀i ∈ [W ], j ∈ [H] ,
k ∈ [3], X′(i, j, k) = 255 − X[i, j, k]with probability p.

d. Change the white-balance by increasing/decreasing the temperature 

with probability p. (e) Colorize the image with probability p.

3. Flips, crops, and rotations:

a. Horizontal flipping with probability p.

b. Color space transformation - isolating a single color channel and 

changing brightness etc with probability p.

c. Random cropping changes with probability p.

d. Rotate the image by random angle ∈ [20,40] with probability p.
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e. Translation of images to the left, right, up, or down with probability p.

Most of these transformations are achieved with the Python Imaging Library (PIL).

Video: We treat video data as a time series of images. For each image in the video, we 

apply the image-specific robustness tests as described above. In addition, we also apply the 

following tests to simulate imperfections in time-series data:

1. Random drop: dropping the datapoint at random time step with probability p.

2. Structured drop: given a time step t, m consecutive time steps with at least one 

nonzero signal are dropped with probability p.

Audio: Audio is typically represented as a time-series signal. Noises are primarily caused 

by imperfections in the recording device, which can cause static Gaussian noise to be added 

to the recorded temporal waveform at random time steps, background noise to be picked up 

at higher magnitudes, and certain time steps (or consecutive time steps) to be dropped from 

the recording. We implement the following unimodal noises in the audio modality:

1. Additive white Gaussian noise: given an array of length N of a sampled audio 

segment, we add white gaussian noise, which is an array of N with each entry 

following a normal distribution with mean 0 and standard deviation p.

In addition to these imperfections applied at a single time step, we also apply the following 

across the entire time-series signal:

1. Random drop: dropping the datapoint at random time step with probability p.

2. Structured drop: given a time step t, m consecutive time steps with at least one 

nonzero signal are dropped with probability p.

Time-series data consists of a sequence with a time-dimension (a sequence of data points 

indexed by time). Following Liang et al., [101], we implement the following types of noise 

and missing values in time-series data:

1. White noise added independently at every time step (noise sampled from zero-

mean Gaussian with standard deviation p).

2. Random drop: dropping the datapoint at random time step with probability p.

3. Structured drop: given a time step t, m consecutive time steps across modalities 

are dropped with probability p.

Optical flow: We treat optical flow in a similar manner as time-series data and implement 

the same robustness tests.

Force and proprioception sensors: We also treat these sensors in robotics as time-

series data with a key difference - we add noise/drop time steps at a higher frequency since 

force and proprioception sensors often record data at a higher frequency.
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Tabular data takes the form of rows, each of which contains information about some feature 

(e.g., age, ). We define the following robustness tests on tabular data:

1. Random drops of elements from the table with probability p.

2. Random swaps elements in the table with probability p.

Sets are data instances where the collection of input elements satisfy permutation invariance, 

which is in contrast to fixed dimensional vectors that are commonplace in machine learning 

on images, text, and audio. The key difference between sets and tabular data is that each 

element in the set is often assumed to be from the same distribution (e.g., a point cloud is a 

set of 3D coordinates). We define the following types of noise on an input set modality:

1. Random dropping of elements from the set with probability p.

2. Adding noise to elements of the set with noise sampled from zero-mean 

Gaussian with standard deviation p.

D.3.2 Multimodal Imperfections

Multimodal imperfections capture correlations in imperfections across modalities (e.g., 

missing modalities [123], or a chunk of time missing in multimodal time-series data [101]). 

These represent settings where data collection across modalities is correlated rather than 

independent.

1. Correlated noise: adding noise to all modalities with probability p, where noise is 

defined according to the aforementioned modality-specific noises.

2. Correlated drop: dropping all modalities with probability p, where dropping 

patterns are defined according to the aforementioned modality-specific drops.

3. Temporal drop: in the case of temporal modalities recorded in parallel (e.g., 

video, audio, and text recorded across time; financial time-series data recorded 

across days), we perform correlated drops across all modalities at random time 

steps with probability p.

4. Structured temporal drop: we extend temporal drop such that given a time step t, 
we perform temporal drop on m consecutive time steps with probability p.

5. Missing modalities: dropping an entire modality with probability p.

D.3.3 Robustness Measure

We train the model on clean training data and evaluate it under increasing levels of 

noise added only to test data. To simulate realistic noise and imperfections in test data, 

we follow the modality-specific and multimodal imperfections as described above. Given 

a multimodal dataset with M modalities, this allows us to create M + 1 partitions 

of imperfect test datasets: one partition of increasing noise levels for modality-specific 

imperfections within each modality (which gives a total of M partitions) and one partition 

of multimodal imperfections across all modalities. For datasets where it is not possible to 

create multimodal imperfections due to the lack of a shared dimension (e.g., image and 

text datasets typically do not share any correlated dimension, but multimodal time-series 
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datasets share an underlying time dimension), we implement the first M modality-specific 

imperfections which results in M imperfect data partitions.

A qualitative visualization: Given each test partition, we take a unimodal or multimodal 

model trained on clean data and plot model performance on the y -axis as increasing levels 

of noise is added to the test data, on a range of 0 (no noise) to 1 (complete noise) along 

the x-axis. This allows us to visually inspect the robustness of each model as increasing 

imperfections are added to the test data. Visually, a robust model should maintain high 

accuracy (or low MSE) as much as possible despite increasing levels of noise.

A quantitative metric: While the visualization technique above allows one to compare 

the robustness of several multimodal models across the same dataset, it does not allow 

us to aggregate robustness performance across the broad range of datasets and tasks in 

MULTIBENCH. To design such a metric, we extend the quantitative robustness measures 

proposed in Taori et al., [149] to deal with multimodal imperfections across a range of 

imperfection levels σ ∈ [0.0, 1.0].

We begin by reviewing the example proposed in Taori et al., [149]: suppose we are given 

two models f1 and f2, where accuracy accclean f1 = 0.8, accnoisy f2 = 0.75 (i.e., a 5% drop in 

accuracy from the imperfections), and accclean f2 = 0.9, accnoisy f2 = 0.76 (a 14% drop). Model 

f2 has higher accuracy on the noisy test set, but overall sees a drop of 14% from the clean 

to the noisy test set. In contrast,f1 starts off with a lower accuracy but sees only a 5% drop. 

To capture both these desiderata (i.e., having higher accuracy at all levels and lower drops 
in accuracy), Taori et al., [149] introduce two notions of robustness: relative and effective 

robustness.

Relative robustness directly measures accuracy under imperfection. A model with higher 

relative robustness would display higher accuracy at all levels of imperfection compared to 

a baseline model. We measure the relative robustness of all multimodal models as compared 

to a baseline LF (simple late fusion with concatenation) method since that is the most 

basic method tested on all datasets. We compute relative robustness of a model f using the 

formula

τ(f) = ∫
σ

accσ(f) − accσ(LF) dσ,

(1)

which essentially measures the area between two performance-imperfection curves as 

imperfection levels σ increase from 0.0 to 1.0 (we compute a discrete approximation to 

the integral).

Effective robustness measures the rate of accuracy drops as imperfection levels increase. 

However, to reliably measure the rate of accuracy drops, one must remove the confounding 

variable brought by differences in initial accuracies on clean test data. Taori et al., [149] 

therefore propose to measure whether a model can offer higher accuracy on the noisy test 
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set beyond what is expected from having higher accuracy on the original test set. Taori 

et al., use a log-linear fit on the set of (accuracy on noisy test data, accuracy on clean 

test data) points across a range of models trained on ImageNet to measure the expected 

accuracy on noisy test data given a new model’s performance on clean test data. Graphically, 

effective robustness then corresponds to a model’s performance on noisy test data lying 

above the linear trendline. Similar to relative robustness, we measure the effective robustness 

of multimodal models relative to the accuracy trend of the LF baseline, which we denote as 

βLF. We compute effective robustness of a model f using the formula

ρ(f) = ∫
σ

accσ(f) − βLF acc0.0(f) dσ,

(2)

which essentially measures the area between the performance-imperfection curve of model f
and a shifted performance-imperfection curve of the LF baseline (shifted to match the initial 

accuracy of model f at imperfection level 0.0). A model with higher effective robustness 

should lie above this shifted accuracy curve at all imperfection levels σ. Again, we compute 

a discrete approximation to the integral.

Overall, a robust multimodal model should obtain both high relative and effective 

robustness.

D.4 Aggregating Measures Across Datasets and Tasks

MULTIBENCH benefits from benchmarking multimodal models across a diverse set of datasets, 

modalities, and tasks. While it is useful to analyze methods on a single dataset in isolation, 

it is also useful to assess the generalization and failure modes of methods across multiple 

datasets. Therefore, we need a way to reliably summarize the above metrics (performance, 

complexity, and robustness) across datasets despite their being on vastly different scales 

(e.g., accuracy for different numbers of categories) and orders (e.g., accuracy vs RMSE). We 

find that min-max normalization of results per dataset into a 0 − 1 scale (where min and max 

are appropriately reversed for RMSE/MSE metrics) before averaging across datasets gives a 

reliable indicator of overall performance across multiple datasets.
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Table 3:

MULTIZOO provides a standardized implementation of the following multimodal methods to 

enable accessibility for new researchers and reproducibility of results. These approaches 

span advances in data processing, fusion paradigms, optimization objectives, and training 

procedures. We choose these approaches since they offer complementary perspectives 

towards tacking the fundamental challenges in multimodal fusion: (1) aligning signals across 

modalities at the right granularity, (2) learning complementary information across aligned 

signals, and (3) maintaining robustness in the presence of noisy and missing modalities.

Category Method Alignment Complementarity Robustness

Data WORDALIGN [26] ✓ ✗ ✗

Model

EF, LF [10] ✗ ✓ ✗

TF [179], LRTF [106] ✗ ✓ ✗

MI-MATRIX, MI-VECTOR, MI-SCALAR [77] ✗ ✓ ✗

NL GATE [167] ✗ ✓ ✗

MULT [154] ✓ ✓ ✗

MFAS [122] ✗ ✓ ✗

Objective

CCA [7] ✓ ✗ ✗

REFNET [135] ✓ ✗ ✗

MFM [155] ✓ ✓ ✗

MVAE [168] ✗ ✓ ✗

MCTN [123] ✗ ✗ ✓

Training
GRADBLEND [167] ✗ ✓ ✓

RMFE [53] ✗ ✓ ✓

E: MULTIZOO: A Zoo of Multimodal Algorithms

In this section, we provide more details into our choice of standardizing multimodal 

representation learning as well as the implementation of our standardized library. In each 

category, we carefully describe the algorithm, motivate its effect in tackling one of the core 

challenges in section B.2, and provide references to the original code that we adapted to 

include in MULTIZOO.

E.1 Selection of Algorithms in MULTIZOO

We begin by discussing our choices of algorithms in MULTIZOO. We consulted with domain 

experts in each of the application areas to select methods that satisfy the following 

properties:

1. Diversity in areas: We chose algorithms that present novel perspectives across a 

suite of machine learning research domains spanning data preprocessing, fusion 

paradigms, optimization objectives, and training procedures.

Liang et al. Page 59

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2024 May 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. Coverage of technical challenges: Each of the algorithms selected in MULTIZOO 

are chosen because they provide unique perspectives to the technical challenges 

in multimodal learning as elucidated in Appendix B.2. In Table 3, we provided 

a coarse attempt in categorizing each of the technical challenges in multimodal 

learning. As a result, we did not include too many methods in any category 

(e.g., multiple methods that are based on model architectures that tackle similar 

challenges of learning complementary information). Even within the same 

category and within those tackling the same technical challenge, we attempted 

to select ones that were fundamentally different (e.g., architectures based on 

domain knowledge, general-purpose Transformers, and architecture search).

3. SOTA on a particular dataset: For each dataset chosen in MULTIBENCH, we aim 

to include the model that currently achieves state-of-the-art performance on that 

dataset. This allows us to assess the best performing model within the same 

domain of the dataset, as well as the best performing model outside the domain 

of the dataset.

4. Community expansion: Any set of initial methods that we will choose will 

represent only a small sample of the powerful multimodal methods out there. We 

will encourage community participation in expanding the methods in MULTIZOO 

and encourage researchers to implement new methods using a similar modular 

structure to reduce confounding factors, enable standardized sharing of code, and 

ensure reproducibility in results.

E.2 Data Preprocessing

Temporal alignment:

As a preprocessing step, performing temporal alignment [26] has been shown to help tackle 

the multimodal alignment problem in the case of time-series data. This approach makes 

an implicit assumption on the temporal granularity of the modalities (e.g., at the level of 

words for text) and aligns information from the remaining modalities to the same temporal 

granularity. We call this approach WORDALIGN [26] and apply it to temporal data with text 

being one of the modalities. We use the temporal alignment provided in https://github.com/

A2Zadeh/CMU-MultimodalSDK. Specifically, it performs alignment at the granularity of 

words. Given a sentence with words w1, …, wT each annotated with their start and end times 

s1, e1 , s2, e2  , …, sT, eT , word-level alignment takes the non-text modality features (which 

are typically extracted at a higher frequency) and averages them during the intervals e1 − s1, 

e2 − s2, ...,eT − sT. This results in a text sequence of T  words alongside aligned non-text 

modality sequences of T  time-steps as well.

E.3 Fusion Paradigms

Early and late fusion have been the de-facto first-approach when tackling new multimodal 

problems. Early fusion performs concatenation at the input data level before using a suitable 

prediction model (i.e.,Zmm = x1, x2 ) and late fusion applies suitable unimodal models to each 

modality to obtain their feature representations, concatenates these features, and defines 
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a classifier to the label (i.e.,Zmm = z1, z2 ) [10]. MULTIZOO includes their implementations 

denoted as EF and LF respectively. Since these are basic building blocks in the multimodal 

learning field, we implement them ourselves.

Tensors are specifically designed to tackle the multimodal complementarity challenge 

by explicitly capturing higher-order interactions across modalities [179]. Given unimodal 

representations z1,z2 , a multimodal tensor representation is defined as zmm = z1

1 ⊗ z2

1  where 

⊗ denotes an outer product. However, computing tensor products is expensive since their 

dimension scales exponentially with the number of modalities. Several efficient variants 

have been proposed to approximate expensive full tensor products with cheaper variants 

while maintaining performance [71, 101, 106]. MULTIZOO includes Tensor Fusion (TF) [179] 

as well as approximate Low-rank Tensor Fusion (LRTF) [106].

We use the Tensor Fusion implementation in https://github.com/Justin1904/

TensorFusionNetworks and the Low-rank Tensor Fusion implementation in https://

github.com/Justin1904/Low-rank-Multimodal-Fusion. As future work, we also plan to 

include more expressive higher-order tensor fusion methods [71].

Multiplicative Interactions (MI) further generalize tensor products to include learnable 

parameters that capture the interactions between streams of information [77]. In its most 

general form, MI defines a bilinear product zmm = z1Wz2 + z1
⊤U + Vz2 + b where W, U, Z, 

and b are trainable parameters. By appropriately constraining the rank and structure of 

these parameters, MI recovers HyperNetworks [61] (unconstrained parameters resulting in 

a matrix output), Feature-wise linear modulation (FiLM) [120, 188] (diagonal parameters 

resulting in vector output), and Sigmoid units [37] (scalar parameters resulting in scalar 

output). MULTIZOO includes all 3 as MI-MATRIX, MI-VECTOR, and MI-SCALAR respectively.

Since code was not released for the Multiplicative Interactions paper [77], we implemented 

the MI layer ourselves. We also referred to the implementation of Feature-wise linear 

modulation (FiLM) [120] from https://github.com/ethanjperez/film and added it as a module 

in MULTIBENCH, which we call FILM. While MI-VECTOR (i.e., diagonal parameters in a MI 

layer which results in a vector output) corresponds to the most basic implementation of 

FILM, the original FILM layer uses multiple non-linear layers instead of a single linear 

transformation in MI-VECTOR which has been shown to improve performance [120].

Gated attention models are prevalent in learning combinations of two representations 

that dynamically change for every input [25, 167, 171]. Its general form can be written 

as zmm = z1 ⊙ ℎ z2 , where ℎ represents a function with sigmoid activation and ⊙ denotes 

the element-wise product. The output ℎ z2  is commonly referred to as “attention weights” 

learned from z2 used to attend on z1.

We implement the Query-Key-Value mechanism as NL GATE as proposed in [167] 

by referring to the implementation of in https://github.com/facebookresearch/VMZ. This 

attention mechanism is conceptually similar to the MI-VECTOR case above but recent work 
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has explored more expressive forms of ℎ such as using a Query-Key-Value mechanism [167] 

or several fully-connected layers [25] rather than a linear transformation in MI-VECTOR.

Temporal attention models are useful in tackling the challenge of multimodal alignment 

and complementarity. Transformer models [158] have been shown to be useful for 

temporal multimodal data by automatically aligning and capturing complementary features 

at different time-steps [154, 174]. We include the Multimodal Transformer (MULT) [154] 

which uses a Crossmodal Transformer block that uses z1 to attend to z2 (and vice-versa), 

before concatenating both representations to obtain zmm = z1 2, z2 1 = CM z1, z2 , CM z2, z1 .

We use the public implementation available at https://github.com/yaohungt/Multimodal-

Transformer which includes a basic crossmodal transformer block designed for 2 modalities. 

To extend this to 3 modalities, the crossmodal transformer block is repeated across 

all 3 sets of modality pairs (i.e.,zmm = z1 2, z2 1, z1 3, z3 1, z2 3, z3 2 ). While this is still 

computationally feasible for 3 modalities such as the language, video, and audio datasets 

that MULT was originally designed for, this quickly becomes intractable for problems 

involving more than 3 modalities. To adapt MULT for the financial prediction task involving 

more than 10 modalities, we cluster all modalities into 3 groups based on similarities in their 

data and perform early fusion on the data within each cluster before applying MULT only 

on the 3 clusters of modalities. While MULT is a strong model based on performance, it 

poses scalability issues that should be the subject of future work (i.e., since the number of 

cross-modal attention blocks grows quadratically with the number of modalities).

Architecture search:

Finally, instead of hand-designing multimodal architectures, several approaches define a set 

of atomic neural operations (e.g., linear transformation, activation, attention, etc.) and use 

architecture search to automatically learn the best order of these operations for a given 

multimodal task [122, 173]. We focus on the more general approach, MFAS [122], designed 

for language and vision datasets.

We adapt the implementation from https://github.com/juanmanpr/mfas. While this approach 

is categorized under innovations in model architecture (since it primarily targets better 

architectures for multimodal fusion), its code in the MULTIZOO toolkit is implemented 

under training structures, since architecture search requires an outer loop to learn model 

architectures over multiple inner supervised learning loops that train an individual model 

architecture. Therefore, we are unable to integrate MFAS directly with the basic supervised 

learning training loops like we do for the other fusion paradigms described above.

E.4 Optimization Objectives

In addition to the standard supervised losses (e.g., cross-entropy for classification, 

MSE/MAE for regression), several proposed methods have proposed new optimization 

objectives based on:
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Prediction-level alignment:

There has been extensive research in defining objective functions to tackle the challenge of 

multimodal alignment: capturing a representation space where semantically similar concepts 

from different modalities are close together. While primarily useful for cross-modal retrieval 

[104, 187], recent work has also shown its utility in learning representations for prediction 

[9, 33, 91, 151]. These alignment objectives have been applied at both prediction and feature 

levels. In the former, we implement Canonical Correlation Analysis (CCA) [7, 166], which 

computes ℒCCA = corr g1 z1 , g2 z2  where g1,g2 are auxiliary classifiers mapping each unimodal 

representation to the label. This method corresponds to prediction-level alignment since they 

aim to learn representations of each modality that agree on the label, as measured by the 

correlation of label predictions made by each modality across a batch of samples.

We refer to the paper that most closely implements CCA-based alignment for multimodal 

data (specifically directly testing on the CMU-MOSI dataset) [145]. Since the authors 

did not release their code, we implemented it from scratch with reference to CCA 

implementations from https://github.com/Michaelvll/DeepCCA and https://github.com/

VahidooX/DeepCCA.

Feature-level alignment:

In the latter, contrastive learning has emerged as a popular approach that brings 

similar concepts close in feature space and different concepts far away [33, 91, 

151]. MULTIZOO includes REFNET [135] which includes a self-supervised contrastive 

loss between unimodal representations z1,z2 and the multimodal representation zmm, i.e., 

ℒcontrast = 1 − cos zmm, g1 z1 + 1 − cos zmm, g2 z2  where g1,g2 is an auxiliary layer mapping each 

modality’s representation into the joint multimodal space. The intuition here is that the 

unimodal representations z1, z2 and the multimodal representation zmm should be aligned in 

the multimodal feature space as measured by cosine similarity. While the original REFNET 

method does not use negative samples, closely related work in multi-view contrastive 

learning has extended this idea to use negative samples which is more closely in line with 

recent work in contrastive learning [151].

Since they did not release code, we implement REFNET ourselves on top of current 

supervised learning modules in MULTIZOO.

Reconstruction objectives:

Methods based on generative-discriminative models (e.g., VAEs) include an objective to 

reconstruct the input (or some part of the input) [91, 155]. These have been shown to 

better preserve task-relevant information learned in the representation, especially in settings 

with sparse supervised signals such as robotics [91] and long videos [155]. We include 

the Multimodal Factorized Model (MFM) [155] which is a general approach that learns a 

representation zmm that can reconstruct input data x1,x2 while also predicting the label. The 

multimodal representation is a concatenation of factorized representations z1, z2, ..., zM, and 

zy.
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Since MFM optimizes a variational lower-bound to the log likelihood, the overall objective 

consists of 3 terms - generative, discriminative, and prior regularization:

min
fi, fmm, gi, gy

EPx1:M, yEf1 z1 ∣ x1 ⋯EfM zM ∣ xM Efmm zy ∣ x1:M

(3)

∑
i = 1

M
xi, gi zi, zy 2 + ℓ y, gy zy + λMMD Qz, Pz ,

where fi's are encoders from each modality to representations, fmm is a multimodal encoder 

to the joint representation zy, gi's are decoders from latent representations back into input 

data, and gy is a classification head to the label. The final MMD term is a regularizer to 

bring the representations close to a unit Gaussian prior. The multimodal encoder fmm in 

MFM can be instantiated with any multimodal model from section 3.2 (e.g., learning zy via 

tensors and adding a term to reconstruct input data). We use the public implementation in 

https://github.com/pliang279/factorized, which uses a temporal attention model as fmm for 

multimodal time-series data. For the remaining experiments we replace fmm with a simple 

late fusion but also run some experiments with multimodal methods that are state-of-the-art 

in each domain.

Improving robustness:

These approaches modify the objective function to account for robustness to noisy [101] 

or missing [89, 111, 123] modalities. MULTIZOO includes MCTN [123] which uses cycle-

consistent translation to predict the noisy/missing modality from present ones. The key 

insight is that a joint representation between modalities x1 and x2 can be learned by using 

x1 to predict x2, in a vein similar to machine translation or image/text style transfer. MCTN 

defines a cyclic translation path x1 zmm x2 zmm x1 and adds additional reconstruction 

losses ℒrec = x1 − x1 2 + x2 − x2 2 on top of the supervised learning loss. The representations 

zmm learned via translation are then used to predict the label. Surprisingly, the model needs to 

take in only x1 at test time and is therefore robust to all levels of noise or missingness in x2.

E.5 Training Procedures

Improving generalization:

Recent work has found that directly training a multimodal model with all modalities 

using supervised learning is sub-optimal since different modalities overfit and generalize 

at different rates. MULTIZOO includes an approach to solve this, called Gradient Blending 

(GRADBLEND), that computes generalization statistics for each modality to determine their 

weights during multimodal fusion [167]. We use the implementation in https://github.com/

facebookresearch/VMZ and modify it to be part of the MULTIZOO training structures.
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We also include a similar work, Regularization by Maximizing Functional Entropies 

(RMFE), which uses functional entropy to balance the contribution of each modality to the 

classification result [53]. We use the public implementation from https://github.com/itaigat/

removing-bias-in-multi-modal-classifiers.

E.6 Domain-specific Methods

Finally, we also implemented several domain-specific methods that had been applied to each 

domain. These include sensor fusion [91] and Kalman filtering [90] for robotics, and the 

multimodal Refiner network [135] for multimedia experiments. We refer the reader to the 

respective papers for algorithmic details.

F: Integrating MULTIBENCH and MULTIZOO: A Brief Tutorial

MULTIBENCH is available via our public GitHub: https://github.com/pliang279/MultiBench. 

We also include a landing website page on https://cmu-multicomp-lab.github.io/multibench/ 

that includes an introduction to the benchmark, links to the relevant papers on multimodal 

datasets and algorithms, and a public leaderboard to keep track of current progress on 

these multimodal tasks. In this section, we provide more details for the loading of datasets 

ML pipeline provided by MULTIBENCH. We also describe the modular implementation of 

multimodal models in MULTIZOO and provide several code examples to illustrate its usage.

F.1 Reading the Dataset

We provide scripts for reading each dataset supported by MULTIZOO at dataset/

[dataset_name]/get_data.py in the repository. For each dataset, the user will need 

to first follow downloading and preprocessing instructions documented in Section C.2 or 

in the comments of the get_data.py. The python script contains a function (usually 

called get_dataloader) that takes in required arguments (such as the location of the 

preprocessed dataset or compressed data, etc) and it will output a tuple of three PyTorch 

Dataloader objects for train, valid, and test split of the dataset respectively. You can feed 

these dataloaders directly into training structures in MULTIZOO.

F.2 Unimodal Models

In addition to the multimodal models described in Appendix E that are the main subject 

of study in this area, each dataset and modality typically also requires an initial processing 

stage either through feature extraction (see Appendix C.2 for initial feature extraction done 

on each dataset) and/or unimodal models on raw data/extracted features.

To standardize the implementation of unimodal models, MULTIZOO includes an 

implementation of several standard unimodal models that we encountered when running 

experiments on the diverse range of datasets and modalities in MULTIBENCH. Each unimodal 

model is implemented as a function class that takes in either raw data or extracted features 

from a modality and returns a unimodal representation tensor after applying the function. 

MULTIZOO includes the following unimodal methods:
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1. MULTI-LAYER PERCEPTRONS form the building blocks of many deep learning 

methods and are generally suitable for any modality that has undergone feature 

extraction into a vector that does not require any more processing with inductive 

biases. Their general structure means that they can be flexibly adapted for 

the tabular, set, and image, and text (e.g., see Deep Averaging Network 

[76]) modalities. They have also been used as a starting point for force and 

proprioception sensors in robotics if data does not come in the form of time-

series [91].

2. CONVOLUTIONAL NETWORKS [87] are typically used over the image modality. They 

are also used on the audio modality if an initial preprocessing step of converting 

raw audio to spectrograms is used.

3. RESNETS [66] are an improvement over ConvNets to enable training of deeper 

models and have been used extensively for images and audio spectrograms.

4. RECURRENT NETWORKS [134], GRUs [29], and LSTMs [69] are suitable for 

temporal data in the form of text, video, audio, and time-series modalities.

5. TRANSFORMERS [158] have recently emerged as a strong alternative to recurrent 

models by using self-attention rather than an accumulative memory. They 

are also suitable for text, video, audio, and time-series modalities. We 

also implemented recently proposed VISION TRANSFORMERS [44] that adapt 

Transformer models for image classification as well.

6. DEEP SETS [184] was proposed as a permutation-invariant method for machine 

learning on sets, and was shown to outperform prior methods such as MLPs that 

are sensitive to the permutation of elements.

7. Finally, we also included several domain-specific methods that we encountered 

as we were accumulating the datasets in MULTIBENCH. Some of these 

methods include MAXOUT networks [58] used for MM-IMDB [8] and CAUSAL 

CONVOLUTION [157] for the high-frequency force sensors used in robotics datasets 

[91, 90].

F.3 Multimodal Models

MULTIZOO includes an implementation of all multimodal methods described in Appendix 

E. Each multimodal method (i.e., fusion paradigm) is implemented as a Pytorch Module 

class taking in unimodal tensors and returning final multimodal representation vectors. We 

implemented several common fusion modules, such as Concatenation, Early-Concatenation 

(i.e., concatenate in input space), Stack, FilM, Multiplicative-Interactions (MI), Tensor 

Fusion, LRTF, NL-gate, and more described in Appendix E. When the training algorithm 

requires non-standard multimodal representations (e.g., more than one vector output from 

fusion module) or the unimodal encoders produce non-standard unimodal representations 

(i.e., not a single vector representation), special fusion modules will be needed in these 

situations. For example, we wrote a roboticsConcat module that performs concatenation for 

the VISION&TOUCH dataset due to its non-standard unimodal encoder output. We also have 

special fusion modules for optimization objectives or training structures such as MVAE, 
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MFAS, and GRADBLEND. The design of modular fusion modules gives flexibility in model 

design, as users can reuse a previous fusion module directly in most cases but can also write 

their own special fusion modules easily.

F.4 Classification Head

Finally, MULTIZOO includes flexible implementations of classification heads that take in the 

multimodal representation and return a label either directly (perhaps with some activation) 

for regression or a softmax over classes for classification.

F.5 Optimization Objectives

The optimization objectives are modules that take in the classification or regression result 

produced by the model and the ground-truth (as well as other necessary inputs if applicable) 

and return a loss that can be used to optimize the model based on the desired objective. 

In most methods we simply use torch.nn.CrossEntropyLoss as the objective for 

classification tasks and torch.nn.MSELoss as the objective for regression tasks. However, 

in certain training structures, special objectives are required. For example, MULTIZOO 

includes implementations of objective functions such as weighted reconstruction loss and 

ELBO loss used in reconstruction-based methods MFM and MVAE, and there are also 

implementations of alignment-based objectives such as CCA and contrastive learning. The 

final optimization objective returns a weighted sum of these prediction objectives and 

auxiliary objectives, where the user is free to specify these weights as hyperparameters.

F.6 Training Structures

Training Structures are the main body of MULTIZOO programs. All other modules (unimodal 

models, fusion paradigms, optimization objectives, classification heads, etc) can be seen as 

exchangeable plugins to these training structures. The training structure determines the main 

training algorithm, with the most common one being supervised_learning (training 

unimodal, multimodal, and classification parameters directly for a task-specific supervised 

learning objective).

More advanced methods may change this training structure either through additional 

optimization objectives (MVAE [168], MFM [155]) or via extensions of supervised learning 

through dynamic weighting of modalities (GRADBLEND [167]) or an outer architecture search 

training loop (MFAS [122]). Each of these methods, therefore, have their own training 

structure module.

These interchangeable plugin modules give a lot of flexibility in adapting each training 

structure to new tasks. For example, for the experiments described in Section G, the methods 

that are primarily based on different fusion paradigms (i.e., EF, LF, TF, LRTF, MI, NL-GATE, 

MULT etc all use the same training structure (supervised_learning) with different 

plugin fusion modules (and different unimodal encoders and heads based on datasets and 

tasks). Similarly, while most of these more advanced training structures were originally 

paired with a simple LF model in their original papers, our modular implementation makes it 

possible to combine advances in fusion paradigms with training structures in future work.
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F.7 Performance Evaluation

We standardize evaluation using metrics designed for each dataset, ranging from MSE and 

MAE for regression to accuracy, micro & macro F1-score, and AUPRC for classification. 

We use the standard PyTorch and scikit-learn implementations of these performance metrics.

Algorithm 2

PyTorch code integrating MULTIBENCH datasets and MULTIZOO models.

from datasets.get_data import get_dataloader

from unimodals.common_models import ResNet, Transformer

from fusions.common_fusions import MultInteractions

from training_structures.gradient_blend import train, test

# loading Multimodal IMDB dataset

traindata, validdata, testdata = get_dataloader(‘multimodal_imdb’)
out_channels = 3

# defining ResNet and Transformer unimodal encoders
encoders = [ResNet(in_channels=1, out_channels, layers=5),

     Transformer(in_channels=1, out_channels, layers=3)]
# defining a Multiplicative Interactions fusion layer
fusion = MultInteractions([out_channels*8, out_channels*32], out_channels*32, ‘matrix’)
classifier = MLP(out_channels*32, 100, labels=23)
# training using Gradient Blend algorithm

model = train(encoders, fusion, classifier, traindata, validdata,
   epochs=100, optimtype=torch.optim.SGD, lr=0.01, weight_decay=0.0001)

# testing
performance, complexity, robustness = test(model, testdata)

F.8 Complexity Evaluation

We report training memory by measuring peak memory usage of the python process during 

the entire training process using python memory_profiler toolkit (https://pypi.org/project/

memory-profiler/). When counting the number of parameters when training a model, we 

only count the parameters in persistent modules during training and does not count the 

ephemeral networks or modules created in the middle of the training process (such as the 

networks trained for determining weights in GRADBLEND or the fusion architectures created 

as part of the architecture search process in MFAS).

F.9 Robustness Evaluation

For robustness experiments, modality-specific and multimodal imperfections are 

implemented as modules. A separate version of data loader is created for each dataset to test 

robustness, which adds custom unimodal or multimodal imperfections of increasing noise 

levels σ ∈ [0,1] to the original clean test set. A testing module is also provided specifically 

for robustness experiments, which evaluates the model on increasing levels of noisy test 

datasets and prints out the metrics for visualization. In this way, MULTIZOO allows highly 

modular data loading and robustness evaluation that requires minimal modification to the 

regular training and testing workflow.
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MULTIZOO includes evaluation protocols summarizing these robustness results. It includes 

visualization functions of the performance-imperfection curves across datasets in 

MULTIBENCH. We also implemented relative and effective robustness as two quantitative 

metrics for robustness evaluation. For relative robustness, we approximate the area under the 

performance-imperfection curves for each model across MULTIBENCH datasets. For effective 

robustness, we take the performance-imperfection curve of LF evaluated on the same 

dataset equalized for initial accuracy on clean test data. For both metrics, we normalized 

performance across all models evaluated on the same dataset.

F.10 Code Snippets

In Algorithm 2, we show a sample code snippet in Python that loads a dataset 

from MULTIBENCH (Appendix C.2), defines the unimodal and multimodal architectures, 

optimization objectives, and training procedures (Appendix E), before running the 

evaluation protocol (Appendix D). Our MULTIZOO toolkit is easy to use and trains entire 

multimodal models in less than 10 lines of code. By standardizing the implementation of 

each module and disentangling the individual effects of models, optimizations, and training, 

MULTIZOO ensures accessibility and reproducibility of its multimodal algorithms.

Table 4:

Table of hyperparameters for prediction on affective computing dataset.

Component Model Parameter Value

GRU Encoder GRU

Input sizes [5,20,35,74,300,704]

Hidden sizes [32,32,64,128,512,1024]

Num of layers 1 or 2

Dropout 0:0 or 0:1

Transformer Encoder [158] Transformer [158]

Input sizes [5,20,35,74,300,704]

Hidden sizes [32,32,64,128,512,1024]

Num of layers 2 or 3

Dropout 0.2

Head MLP

Input sizes [5,20,32,64,128,256]

Hidden sizes [5,20,32,64,128,256]

Num layers [2

Dropout 0.2

MCTN [123] Encoder GRU

Input sizes 300

Hidden sizes [32, 64]

Num of layers 1 or 2

Dropout 0.0 or 0.1

MCTN [123] Decoder GRU

Input sizes [32, 64]

Hidden sizes 300

Num of layers 1 or 2

Dropout 0.0 or 0.1
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Component Model Parameter Value

MCTN [123] Seq2Seq GRU+GRU

teaching ratio 0.5

Embed sizes 32

μt1,μc ,μt2 0.01

Fusion

LRTF [106]
Num ranks 64

Output sizes 128

MI-MATRIX [77] Hidden size 128

MULT [
Hidden size 40

Num heads 8 or 10

Training

Loss MAE or Cross Entropy

Batch size 32

Seq Length 50 or 20

Num epochs 100 or 300

Early stop True

Patience [8,20]

Activation ReLU

Optimizer AdamW

Weight Decay 1×10−4

Learning rate 1×10−4

G: Experimental Setup

In this section, we provide additional details of the experimental setup. All experiments were 

conducted on a server with 4× Nvidia GTX 980 Ti GPUs, 5× Nvidia Tesla P40 GPUs, 2× 

Nvidia Tesla K40c GPUs, 4× Nvidia TITAN X GPUs, 1× Tesla T4 GPU, and 1× Tesla V100 

GPU. The server also contained 32× Intel(R) Xeon(R) CPU (E5 − 2670, 2.60GHz).

G.1 Affective Computing

Hyperparameters:

We show the hyperparameters used for models on datasets in the Affective Computing 

domain in Table 4. For each dataset we tune the following hyperparameters selected from 

the following ranges: the learning rate is selected between 0.00001 to 0.001 and set to be 

0.0001 in the beginning; Early stopping is applied with patience 8 to 20 before overfitting 

happens; The input sizes and hidden sizes vary according to the different modalities and 

datasets. The μt0, μc, and μt1 hyperparameters in MCTN [123] is tuned between 0.005 to 0.1. 

The sequence length varies from 20 to 50. Only punchline sentences (target sentences) are 

used in UR-FUNNY [64] and MUSTARD [24] following the original papers.
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Hyperparameters were selected based on performance on the validation set. For models that 

had been previously proposed and tested on these datasets, we use the same hyperparameters 

as those reported in their paper or public code.

All experiments were repeated 10 times and a mean and standard deviation was computed.

G.2 Healthcare

We show the hyperparameters used for models on datasets in the Healthcare domain in 

Table 5. The unimodal architectures follow the original paper that created this partition 

of MIMIC [129], then we tune the following hyperparameters selected from the following 

ranges: Learning rate is tuned between 0.1 and 0.0001; the number of epochs is selected 

based on when overfitting happens; for hyperparameters specific to architectures or training 

structures (such as GRADBLEND, MFAS), we followed the same configuration as the original 

papers where these methods are proposed.

All experiments were repeated 10 times and a mean and standard deviation was computed.

G.3 Robotics

We show the hyperparameters used for MUJOCO PUSH in Table 6 and VISION&TOUCH in Table 

7.

For MUJOCO PUSH, we follow hyperparameters and preprocessing in the original paper [90]. 

Unimodal modules follow the original hyperparameters assigned to the input modality.

For VISION&TOUCH, we follow hyperparameters in the original paper [91] for all unimodal 

modules as well as Sensor Fusion (which is the method proposed in [91]).

All other hyperparameters were selected based on performance on the validation set. For 

models that had been previously proposed and tested on these datasets, we use the same 

hyperparameters as those reported in their paper or public code. The original VISION&TOUCH 

dataset did not have a unique test dataset, so we report their best performance on the 

validation set instead.

All experiments were repeated 10 times and a mean and standard deviation was computed.

G.4 Finance

We show the hyperparameters used for models on datasets in the Finance domain in Table 8. 

For each dataset, we tune the following hyperparameters selected from the following ranges: 

Hidden/embed dim (4 − 512), Transformer/MULT layers (1 − 4), Transformer/MULT heads 

(1 − 4), epochs (1 − 32), and batch size (4 − 128). Hyperparameters were selected based 

on performance on the validation set. Note that this dataset overfits quickly when model 

complexity is increased; several hyperparameters are kept small for this reason.

All experiments were repeated 10 times and a mean and standard deviation was computed.
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G.5 HCI

We show the hyperparameters used for models on the ENRICO dataset in the HCI domain in 

Table 9.

We tune the learning rate by starting from 10−4, the value reported in the original paper 

[93]. We searched in a range between 10−2 and 10−6 and found that 10−5 led to the best 

performance. We tested hidden dimension sizes from 8 to 128 and found that a size of 16 

was sufficient for the unimodal encoders. Note that this dataset is small and overfits quickly 

when model complexity is increased. We minimized the risk of overfitting by keeping 

several hyperparameters (e.g., hidden dim) small. For more information, refer to the dataset 

preprocessing section for ENRICO.

All experiments were repeated 10 times and a mean and standard deviation was computed.

G.6 Multimedia

We show the hyperparameters used for models on datasets in the Multimedia domain in 

Tables 10, 11, 12.

For AV-MNIST, used the same LeNet unimodal encoders following current work [161]. We 

tuned learning rates between 0.1 and 0.001. The default batch size is 40, although it can 

be changed in some methods (such as CCA) to make sure the methods work as intended; 

the number of epochs is selected based on when overfitting happens; for hyperparameters 

specific to architectures or training structures (such as GRADBLEND, MFAS), we followed the 

same configuration as the original papers where these methods are proposed.

For MM-IMDB, used the same MaxoutLinear unimodal encoders following current work 

[8]. Learning rates were tuned between 0.1 and 0.001 except for unimodal training. The 

default batch size is 128 while that for CCA is 800 to make sure the methods work as 

intended. The number of epochs was selected based on early stopping with patience equal to 

7, which means if the macro F1 on the validation set did not improve for 7 epochs, training 

was stopped early.

For KINETICS, we use a ResNet-LSTM for the visual modality encoder and the architectures 

described by Wang et al [167] for the rest of the models. We use a learning rate of 0.0001, 

batch size of 16, and 15 epochs for the small dataset experiments. For the large dataset 

experiments, we used the setup described by Wang et al [167].

Hyperparameters were selected based on performance on the validation set. For models that 

had been previously proposed and tested on these datasets, we use the same hyperparameters 

as those reported in their paper or public code.

All experiments were repeated 10 times and a mean and standard deviation was computed.
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Table 5:

Table of hyperparameters for prediction on MIMIC dataset in the healthcare domain.

Component Model Parameter Value

Static Encoder 2-layer MLP Hidden sizes
Activation

[10,10]
LeakyReLU(0.2)

Static Decoder 2-layer MLP Layer sizes
Activation

[200,40,5]
LeakyReLU(0.2)

Time Series 
Encoder GRU Hidden size 30

Time Series 
Decoder GRU Hidden size 30

Classification 
Head 2-Layer MLP Hidden size

Activation
40

LeakyReLU(0.2)

Fusion

LRTF [106] Output dim
Ranks

100
40

NL-Gate [167]
thw-dim/c-dim/tf-dim

key linear
value linear

24/30/10
[10, 300]
[10, 300]

MI-Matrix [77] output dim 100

Training

Unimodal, LF, 
LRTF, MI-Matrix, 
NL-gate

Loss
Batch size

Num epochs
Optimizer

Learning rate

Cross Entropy
40
20

RMSprop
0.001

GRADBLEND [167]

Loss
Batch size

Num epochs
Optimizer

Learning Rate
GB-epoch

v-rate
finetune epoch

Cross Entropy
40
300
SGD
0.005

20
0.8
25

MVAE [168]

Loss
Batch size

Num epochs
Optimizer

Learning Rate
Cross Entropy Weight

Latent Representation Fusion

Cross Entropy + ELBO
40
30

Adam
0.001
2.0

ProductOfExpert

MFM [155]

Loss
Batch size

Num epochs
Optimizer

Learning Rate
Recon Loss Modality Weights

Cross Entropy Weight
Intermediate Modules

Cross Entropy
+ Reconstruction(MSE)

40
30

Adam
0.001
[1,1]
2.0

MLPs [200, 100, 100], [200, 100, 
100], [400, 100, 100]

MFAS [122]

Epochs/search iters
Num samples/surrogates per epoch 

η max/min/Ti/Tm
Temperature init/final/decay

Max progression level
Surrogate learning rate
Surrogate hidden size

Surrogate embedding size
Search space

Optimizer
Representation Size

3/3/6 15/50 10−3/10−6/1/2
10.0/0.2/4.0

4
0.001
100
100

(3,3,2)
Adam

16
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Table 6:

Table of hyperparameters for prediction on MUJOCO PUSH dataset in the robotics domain.

Component Model Parameter Value

Pos Encoder Linear Hidden sizes [64,64,64 (residual)]

Sensors Encoder Linear Hidden sizes [64,64,64 (residual)]

Image Encoder CNN

Filter sizes
Num filters
Filter strides

Filter padding

[5,3,3,3,3]
[32,32,32,16,8]

1
[2,1,1,1,1]

Control Encoder Linear Hidden sizes [64,64,64 (residual)]

Fusion

Early Fusion & Unimodal LSTM Hidden size
Num layers

512
2

Late Fusion LSTM Hidden size
Num layers

256
1

MULT [156] Embed size 
Num heads

64
4

Classification Head Linear Hidden size 64

Training

Loss
Batch size

Num epochs
Activation
Optimizer

Learning rate

Mean Squared Error
32
20

ReLU
Adam
10−5

Table 7:

Table of hyperparameters for prediction on VISION&TOUCH dataset in the robotics domain.

Component Model Parameter Value

Image Encoder CNN

Filter sizes
Num filters
Filter strides

Filter padding

[7,5,5,3,3,3]
[16,32,64,64,128,128]

[2,2,2,2,2,2]
Same

Force Encoder Causal Convolution [157]

Filter sizes
Num filters
Filter strides

Filter padding

[2,2,2,2,2]
[16,32,64,128,256]

[2,2,2,2,2]
1

Proprio Encoder Linear Hidden sizes [32, 64, 128, 256]

Depth Encoder CNN

Filter sizes
Num filters
Filter strides

Filter padding

[3, 3, 4, 3, 3, 3]
[32, 64, 64, 64, 128, 128]

[2, 2, 2, 2, 2, 2]
Same

Action Encoder Linear Hidden sizes [32, 32]

Classification Head 2-Layer MLP Hidden size
Activation

128
LeakyReLU(0.2)

Fusion
LRTF [106] Output dim

Ranks
200
40

Sensor Fusion [91] z-dim 128

Training

Loss
Batch size

Num epochs
Optimizer

Learning rate

Contact: Cross Entropy
End-Effector: MSE

64
Sensor Fusion: 50

LRTF: 35; Others: 15
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Component Model Parameter Value

Adam
Contact: 10−4

End-Effector: 5×10−4

REFNET [135]

Loss
Batch size

Optimizer/Learning Rate
Refiner

Self Loss Weight

Cross Entropy + Contrast
40

Adam / 0.0005
MLP(1056,2000,65760)

0.0001

Table 8:

Table of hyperparameters for stock prediction on finance datasets (we use the same 

hyperparameters on all 3 datasets: STOCKS-F&B, STOCKS-HEALTH, and STOCKS-TECH).

Model Parameter Value

Unimodal & Early Fusion LSTM Hidden dim 128

Late Fusion LSTM Hidden dim 16

TRANSFORMER [158]
Embed dim
Num heads

Layers

9
3
3

MULT [154]
Embed dim
Num heads

Layers

9
3
3

GRADBLEND [167] LSTM Hidden dim 128

Training

Loss
Batch size

Max seq length
Activation
Optimizer

Learning rate

Mean Squared Error
16
500

ReLU
Adam
10−3

Num epochs
Unimodal, EF 2

LF, Transformer, MULT, GRADBLEND 4

Table 9:

Table of hyperparameters for prediction on ENRICO dataset in the HCI domain.

Model Parameter Value

Unimodal Hidden dim 16

Late Fusion Hidden dim 32

GRADBLEND [167] Hidden dim 32

REFNET [135] Hidden dim 32

MI-Matrix [77] Hidden dim
Input dims

32
16, 16

Tensor Matrix Hidden dim
Input dims

32
16, 16

LRTF [106]
Hidden dim
Input dims

Rank

32
16, 16

20

CCA [145] Hidden dim 32
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Model Parameter Value

Training

Loss
Batch size
Activation
Dropout

Optimizer
Learning rate

Class-weighted Cross Entropy
32

ReLU
0.2

Adam
10−5

Num epochs 50

Table 10:

Table of hyperparameters for prediction on AV-MNIST dataset in the multimedia domain.

Component Model Parameter Value

Image Encoder LeNet-3

Filter Sizes
Num Filters

Filter Strides / Filter Paddings
Max Pooling

[5, 3, 3, 3]
[6, 12, 24, 48]

[1, 1, 1, 1]/[2, 1, 1, 1]
[2, 2, 2, 2]

Image Decoder DeLeNet-3
Filter Sizes
Num Filters

Filter Strides / Filter Paddings

[4, 4, 4, 8]
[24, 12, 6, 3]

[2, 2, 2, 4]/[1, 1, 1, 1]

Audio Encoder LeNet-5

Filter Sizes
Num Filters

Filter Strides / Filter Paddings
Max Pooling

[5, 3, 3, 3, 3, 3]
[6, 12, 24, 48, 96, 192]

[1,1,1,1,1,1]/[2,1,1,1,1,1]
[2, 2, 2, 2, 2, 2]

Audio Decoder DeLeNet-5
Filter Sizes
Num Filters

Filter Strides / Filter Paddings

[4, 4, 4, 4, 4, 8]
[96, 48, 24, 12, 6, 3]

[2, 2, 2, 2, 2, 4]/[1, 1, 1, 1, 1, 1]

Classification 
Head 2-Layer MLP Hidden size

Activation
100

LeakyReLU(0.2)

Fusion
LRTF [106] Output dim

Ranks
120
40

MI-Matrix [77] output dim 240

Training

Unimodal, LF, 
LRTF, MI-Matrix

Loss
Batch size

Num epochs
Optimizer/Learning rate/weight decay

Cross Entropy
40

LRTF: 30, Others: 25
SGD/0.05/0.0001

GRADBLEND 
[167]

Loss
Batch size

Num epochs
Optimizer/Learning rate

GB-epoch/finetune-epoch
v-rate

Cross Entropy
40
300

SGD/0.05
10/25

0.8

MVAE [168]

Loss
Batch size

Num epochs
Optimizer/Learning rate
Cross Entropy Weight

Latent Representation Fusion

Cross Entropy + ELBO
40
20

Adam/0.001
2.0

ProductOfExpert

MFM [155]

Loss
Batch size

Num epochs
Optimizer/Learning rate

Recon Loss Modality Weights
Cross Entropy Weight
Intermediate Modules

Cross Entropy
+ Reconstruction(MSE)

40
25

Adam/0.001
[1,1]
2.0

MLPs [200,100,100],
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Component Model Parameter Value

MFAS [122]

Batch size
Main epochs/search iters/epochs per 

model
Num samples/surrogates per epoch

η max/min/Ti/Tm
Temperature init/final/decay

Max progression level
Surrogate learning rate

Surrogate hidden/embedding size
Search space

Optimizer
Representation Size

32
3/3/6
15/50

10−3/10−6/ 1/2
10.0/0.2/4.0

4
0.001

100/100
(3,5,2)
Adam

16

CCA [145]
Batch size

Loss
Optimizer/Learning Rate/Weight Decay

800
CCALoss

AdamW/ 0.01/0.01

REFNET [135]

Loss
Batch size

Optimizer/Learning Rate
Refiner

Self Loss Weight

Cross Entropy + Contrast
40

SGD / 0.05
MLP(384,1000,13328)

0.1

Table 11:

Table of hyperparameters for prediction on MM-IMDB dataset in the multimedia domain.

Component Model Parameter Value

Text Encoder 2-Layer MaxoutMLP
Hidden size
Output dim
MLP num

512
128/256/512

2

Image Encoder 2-Layer MaxoutMLP
Hidden size
Output dim
MLP num

1024
128/256/512

2

Classification 
Head

Linear

2-Layer MLP Hidden size
Activation

512
ReLU

2-Layer 
Maxout_Linear

Hidden size
MLP num

512
2

Fusion

Concatenate

LRTF [106] Output dim
Ranks

512
128

MI-Matrix [77] output dim 1024

Training

Unimodal, EF, LF, 
LRTF, MI-Matrix

Loss
Batch size

Num epochs
Optimizer

Learning rate
Weight decay

Binary Cross Entropy
128

Text: 125, Image: 25, LF:5, EF/
LRTF:15, MI-Matrix:20

AdamW
Unimodal: 0.0001, EF: 0.04, LF/LRTF/

MI-Matrix: 0.008
0.01

CCA [145]

Loss
CCA weight
Batch size

Num epochs
Optimizer

Learning rate
Weight decay

Binary Cross Entropy + CCA
0.001
800
20

AdamW
0.01
0.01

RMFE [53]
Loss

Regularization weight
Batch size

Binary Cross Entropy + Regularization
1e −10 128

10
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Component Model Parameter Value

Num epochs
Optimizer

Learning rate
Weight decay

AdamW
0.01
0.01

REFNET [135]

Loss
Contrast weight

Self-supervised weight
Batch size

Num epochs
Optimizer

Learning rate
Weight decay

Binary Cross Entropy
+ Contrast + Self-supervised

0.0001
0.1
128
10

AdamW
0.01
0.01

MFM [155]

Loss
Batch size

Num epochs Optimizer
Learning rate

Recon Loss Modality Weight
Cross Entropy Weight
Intermediate Modules

Binary Cross Entropy
+ Reconstruction(MSE)

128
10

Adam
0.005
[1,1]
2.0

MLP [512,256,256]
MLP [512,256,256]
MLP [1024,512,256]

Table 12:

Table of hyperparameters for prediction on KINETICS dataset in the multimedia domain.

Component Model Parameter Value

Video Encoder ResNet [66] + LSTM ResNet Version
LSTM Hidden size

18-layer
64

Audio Encoder ResNet [66] + 2-Layer MLP

ResNet Version
MLP hidden size
MLP output size
MLP activation

50-layer
200
64

ReLU

Classification Head

Linear

2-Layer MLP Hidden size
Activation 200 ReLU

Fusion Concatenate

Training Unimodal, LF

Loss
Batch size

Num epochs
Optimizer

Learning rate

Cross Entropy
16
15

Adam
0.0001
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Table 13:

Results on multimodal datasets in the affective computing domain. U: unimodal models, M: 
multimodal fusion paradigms, O: optimization objectives, T: training structures. MULT is 

the best performing model on all these datasets, and is categorized as an in-domain method 

since it was originally proposed and tested on affect recognition datasets. Many out-domain 

methods struggle on these datasets.

Dataset
Acc(2)↑

MUSTARD
Acc(2)↑

CMU-MOSI
Acc(2)↑

UR-FUNNY
Acc(2)↑

CMU-MOSEI
Acc(2)↑

U
Unimodal ( ℓ )
Unimodal a
Unimodal v

68.6±0.4
64.9±0.4
65.7±0.7

74.2±0.5
65.5±0.2
66.3±0.3

58.3±0.2
57.2±0.9
57.3±0.5

78.8±1.5
66.4±0.7
67.2±0.4

M

EF-GRU
LF-GRU
EF-TRANSFORMER
LF-TRANSFORMER
TF [179]
LRTF [106]
MI-MATRIX [77]
MULT [154]

66.3±0.3
66.1±0.9
65.3±1.4
66.1±0.9
62.1±2.2
65.2±1.5
61.8±0.3
71.8±0.3

73.2±2.2
75.2±0.8
78.8±0.4
79.6±0.4
74.4±0.2
76.3±0.3
73.9±0.4
83.0±0.1

60.2±0.5
62.5±0.5
62.9±0.2
63.4±0.3
61.2±0.4
62.7±0.2
61.9±0.3
66.7±0.3

78.4±0.6
79.2±0.4
79.6±0.3
80.6±0.3
79.4±0.5
79.6±0.6
76.5±0.4
82.1±0.5

O
MFM [155]
MVAE [168]
MCTN [123]

66.3±0.3
64.5±0.4
63.2±1.4

78.1±0.9
77.2±0.3
76.9±2.1

62.4±1.1
62.0±0.5
63.2±0.8

79.4±0.7
79.1±0.2
76.4±0.4

T GRADBLEND [167] 66.1±0.3 75.5±0.5 62.3±0.3 78.1±0.3

H: Experimental Results

In this section, we provide additional experimental results and observations. For all 

experimental tables, we describe the accuracy metrics using Acc(c) where c is the number 

of classes. AUPRC stands for the area under the precision-recall curve which is a useful 

performance metric for imbalanced data in settings where one cares a lot about finding 

positive examples. MSE stands for mean squared error. We use up and down arrows (↑ and 

↓) to indicate metrics where higher is better (Acc, AUPRC) and metrics where lower is 

better (MSE) respectively.

H.1 Affective Computing

We show the full performance results in Table 13 and complexity results in Table 14. Here 

we list some observations regarding these results:

1. Language is usually the best performing modality, especially on sentiment and 

emotion prediction. However, the improvement of language over audio and 

video on humor prediction and sarcasm prediction is much less. This follows 

our intuition that while language is primarily useful for sentiment and emotion 

prediction, audio and visual are strong predictors for humor and sarcasm.

2. The best performing method over these datasets is consistently the Multimodal 

Transformer (MULT [155]), which was originally tested on predicting sentiment 

and emotions on the CMU-MOSI and CMU-MOSEI dataset. We find that it is a 

general method and generalizes to humor and sarcasm prediction as well.
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3. However, while it MULT achieves the best performance, it suffers in complexity, 

taking more than 12× the inference time of unimodal models and 3 − 4× several 

simpler early or late fusion multimodal baselines.

4. Some methods that work well on humor, sentiment, and emotion prediction 

do not generalize to sarcasm detection, such as tensor fusion (TF) and 

reconstruction-based models (MVAE and MFM). It is not a surprise that this 

coincides with sarcasm being the least studied task as well. Furthermore, we 

believe that it is a task with extremely complementary information (e.g., sarcasm 

is usually displayed via text and video/audio features contradicting each other). 

We hope that MULTIBENCH can encourage further research in such multimodal 

tasks since current methods do not generalize to these tasks.

5. Several out-of-domain methods, such as GRADBLEND do not work well. In fact 

we find that the variance of the GRADBLEND method is quite high and shows 

strong performance on several datasets but struggles on others.

6. MCTN is designed for robustness and only uses the language modality at test 

time. While it was shown to work well for relatively easier fusion tasks in 

predicting sentiment, emotions, and humor [123], we find that it struggles on the 

more challenging sarcasm prediction task.

Table 14:

Complexity results for datasets in the affective computing domain. U: unimodal models, M: 
multimodal fusion paradigms, O: optimization objectives, T: training structures.

Dataset MUSTARD

Metric Epochs 
trained

Training 
time (s)

Training 
params (M)

Training 
peak 

memory 
(MB)

Inference 
time (s)

Inference 
params (M)

U

Unimodal ( ℓ ) 43 381 0.12 2347 0.33 0.12

Unimodal v 48 56 0.01 2288 0.24 0.01

Unimodal a 69 288 0.001 2288 0.25 0.001

M

EF-GRU 126 168 0.84 2291 0.34 0.84

LF-GRU 74 52 1.52 2307 0.40 1.52

EF-Transformer 30 601 1.86 2423 0.79 1.86

LF-Transformer 42 1868 14.0 2586 1.02 14.0

TF [179] 46 1370 14.7 2542 1.62 14.7

LRTF [106] 33 49 0.68 2483 0.50 0.68

MULT [154] 31 2414 1.93 3345 3.01 1.93

O

MFM [155] 40 2138 4.85 2417 1.48 4.33

MVAE [168] 33 4645 4.32 2695 2.11 4.05

MCTN [123] 100 1026 0.19 2359 1.02 0.19

T GradBlend [167] 100 6012 1.95 2406 0.42 1.58
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Dataset CMU-MOSI

Metric Epochs 
trained

Training 
time (s)

Training 
params 

(M)

Training 
peak 

memory 
(MB)

Inference 
time (s)

Inference 
params (M)

U

Unimodal ( ℓ ) 30 590 0.17 2347 0.49 0.17

Unimodal v 35 71 0.01 2288 0.36 0.01

Unimodal a 188 346 0.001 2288 0.38 0.001

M

EF-GRU 106 221 1.42 2291 0.44 1.42

LF-GRU 14 60 1.84 2307 0.58 1.84

EF-TRANSFORMER 20 635 2.18 2423 1.07 2.18

LF-Transformer 33 2011 15.1 2586 2.12 15.1

TF [179] 35 384 12.2 2867 2.38 12.2

LRTF [106] 43 172 0.82 2454 0.59 0.82

MULT [154] 22 2414 2.38 3345 4.30 2.38

O

MFM [155] 31 1692 5.53 2455 1.52 4.98

MVAE [168] 35 3820 5.31 2564 2.03 4.69

MCTN [123] 100 1149 0.19 2366 0.98 0.19

T GradBlend [167] 300 18869 3.91 2355 0.59 1.86

Dataset UR-FUNNY

Metric Epochs 
trained

Training 
time (s)

Training 
params 

(M)

Training 
peak 

memory 
(MB)

Inference 
time (s)

Inference 
params (M)

U

Unimodal ( ℓ ) 32 602 1.99 6524 1.82 1.99

Unimodal v 29 70 0.14 6528 1.61 0.14

Unimodal a 40 1039 0.03 6599 1.66 0.03

M

EF-GRU 34 612 3.58 6535 2.51 3.58

LF-GRU 10 498 2.28 6791 3.25 2.28

EF-TRANSFORMER 32 2358 4.87 7086 3.81 4.87

LF-Transformer 33 6024 34.5 7288 6.75 34.5

TF [179] 32 2780 21.3 7165 6.35 21.3

LRTF [106] 25 2057 1.05 6931 3.32 1.05

MULT [154] 30 8096 5.01 9572 12.1 5.01

O

MFM [155] 30 5123 6.89 6970 10.3 6.23

MVAE [168] 32 10670 6.59 7038 12.1 6.10

MCTN [123] 100 10857 0.19 6578 4.39 0.19

T GradBlend [167] 100 19212 4.12 6832 3.42 2.31
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Dataset CMU-MOSEI

Metric Epochs 
trained

Training 
time (s)

Training 
params 

(M)

Training 
peak 

memory 
(MB)

Inference 
time (s)

Inference 
params (M)

U

Unimodal ( ℓ ) 23 561 1.80 5830 1.79 1.80

Unimodal v 27 647 0.12 5817 1.46 0.12

Unimodal a 39 910 0.03 5818 1.48 0.03

M

EF-GRU 22 548 3.23 5835 2.01 3.23

LF-GRU 9 443 2.08 5996 2.55 2.08

EF-TRANSFORMER 30 1658 4.49 6082 2.88 4.49

LF-TRANSFORMER 35 5504 31.5 6996 5.65 31.5

TF [179] 30 2784 22.6 6337 5.89 22.6

LRTF [106] 22 2057 0.78 6102 2.45 0.78

MULT [154] 32 6033 4.75 7572 10.1 4.75

O

MFM [155] 33 5340 6.65 6088 9.42 5.97

MVAE [168] 40 11673 6.21 6782 12.0 5.89

MCTN [123] 100 12242 0.19 6526 4.84 0.19

T GradBlend [167] 100 18176 3.89 6042 2.63 2.25

Figure 12: 
Robustness of multimodal models with increasing levels of noise on the MUSTARD dataset 

in the affective computing domain.

Figure 13: 
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Robustness of multimodal models with increasing levels of noise on the CMU-MOSI dataset 

in the affective computing domain.

Figure 14: 
Robustness of multimodal models with increasing levels of noise on the UR-FUNNY dataset 

in the affective computing domain.

Figure 15: 
Robustness of multimodal models with increasing levels of noise on the CMU-MOSEI 

dataset in the affective computing domain.

We show the robustness of multimodal models with increasing levels of noise on 

MUSTARD in Figure 12, CMU-MOSI in Figure 13, UR-FUNNY in Figure 14, and CMU-

MOSEI in Figure 15.

We highlight the following observations:

1. Unimodal and multimodal models are in general not robust to increasing noise 

and imperfections in these datasets. Performance drops off very quickly towards 

random.

2. We find that multimodal models are slightly more robust than unimodal models. 

For video and audio, the unimodal method is the least robust. However, 

for language, the unimodal model can actually be more robust than several 

multimodal models. In other words, multimodal models are more robust to video 

and audio while being less robust to language, which is the best performing 

modality. We believe that directly training multimodal models via supervised 

learning can be prone to overfitting on the most informative modality (in this 
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case language) which causes the multimodal model to be even less robust 

than unimodal models in language. A similar observation was the motivation 

behind the GRADBLEND approach to balance overfitting and generalization across 

different modalities [167].

3. GRADBLEND [167] seems to be a surprisingly robust approach while also 

generalizing to several datasets. GRADBLEND was not in fact not initially 

designed for the affective computing domain, although it was designed for 

similar multimodal time-series data in the multimedia domain.

4. MCTN [123] was designed as a robust alternative to multimodal models since 

it uses multimodal data at training time but only language data at test time. 

On imperfections to video and audio, MCTN therefore stays constant and can 

potentially be a viable alternative that learns a unimodal model from multimodal 

data during training but remains unimodal at testing.

Table 15:

Results on the MIMIC dataset in the healthcare domain. U: unimodal models, M: 

multimodal fusion paradigms, O: optimization objectives, T: training structures. Several out-

domain methods perform well on MIMIC and improve upon the current state-of-the-art 

performance on in-domain methods.

Dataset MIMIC MORTALITY MIMIC ICD-9 10 – 19 MIMIC ICD-9 70 – 79

Metric Acc(6) ↑ Acc(2) ↑ AUPRC(2) ↑ Acc(2) ↑ AUPRC(2) ↑

Most frequent 76.1 83.1 – 52.5 –

U
Unimodal t
Unimodal ta

76.7±0.3
76.4±0.2

83.6±0.1
91.4±0.0 35.0±0.968.4±0.1 67.6±0.4

56.3±0.3
72.9±0.3
54.6±0.4

M

LF
LRTF [106]
MI-MATRIX [77]
NL GATE [167]
MFAS [122]

77.9±0.3
78.2±0.3
77.6±0.4
78.1±0.2
77.9±0.2

91.5±0.1
91.5±0.1
91.5±0.1

74.2±0.7
75.1±0.3
74.2±0.6
91.6±0.1
91.4±0.0
73.8±0.7
70.3±1.2

68.9±0.5
68.5±0.4
67.9±0.3
68.7±0.5
68.5±0.4

74.3±0.4
73.8±0.4
73.0±0.5
74.3±0.4
73.7±0.4

O MFM [155]
MVAE [168]

78.2±0.3
78.0±0.3

91.5±0.1
91.6±0.1

75.0±0.5
73.5±1.4

68.8±0.4
68.7±0.6

74.4±0.4
74.0±0.7

T GRADBLEND [167] 78.2±0.2 91.5±0.1 74.1±0.4 68.0±0.7 73.2±0.5
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Table 16:

Complexity results for datasets in the healthcare domain. ((*) This is the number of 

parameters in modules input to MFAS at the start of training, MFAS will generate more 

parameters during the architecture search process). U: unimodal models, M: multimodal 

fusion paradigms, O: optimization objectives, T: training structures.

Dataset MIMIC

Metric Epochs 
trained

Training 
time (s)

Training 
params 

(M)

Training 
peak 

memory 
(MB)

Inference 
time (s)

Inference 
params (M)

U
Unimodal t
Unimodal ta

20
20

46.4
34.6

0.019
0.001

2360
2359

0.41
0.39

0.019
0.001

M

LF
LRTF [106]
MI-MATRIX [77]
NL GATE [167]
MFAS [122]

20
50
20
20

42×6

49.4
261
56.6
51.4
3762

0.034
0.008
0.801
0.040
0.086*

2362
2575
2377
2422
2360

0.41
0.41
0.39
0.43
1.79

0.034
0.008
0.801
0.040
0.016

O MFM [155] MVAE 
[168]

25
30

221
486

0.323
0.312

2438
2553

0.85
0.89

0.315
0.305

T GRADBLEND 
[167] 300 2785 0.063 2575 0.45 0.034

H.2 Healthcare

We show the full results in Table 15 and complexity results in Table 16. Here we list some 

observations regarding these results:

1. We find that results across all models show small variations on MIMIC, which 

suggests that many current multimodal approaches may not generalize that well 

to the input modalities and prediction tasks that MIMIC tests for.

2. In particular, while MFAS (architecture search) is otherwise a pretty general 

solution that works well across quite a few datasets, it struggles on MIMIC. 

While there has been a recently proposed MUFASA [173] method that adapts 

architecture search specifically for healthcare datasets, we were not able to 

test this method on our partition of MIMIC, and it is in our top priorities 

to implement that approach into MULTIZOO and accurately benchmark its 

performance on a suite of datasets.

3. Late Fusion (LF) with simple concatenation was the best-performing model 

in the evaluations conducted by the previous paper that used the exact same 

partition as ours [129]. It actually works quite well compared to more complex 

models evaluated here, as it has the best performance on ICD-9 group 7 task and 

is quite close to the best performing models in the other two. This may suggest 

that simple multimodal models such as Late Fusion is worth being tried first on 

healthcare datasets.

4. The reconstruction-based multimodal models such as MVAE and MFM have 

strong performance on this dataset, possibly due to the low dimensions of 
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the input modalities. This suggests that reconstruction-based architectures 

and objectives might work well on datasets with simple or low-dimensional 

modalities which are easier to reconstruct.

Figure 16: 
Robustness of multimodal models with increasing levels of noise on the MIMIC dataset in 

the healthcare domain.

Finally, we show the robustness of multimodal models with increasing levels of noise on the 

MIMIC dataset in Figure 16. We highlight the following observations:

1. Unimodal and multimodal models are in general not robust to increasing noise 

and imperfections in the table and time-series modalities. Performance drops off 

very quickly towards random.

2. In general, multimodal models are slightly more robust than unimodal models. 

The behavior is best exhibited in the ICD-9 group 7 task where many models 

start off strong, but multimodal models remain more robust than the best 

unimodal model. This perhaps indicates that multimodal models do learn to use 

information from other sources when another one is noisy.

3. There is high variance in the robustness of each multimodal model even within 

the same dataset and modalities but across different prediction tasks. We observe 

that LRTF is the most robust model on the ICD-9 group 7 task but the least 

robust model on the ICD-9 group 1 task. This high variance is a concern 

especially given the close similarity across both of these tasks.

Table 17:

Results on multimodal datasets in the robotics domain. U: unimodal models, M: multimodal 

fusion paradigms, O: optimization objectives, T: training structures.

Dataset
Metric

MUJOCO PUSH
MSE ↓

U

Unimodal i
Unimodal (f)
Unimodal (p)
Unimodal (c)

0.334±0.034
4.266±0.085
3.885±0.004
3.804±0.005
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Dataset
Metric

MUJOCO PUSH
MSE ↓

M

EF-LSTM
LF-LSTM
TF [179]
MULT [156]

0.363±0.038
0.290±0.018
0.574±0.059
0.402±0.026

Dataset
Metric

VISION&TOUCH CONTACT
Acc(2) ↑

VISION&TOUCH END EFFECTOR
MSE (×10−4) ↓

U
Unimodal (i)
Unimodal (f)
Unimodal (p)

83.6±0.3
93.6±0.1
85.6±0.6

1.99±0.160
87.2±0.477
0.202±0.022

M
LF
Sensor Fusion [91]
LRTF [106]

93.6±0.1
93.4±0.1
93.3±0.1

0.185±0.011
0.258±0.011
0.232±0.031

O REFNET [135] 93.5±0.1 0.203±0.025

H.3 Robotics

We show the full results in Table 17 and complexity results in Table 18. Here we list some 

observations regarding these results:

1. We find that in all robotics tasks, there exists one modality with extremely strong 

unimodal performance (force in VISION&TOUCH contact task, proprioception in 

VISION&TOUCH End Effector task, image in MUJOCO PUSH).

2. On the VISION&TOUCH dataset, we found that Late Fusion outperforms the 

method of choice in the original paper for the dataset [91] (Sensor Fusion) on 

both tasks, so Late Fusion seems to generalize well to this domain.

3. In our experiments, as well as the baselines [91], the action modality is typically 

treated as a general modality without specific modeling. Future work should 

explore whether this is the best way to encode action as a modality in these 

action-conditional prediction tasks, and possibly unify these datasets with those 

used in embodied multimodal learning [36, 97, 110].

4. We plan to include several more reinforcement learning tasks for multimodal 

learning in robotics. It remains an open question where multimodal 

representations suitable for fusion-type prediction tasks are also suitable for 

reinforcement learning tasks. Adding such reinforcement learning tasks from 

multiple sensors to MULTIBENCH will enable more accurate benchmarking of the 

generalization capabilities of these multimodal models.

Finally, we show the robustness of multimodal models with increasing levels of noise on 

MUJOCO PUSH in Figure 17 and on VISION&TOUCH in Figure 18. We highlight the following 

observations:

1. For MUJOCO PUSH we plot the MSE using a log scale on the y-axis since the error 

of the TF method blows up significantly much faster than the other methods.

2. We observe that multimodal methods are much more robust than unimodal 

methods, which match the robustness results as reported in the paper [91] where 
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the trained multimodal model is robust and able to recover from external forces 

on the force sensor or occlusions to the image sensor. This observation is true for 

both datasets.

3. For VISION&TOUCH, we observe that unimodal performance is especially bad for 

the object pose prediction task. The remaining multimodal models are relatively 

robust as compared to unimodal performance. The most robust models seem to 

be Sensor Fusion [91] (SF) and Late Fusion (LF).

Table 18:

Complexity results for datasets in the robotics domain. U: unimodal models, M: multimodal 

fusion paradigms, O: optimization objectives, T: training structures.

Dataset MUJOCO PUSH

Metric Epochs 
trained

Training 
time (s)

Training 
params (M)

Training 
peak 

memory 
(MB)

Inference 
time (s)

Inference 
params (M)

U

Unimodal (i)
Unimodal (f)
Unimodal (p)
Unimodal (c)

20
20
20
20

738±133
288±39
252±6
372±64

3.88
3.33
3.33
3.33

3607±1
3595±2
3594±1
3594±1

3.46±0.02 
0.91±0.08
0.87±0.04
0.86±0.04

3.88
3.33
3.33
3.33

M

EF
LF-LSTM
TF-LSTM 
[179]
MULT [156]

20
20
20
20

815±34
856±46
1914±31
4792±62

3.92
1.90
23.5
14.6

3654±1
3636±1
4530±9
6530±16

4.44±0.55 
4.32±0.45
7.75±0.12
22.4±0.28

3.92
1.90
23.5
14.6

Dataset VISION&TOUCH

Metric Epochs 
trained

Training 
time (s)

Training 
params (M)

Training 
peak 

memory 
(MB)

Inference 
time (s)

Inference 
params (M)

U
Unimodal (i)
Unimodal (f)
Unimodal (p)

15
1
5
15

2633
2185
2514

1.00
0.13
0.08

5530
2426
2389

63.9
51.6
59.5

1.00
0.13
0.08

M

LF
Sensor Fusion 
[91]
LRTF [106]

15
50
35

2672
11604
8366

1.20
1.10
1.09

5572
4467
4987

64.4
62.6
64.4

1.20
1.10
1.09

O REFNET [135] 15 3819 135 6067 65.0 1.20
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Figure 17: 
Robustness of multimodal models with increasing levels of noise on the MUJOCO PUSH 

dataset in the robotics domain.

Figure 18: 
Robustness of multimodal models with increasing levels of noise on the VISION&TOUCH 

dataset in the robotics domain.

Liang et al. Page 89

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2024 May 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Table 19:

Results on multimodal datasets in the finance domain. U: unimodal models, M: multimodal 

fusion paradigms, O: optimization objectives, T: training structures. MULT struggles on 

these datasets even though it performs strongly on similar multimodal time-series datasets in 

the affective computing domain. Other methods also show high variance across different 

data partitions.

Dataset STOCKS-F&B STOCKS-HEALTH STOCK-TECH

Metric MSE ↓ MSE ↓ MSE ↓

Mean 2.140 0.575 0.140

U ARIMA
Unimodal

2.199
1.856±0.093

0.620
0.541±0.010

0.152
0.125±0.004

M

EF-LSTM
LF-LSTM
EF-TRANSFORMER
LF-TRANSFORMER
MULT [156]

1.835±0.098
1.893±0.106
2.144±0.014
2.155±0.023
2.053±0.022

0.526±0.017
0.541±0.018
0.573±0.006
0.573±0.006
0.555±0.005

0.121±0.003
0.120±0.008
0.143±0.003
0.143±0.004
0.135±0.003

T GRADBLEND [167] 1.820±0.138 0.537±0.011 0.138±0.030

H.4 Finance

We show the full results in Table 19 and complexity results in Table 20. Here we list some 

observations regarding these results:

1. We do observe better performance using multimodal models as compared to 

unimodal ones, which suggests that multiple financial signals do help in stock 

prediction. Several multimodal models do generalize to this more challenging 

area which presents scalability challenges due to a large number of modalities 

(18/63/100 as compared to 2/3 in most datasets), as well as robustness challenges 

arising from real-world data with an inherently low signal-to-noise ratio.

2. There has been very little research in multimodal models in this area, and 

no public implementations of multimodal models on actual finance data. By 

adapting current models on this dataset, we observe decent performance of 

several out of domain methods. Specifically, early fusion (EF) works well which 

we believe to be due to the little heterogeneity in data origins (i.e., all data comes 

in the form of time-series data, which is much less heterogeneous as compare to 

image and text datasets).

3. There remains high variance in the performance of multimodal models even 

within the same domain: we observe that the best multimodal is not consistent 

across the 3 partitions of finance datasets, which suggests that current 

multimodal models remain highly sensitive to the task at hand.

4. Perhaps surprisingly, our experiments on using a Transformer found that they 

performed worse off than LSTM models. We hypothesize that these large 
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Transformer models might be prone to overfitting on these small and noisy 

datasets.

5. These datasets present scalability issues to a large number of modalities. We find 

that we had to adapt several methods such as Tensor Fusion (TF) and Multimodal 

Transformer (MULT) since they scale exponentially and quadratically with the 

number of modalities respectively, which does not scale to these finance datasets 

with more than 10 modalities. We had to adapt these models by performing an 

initial clustering over the modalities to form 2/3 groups, performing early fusion 

by concatenating the data within each group and forming 2/3 ‘modalities’ before 

applying methods such as Tensor Fusion (TF) and Multimodal Transformer 

(MULT). This might explain their slightly worse performance, especially MULT 

given its strong performance and generalization to different datasets in the 

affective computing domain. Future research should focus on more scalable 

multimodal methods to a large number of modalities. Unfortunately, the bulk of 

multimodal research being in language and vision means that this question is 

relatively unexplored.

Finally, we show the robustness of multimodal models with increasing levels of noise on the 

finance datasets in Figure 19. We highlight the following observations:

1. We again observe a similar trend where the best multimodal models (MULT and 

sometimes EF) are more robust than the best unimodal model. However, different 

from other datasets, we find that certain multimodal models can be worse in 

performance and robustness than the best unimodal model. LF in particular is not 

very robust and performs worse than the best unimodal method.

2. The Gradient Blend (GRADBLEND) method is interesting since it starts off with 

the best (lowest) MSE but is the least robust – its error increases really quickly 

and ends up worse than several models that it was initially outperforming on 0 

noise levels.

3. We find that several approaches might be underfitting the data on STOCKS-HEALTH 

and STOCKS-TECH. These methods do not start off with a good MSE and are also 

not affected significantly at increasing noise levels, showing a roughly straight 

horizontal line in Figure 19.
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Figure 19: 
Robustness of multimodal models with increasing levels of noise on the stock prediction 

datasets in the finance domain.

Table 20:

Complexity results for datasets in the finance domain. U: unimodal models, M: multimodal 

fusion paradigms, O: optimization objectives, T: training structures.

Dataset STOCKS-F&B

Metric Epochs 
trained

Training 
time (s)

Training 
params 

(M)

Training 
peak 

memory 
(MB)

Inference 
time (s)

Inference 
params 

(M)

U Unimodal t 2 9.5 ± 0.1 0.067 3028 ± 3 0.50 ± 0.01 0.067

M

EF-LSTM 2 9.7 ± 0.1 0.069 3067 ± 21 0.51 ± 0.01 0.069

LF-LSTM 4 62 ± 0.4 0.005 2433 ± 4 1.74 ± 0.02 0.005

EF-Transformer 4 25 ± 0.3 0.118 2434 ± 3 0.62 ± 0.01 0.118

LF-Transformer 4 88 ± 0.3 0.472 2468 ± 1 1.70 ± 0.00 0.472

MulT [156] 4 160±1 0.125 3313±1 4.82 ± 0.06 0.125

T GRADBLEND 
[167] 4 409 ± 2 0.338 3102±1 0.44 ± 0.01 0.069

Dataset Stocks-Health

Metric Epochs 
trained

Training 
time (s)

Training 
params 

(M)

Training 
peak 

memory 
(MB)

Inference time 
(s)

Inference 
params 

(M)

U Unimodal t 2 9.6 ± 0.1 0.067 3032 ± 15 0.51 ± 0.01 0.067

M

EF-LSTM 2 9.6 ± 0.1 0.070 3083 ± 2 0.51 ± 0.02 0.070

LF-LSTM 4 108±1 0.009 2464 ± 7 2.89 ± 0.04 0.009

EF-
Transformer 4 25 ± 0.4 0.118 2466 ± 4 0.65 ± 0.02 0.118

LF-
Transformer 4 159 ± 1 0.826 2524±1 2.93 ± 0.01 0.826

MulT [156] 4 162 ± 1 0.125 3315 ± 1 4.88 ± 0.04 0.125
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Dataset Stocks-Health

Metric Epochs 
trained

Training 
time (s)

Training 
params 

(M)

Training 
peak 

memory 
(MB)

Inference time 
(s)

Inference 
params 

(M)

T GradBlend 
[167] 4 582 ± 4 0.541 3141 ± 2 0.49 ± 0.01 0.070

Dataset Stock-Tech

Metric Epochs 
trained

Training time 
(s)

Training 
params 

(M)

Training 
peak 

memory 
(MB)

Inference time 
(s)

Inference 
params 

(M)

U Unimodal t 2 9.5 ± 0.1 0.067 3023 ± 1 0.51 ± 0.01 0.067

M

EF-LSTM 2 9.6 ± 0.1 0.070 3075 ± 4 0.53 ± 0.01 0.070

LF-LSTM 4 92 ± 0.5 0.007 2453 ± 4 2.51 ± 0.04 0.007

EF-
Transformer 4 25 ± 0.4 0.118 2453 ± 1 0.63 ± 0.01 0.118

LF-
Transformer 4 135 ± 1 0.708 2506 ± 1 2.52 ± 0.00 0.708

MulT [156] 4 161 ± 1 0.125 3315 ± 2 4.79 ± 0.03 0.125

T GradBlend 
[167] 4 500 ± 3 0.473 3167±1 0.44 ± 0.01 0.070

Table 21:

Results on the ENRICO dataset in the HCI domain. U: unimodal models, M: multimodal 

fusion paradigms, O: optimization objectives, T: training structures. Several out-domain 

methods perform well on MIMIC and improve upon the current state-of-the-art performance 

on in-domain methods.

Dataset
Metric

ENRICO
Acc(20) ↑

U
Unimodal i
Unimodal s

47.0±1.6
46.1±1.3

M

LF
TF [179]
LRTF [106]
MI-MATRIX [77]

50.8±2.0
46.6±1.9
47.1±2.9
46.7±2.4

O CCA [145]
REFNET [135]

50.1±1.4
44.4±2.2

T GRADBLEND [167] 51.0±1.4
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Table 22:

Complexity results for datasets in the HCI domain. U: unimodal models, M: multimodal 

fusion paradigms, O: optimization objectives, T: training structures.

Dataset ENRICO

Metric Epochs 
trained

Training 
time (s)

Training 
params 

(M)

Training 
peak 

memory 
(MB)

Inference 
time (s)

Inference 
params (M)

U
Unimodal i
Unimodal s

50
50

1601
1644

9.6
9.6

2796
2771

7.3
8.1

19.3
19.3

M

LF
TF [179]
LRTF [106]
MI-MATRIX [77]

50
50
50
50

1714
2012
1853
1604

19.3 19.3
19.3
19.3

2730
2718
2717
2730

8.7
10.9
9.7
8.5

19.3
19.3
19.3
19.3

O CCA [145]
REFNET [135]

50
50

2945
1747

19.3
25.7

2923
2757

9.1
13.8

19.3
25.7

T GRADBLEND 
[167] 50 2618 19.3 2610 12.1 19.3

H.5 HCI

We show the full results in Table 21 and results on complexity in Table 22. Here we list 

some observations regarding these results:

1. The ENRICO paper [93] does not include code or provide many details about 

their experiments (e.g., data splits, hyperparameters). Compared to their reported 

results, our reproduction resulted in better performance for the set modality and 

worse performance for the screenshot modality.

2. Using multiple modalities can help prediction on ENRICO, boosting 

performance over the best unimodal model by 4%.

3. Similar to finance, there has been very little research in multimodal models 

for HCI. We observe decent performance of several out of domain methods, 

especially GRADBLEND which offers a slight improvement over a standard LF 

model.

4. Certain more complex methods, unfortunately, do not work that well on this 

dataset. On the architecture side, more expressive methods such as TF, LRTF 

and MI do not offer improvements over a simple LF model. We hypothesize that 

these more complex models have a larger number of trainable parameters which 

make them more prone to overfitting to small and noisy datasets.

We show robustness results with increasing levels of noise in Figure 20. We highlight the 

following observations:

1. We again observe a similar trend where the best multimodal models (LF 

and sometimes GRADBLEND) are more robust than the best unimodal model. 
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However, different from other datasets, we find that certain multimodal models 

can be worse in performance and robustness than the best unimodal model. TF in 

particular is not robust and performs worse than the best unimodal method.

2. LF is surprisingly robust to imperfections in the image modality and shows 

a very stable trend despite high levels of noise, implying that the model has 

learned to rely on the set modality instead when the image is imperfect.

3. Multimodal models show a high variance in robustness at high noise levels – 

performance can range from 5% to 40% at the highest noise levels.

Figure 20: 
Robustness of multimodal models with increasing levels of noise on the ENRICO dataset in 

the HCI domain.

Table 23:

Results on multimodal datasets in the multimedia domain. U: unimodal models, M: 

multimodal fusion paradigms, O: optimization objectives, T: training structures. We observe 

high variance in model performance across datasets with no method showing consistently 

strong performance.

Dataset MM-IMDB

Metric Micro F1(23) ↑ Macro F1(23) ↑

U
Unimodal ( ℓ )
Unimodal (i)

58.6±1.3
40.1±1.3

45.6±4.5
25.3±0.6

M

EF
LF
LRTF [106]
MI-MATRIX [77]

58.9±2.6 58.8±1.6
59.2±0.5
58.3±1.0

49.8±1.7 49.2±2.0
49.2±0.6
48.0±1.1
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Dataset MM-IMDB

Metric Micro F1(23) ↑ Macro F1(23) ↑

O
CCA [145]
REFNET [135]
MFM [155]

59.3±1.2
59.2±2.7
38.4±1.6

50.2±0.9
50.2±1.4
22.3±1.3

T RMFE 58.6±2.3 47.1±2.0

Dataset AV-MNIST

Metric Acc(10) ↑

U
Unimodal (i)
Unimodal a

65.1±0.2
42.0±0.2

M

LF
LRTF [106]
MI-MATRIX [77]
MFAS [122]

71.7±0.4 71.5±0.5
71.2±0.5
72.8±0.2

O

CCA [145]
REFNET [135]
MFM [155]
MVAE [168]

71.9±0.4 70.9±0.6
71.8±0.4
72.3±0.2

T GRADBLEND [167] 68.5±0.5

Dataset KINETICS-S KINETICS-L

Metric Acc(5) ↑ Acc(400) ↑

U
Unimodal v
Unimodal a

56.5
39.7

72.6
19.7

M LF 56.1 71.7

T GRADBLEND [167] 23.7 74.7

H.6 Multimedia

We show the full results in Table 23 and results on complexity in Table 24. Here we list 

some observations regarding these results:

1. The current SOTA on AV-MNIST is based on architecture search: MFAS [122]. 

Amongst all the methods we evaluated, MFAS is still the best performing 

method and beats the second best method (MVAE) by 0.5%. Meanwhile, 

Gradient Blend (GRADBLEND) does not seem to generalize well to this dataset, as 

it performs worse than all other multimodal methods.

2. On MM-IMDB, we attempted several methods on the objective function 

side. We found that using contrastive learning (REFNET) [135] or canonical 

correlation analysis (CCA) were quite useful in improving performance, with 

both outperforming purely architectural baselines without alignment as an 

optimization objective. In particular, while the CCA approach for multimodal 

fusion was originally proposed for affect recognition datasets [145], we find that 

they also generalize to the multimedia domain.
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3. On KINETICS, Gradient Blend (GRADBLEND) [167] was shown to work really well 

in their original paper. However, we found that this approach does not generalize 

well to other datasets such as AV-MNIST. We also created a smaller version of 

Kinetics called KINETICS-S to enable quick prototyping of multimodal models. 

Unfortunately, we found that GRADBLEND also struggles on the smaller partition 

of Kinetics.

4. For KINETICS-S, we also observed that the visual unimodal model slightly 

outperformed the late fusion model despite the latter using more modalities. This 

reflects the observations by Wang et al., [167] on the original full version of the 

KINETICS dataset.

5. Therefore, we find that multimodal models still struggle on the KINETICS dataset 

with multimodal performance on simple models (LF) unable to outperform 

unimodal methods. While GRADBLEND can improve multimodal performance, 

it comes at the expense of ∼ 3× the training time. Future research should explore 

building lightweight and effective multimodal models on KINETICS as well as 

other datasets in MULTIBENCH.

Table 24:

Complexity results for datasets in the multimedia domain.

Dataset MM-IMDB

Metric Epochs 
trained

Training 
time (s)

Training 
params (M)

Training 
peak 

memory 
(MB)

Inference 
time (s)

Inference 
params (M)

U
Unimodal (i) 125 622 0.55 2146 2.07 0.55

Unimodal (a) 25 127 4.86 2176 2.14 4.86

M

EF 15 117 5.05 2010 3.24 5/05

LF 5 45 10.3 2016 3.44 10.3

LRTF [106] 15 741 10.3 2448 5.57 10.3

MI-Matrix [77] 20 735 280 4036 3.59 280

MFM [155] 10 78 21.3 2038 3.36 10.9

CCA [145] 20 1025 9.51 2273 3.33 9.51

RMFE [53] 10 104 8.78 22297 3.46 8.78

REFNET [135] 10 2207 27.0 2899 3.47 10.3

Dataset AV-MNIST

Metric Epochs 
trained

Training 
time (s)

Training 
params (M)

Training 
peak 

memory 
(MB)

Inference 
time (s)

Inference 
params (M)

U
Unimodal (i) 25 106 0.02 9549 0.95 0.02

Unimodal (a) 25 158 0.24 11895 1.35 0.24

M

LF 25 260 0.26 11917 1.20 0.26

MI-MATRIX 
[77] 25 289 2.53 11509 1.21 2.53
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Dataset AV-MNIST

Metric Epochs 
trained

Training 
time (s)

Training 
params (M)

Training 
peak 

memory 
(MB)

Inference 
time (s)

Inference 
params (M)

LRTF [106] 30 470 0.25 11610 1.25 0.25

MFAS [122] 172 x 6 17648 0.14* 9444 4.39 0.07

O

CCA [145] 25 310 0.25 9548 1.42 0.25

RefNet [135] 15 1179 14.01 15931 4.39 0.28

MFM [155] 25 544 0.92 9570 4.76 0.45

MVAE [168] 20 679 0.81 9755 4.98 0.34

T GradBlend [167] 300 12539 0.29 12029 1.51 0.26

Dataset Kinetics-Small

Metric Epochs 
trained

Training 
time (s)

Training 
params (M)

Training 
peak 

memory 
(MB)

Inference 
time (s)

Inference 
params (M)

U
Unimodal v 15 6702 12.0 12151 13.7 12.0

Unimodal (a) 15 46767 25.8 8533 60.9 25.8

M LF 15 20283 37.8 9525 13.9 37.8

T GradBlend 
[167] 15 20283 37.8 9525 13.9 37.8

Dataset Kinetics-Large

Metric Epochs 
trained

Training 
time (s)

Training 
params (M)

Training 
peak 

memory 
(MB)

Inference 
time (s)

Inference 
params (M)

U
Unimodal v 45 938280 12.0 12151 1918 12.0

Unimodal (a) 45 947380 33.5 8533 8526 33.5

M LF 45 2839620 45.5 9525 1946 45.5

T GradBlend 
[167] 45 2839620 45.5 9525 1946 45.5

(*)
(This is the number of params in modules input to MFAS at the start of training, MFAS will generate more params 

during the architecture search process). U: unimodal models, M: multimodal fusion paradigms, O: optimization objectives, 
T: training structures.

We show robustness results with increasing levels of noise on the MM-IMDB datasets in 

Figure 21. We highlight the following observations:

1. Multimodal models outperform unimodal models when it comes to robustness 

(and initial performance). This is especially true for imperfections in the image 

modality. We believe that multimodal models are able to successfully rely on the 

other modality when one is imperfect. We find that the gap between multimodal 

and unimodal performance is very significant on the image modality. However, 

the gap is much smaller on the text modality.
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2. MFM was a method tested initially for affective computing datasets but we found 

it did not generalize to MM-IMDB, giving poor initial performance and poor 

robustness. We believe the high-dimensionality of image and text input means 

that reconstruction of input modalities is difficult, which causes reconstruction-

based objectives in MFM to suffer.

3. On the whole, multimodal models are more robust to imperfections on the 

image modality as compared to the language modality. However, unimodal 

performance is much better on language than on image, which implies that 

the language modality is more informative. Similar to the observations on the 

affective computing datasets, we also find that multimodal models tend to overfit 

to the more informative modality (language) and are therefore less robust to 

imperfections in the more informative modality.

Figure 21: 
Robustness of multimodal models with increasing levels of noise on the MM-IMDB dataset 

in the multimedia domain.
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Figure 22: 
Relative performance of each model across in-domain (red dots) and out-domain datasets 

(blue dots). In-domain refers to the performance on datasets that the method was previously 

proposed for and out-domain shows performance on the remaining datasets. We find that 

many methods show strongest performance on in-domain datasets which drop when tested 

on different domains, modalities, and tasks. In general, we also observe high variance in 

the performance of multimodal methods across datasets in MULTIBENCH, which suggest open 

questions in building more generalizable models.

H.7 Performance

In this subsection, we summarize several general observations regarding the performance of 

multimodal models across domains, modalities, and tasks.

In the following analysis, we aggregate the performance of models by first assigning each 

task a weight of 1
n  where n is the number of tasks in a dataset (e.g., there are 3 tasks in 

the MIMIC dataset: mortality, ICD-9 group 1, and ICD-9 group 7 prediction). Then, we 

compute the scaled performance of each model on each task by min-max normalization 

– setting the best-performing model’s performance to 1 and worst-performing model’s 

performance to 0, and scaling the performance of all remaining models linearly between 0 

and 1. Note that we only take the best unimodal performance into account when determining 

the best and worst-performing models. Then, the final performance score for each model 

is computed by a weighted average of its scaled performances on all tasks that model was 

evaluated on.

Benefits of standardization:

Simply applying methods in a research different area achieves stateof-the-art performance 

on 9 out of the 15 tasks. We find that this is especially true for domains and modalities 

that have been relatively less studied in multimodal research (i.e., healthcare, finance, HCI). 

Performance gains can be obtained using multimodal methods outside of that research area. 
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Therefore, this motivates the benefits of standardizing and unifying areas of research in 

multimodal machine learning. We believe that the ever-expanding diversity of datasets in 

MULTIBENCH can greatly accelerate research in multimodal learning.

Generalization across domains and modalities:

MULTIBENCH offers an opportunity to analyze algorithmic developments across a large suite 

of modalities, domains, and tasks. We illustrate these observations through 2 summary 

plots of the generalization performance of multimodal models. Firstly, in Figure 22, we 

plot the performance of each multimodal method across all datasets that it is tested on, 

using the color red to indicate performance on datasets that it was initially proposed and 

tested on (which we label as in-domain), and blue to indicate its performance on the 

remaining datasets (which we label as out-domain). Secondly, in Figure 23, we color-code 

the performance on each dataset depending on which research area the dataset belongs to 

(one of the 6 research areas covered in MULTIBENCH).

We summarize several observations regarding generalization across domains and modalities 

below:

1. Many multimodal methods still do not generalize across domains and datasets. 

For examples, MFAS [122] works well on domains it was designed for (AV-

MNIST and MM-IMDB in the multimedia domain), but does not generalize to 

other domains such as healthcare (MIMIC). Similarly, the method designed for 

robustness, MCTN [123], does not generalize to datasets within the affective 

computing domain (UR-FUNNY and MUSTARD). Finally, GRADBLEND [167], 

an approach specifically designed to improve generalization in multimodal 

learning and tested on video and audio datasets (e.g., Kinetics), does not perform 

well on other datasets. Therefore, there still does not exist a one-size-fits-all 

model, especially on understudied modalities and tasks.

2. From Figure 22, we find that many methods show their strongest performance 

on in-domain datasets, and their performance drops when tested on different 

domains, modalities, and tasks. Some interesting observations are that MULT 

performs extremely well on the affect recognition datasets it was designed for but 

struggles on other multimodal time-series in the finance and robotics domains. 

On the other hand, MFM shows an impressive performance in generalizing to 

new domains, although its in-domain performance has been exceeded by several 

other methods.

3. From Figure 22, we also observe high variance in the performance of multimodal 

methods across datasets in MULTIBENCH, which suggest open questions in 

building more generalizable models. We find that LF is quite stable and always 

achieves above-average performance.

4. There are methods that are surprisingly generalizable across datasets. These 

are typically general modality-agnostic methods such as LF. While simple, it 

is a strong method that balances simplicity, performance, and low complexity. 
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However, it does not achieve the best performance on any dataset, which 

suggests that it is a good starting point but perhaps not the best eventual method.

5. From Figure 23, we find that performance also varies significantly across 

research areas.

6. Several methods such as MFAS and CCA are designed for only 2 modalities 

(usually image and text), and TF and MI do not scale efficiently beyond 2/3 

modalities. Therefore, we were unable to directly adapt these approaches to other 

datasets. We encourage the community to generalize these approaches across 

datasets and modalities on MULTIBENCH.

Tradeoffs between modalities:

How far can we go with unimodal methods? Surprisingly far! From each of the individual 

tables, we observe that decent performance can be obtained with the best performing 

modality. Further improvement via multimodal models may come at the expense of around 2 

− 3× the parameters.

Figure 23: 
Relative performance of each model across different domains. We find that the performance 

of multimodal models varies significantly across datasets spanning different research areas 

and modalities. Similarly, the best-performing methods on each domain are also different. 

Therefore, there still does not exist a one-sizefits-all model, especially for understudied 

modalities and tasks.
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Figure 24: 
Tradeoff between performance and complexity. Size of circles shows variance in 

performance and complexity across (a) all datasets and (b) datasets on which we tested 

>6 approaches. We plot a dotted blue line of best quadratic fit to show the Pareto frontier 

between performance and complexity. These strong tradeoffs suggest that future work 

should focus on lightweight multimodal models that generalize throughout datasets in 

MULTIBENCH. It remains an open question whether several well-performing methods (such 

as MFAS or MULT) can be successfully adapted to new domains and tasks, since they work 

much better on more-studied datasets (b) as compared to over all datasets (a).

H.8 Complexity

We aggregate the complexity of each model by taking the weighted average of the relative 

complexity of the model across tasks on which it is evaluated. The weights are assigned in 

the same way as performance weights described in the subsection above (i.e., performing 

min-max normalization across models within each task and averaging across the normalized 

performance across all datasets that the model was tested on). The relative complexity of 

each model on each task is computed by dividing its training time by the best unimodal 

model’s training time and taking the negative log10 of this value (we take negative log 

because some more complex methods can take hundreds of times the training time of 

simpler methods). Thus, the higher the value of aggregated complexity, the faster the model 

trains.

Based on the full results above, we summarize the overall tradeoff between performance 

and complexity in Figure 24(a). We aggregate performance and complexity statistics by first 

performing min-max normalization within each data to a scale of 0 − 1 for performance 
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and complexity separately. Note that for metrics where lower is better (i.e., MSE or RMSE) 

we reverse the direction of min-max normalization. We then aggregate normalized statistics 

across all datasets and plot the tradeoff between performance and complexity. We highlight 

the following observations:

1. In Figure 24, we plot a dotted blue line of best quadratic fit to show the 

Pareto frontier between performance and complexity. We choose a quadratic 

fit since it is common to fit a curve rather than a straight line when considering 

the tradeoff frontier between 2 variables (related to the law of diminishing 

returns in economics). Using this plot, we find a strong tradeoff between these 

two desiderata: simple fusion techniques (e.g., early fusion EF and late fusion 

LF) are actually appealing choices that score high on both metrics, especially 

when compared to complex (but slightly better performing) methods such as 

architecture search MFAS or Multimodal Transformers MULT.

2. Using this quadratic curve, we find that the best unimodal model is under the 

curve (i.e., worse-off than the Pareto front). This implies that while unimodal 

models train the fastest, several multimodal methods can outperform them 

despite being slightly slower, and is an overall better choice when taking both 

performance and complexity into account. LF is an appealing choice that lies 

above the curve.

3. While LF is the easiest to adapt to new datasets and domains, we encountered 

difficulties in adapting several possibly well-performing methods (such as MFAS 

or MULT) to new datasets and domains. MFAS is designed with a specific 

set of atomic architectural elements in mind which makes it most suitable for 

convolutional networks. MULT is suitable for multimodal time-series data and 

it is unclear how to adapt its fusion paradigm to modalities without a temporal 

dimension. For a more fair comparison, in Figure 24(b), we plot the accumulated 

performance for methods only on the most commonly studied datasets where 

we experimented with more than 6 methods. We find that these well-performing 

methods (MFAS or MULT) show only slightly better than LF on all datasets 

(see Figure 24(a)), they (see Figure 24(b)). Therefore, it is important for future 

research to focus on models that generalize to multiple domains, modalities, and 

tasks, since our results suggest that many methods currently do not satisfy these 

desiderata.

4. These plots do not completely capture the picture since complexity is measured 

via total training time (training speed), which can be prohibitively high for 

methods such as MFAS, MVAE, and GRADBLEND. However, these methods 

are primarily slow due to extra parameters or training procedures during 

training, and once the model is trained, test-time inference is fast and cheap. 

Plotting a performance-complexity tradeoff using a different complexity metric 

will likely result in different observations. Overall, MULTIBENCH enables a 

holistic evaluation of training and test-time space and memory complexity so 

practitioners can choose the most suitable model for their real-world application 

setting.
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Figure 25: Tradeoff between performance and robustness.
Size of circles shows variance in performance and robustness across datasets. We show 

the line of best linear fit in dotted blue. While better performing methods display better 

relative robustness (as shown by the positive trend in the best linear fit in (a)), some of these 

methods suffer in effective robustness. In other words, their performance drops off faster 
as shown by the negative linear fit in (b). Few models currently achieve both relative and 

effective robustness, which suggests a crucial area for future multimodal research.
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Figure 26: 
Overall tradeoff between performance and robustness obtained by averaging the relative 

and effective robustness values in Figure 25. We show the line of best linear fit in dotted 

blue. There is only a slight positive trend between performance and overall robustness of 

these multimodal models. Therefore, few well-performing models currently achieve both 

relative and effective robustness, which is a crucial area for future multimodal research.

H.9 Robustness

In this section, we summarize our observations regarding the tradeoffs between accuracy 

and robustness, where we use the quantitative metrics for relative and effective robustness 

as described in Appendix D.3. As a reminder, relative robustness directly measures accuracy 

under imperfections while effective robustness measures the rate of accuracy drops with 

imperfection after equalizing for initial accuracy on clean test data. In Figure 25, we plot 

a similar tradeoff plot between accuracy and (relative & effective) robustness. Again, we 

aggregate performance and complexity statistics by first performing min-max normalization 

within each data to a scale of 0 − 1 for performance and robustness separately. We aggregate 

normalized statistics across all datasets and plot the tradeoff between performance and 

robustness. We highlight the following observations:

1. We show the line of best linear fit for relative and effective robustness in dotted 

blue in Figure 25. We observe a slight positive correlation between performance 

and relative robustness, which implies that models starting off with higher 

accuracy tend to stay above other models on the performance-imperfection 
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curve. In particular, several methods such as MVAE and RMFE show strong 

performance and robustness.

2. However, we observe a slightly negative correlation for effective robustness. 

Unfortunately, several well-performing methods such as MULT, CCA, and 

MVAE tend to drop off faster after equalizing for initial accuracy on clean test 

data.

3. Finally, we plot an average of relative and effective robustness in Figure 26 as 

an overall quantitative measure of robustness. We observe that very few models 

currently achieve both relative and effective robustness, which prompts an area 

for future multimodal research.

H.10 Summary of Takeaway Messages

From these results, we emphasize the main take-away messages and motivate several 

directions for future work:

1. Benefits of standardization: Applying methods in a research different area 

achieves state-of-the-art performance on 9 out of the 15 datasets, especially those 

relatively less studied in multimodal research (i.e., healthcare, finance, HCI). 

This motivates the benefits of standardizing and unifying areas of research in 

multimodal learning. We hope that MULTIBENCH and MULTIZOO can be a step in 

this direction.

2. Generalization across domains and modalities:

a. Many multimodal methods still do not generalize across domains and 

datasets, showing high variance across datasets in MULTIBENCH. Some 

of these methods perform worse on out-of-domain datasets than in-

domain datasets while other methods are designed in a specific manner 

for certain modalities and domains which makes them unable to be 

adapted to other datasets in straightforward ways.

b. Certain simple methods (e.g., LF) are surprisingly generalizable. 

However, it does not achieve the best performance on any dataset, 

which suggests that it is a good starting point but perhaps not the best 

method.

3. Decent performance can be obtained with the best performing modality, which 

motivates the need for new datasets that offer challenges and opportunities in 

multimodal modeling not achievable from unimodal methods.

4. There is a strong tradeoff between performance and complexity which suggests 

that future work should also focus on lightweight multimodal models that 

generalize throughout datasets in MULTIBENCH.

5. Tradeoffs between performance and robustness:

a. Models starting off with higher accuracy tend to stay above other 

models on the performance-imperfection curve.
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b. However, several well-performing methods also tend to drop off faster 
after equalizing for initial accuracy on clean test data.

c. Overall, very few models currently achieve both relative and effective 

robustness, which prompts an area for future multimodal research.

I: Future Directions

We plan to ensure the continual availability, maintenance, and expansion of MULTIBENCH. 

Several immediate future directions include expansions in the datasets provided, algorithms 

implemented in MULTIZOO, and broadening the holistic evaluation of multimodal models.

I.1 Datasets

One main area of expansion lies in the datasets supported by MULTIBENCH. We first 

describe the categories of multimodal datasets in the fusion domain that we plan to add 

in the following months. We also plan to include several new application areas where 

multimodal fusion is useful, such as cross-modal retrieval, multimodal question answering, 

and grounding across modalities, which we will detail in the following subsections. Finally, 

we explain our plan for community-based expansion of datasets and models based on user 

feedback that will happen in parallel.

I.1.1 Fusion

Within the same category of multimodal fusion, we plan to add datasets within the same 

application domains as well as to expand to new application domains. Within the current 

domains, we plan to include (1) the hateful memes challenge [82] as a core challenge in 

multimedia to ensure safer learning from ubiquitous text and images from the internet, 

(2) more datasets in the robotics and HCI domains where there are many opportunities 

for multimodal modeling, and (3) several datasets which are of broad interest but are 

released via licenses that restrict redistribution such as dyadic emotion recognition on 

IEMOCAP [21], deception prediction on from real-world Trial Data [121], and multilingual 

affect recognition on CMU-MOSEAS [182] which was only just recently released. We are 

currently working with the authors to integrate some of these datasets into MULTIBENCH in 

the near future. These new datasets will benchmark multimodal modeling in human-centric 

areas where privacy and fairness can be important desiderata. Furthermore, it will enable 

benchmarking of multimodal learning in languages other than English which is important 

towards building more accessible multimodal models that include the language modality.

I.1.2 Retrieval

Another area of great interest lies in cross-modal retrieval [104, 187]. In this area, the 

goal is to retrieve semantically similar data from a new modality using a modality as a 

query (e.g., given a phrase, retrieve the closest image describing that phrase). The core 

challenge is to perform alignment of representations across both modalities. Retrieval has 

been studied primarily in the multimedia space (e.g., retrieving images, video, and audio 

given a text query) and we hope to add some of these datasets as well as to expand datasets 

for cross-modal retrieval using different combinations of query and retrieved modalities.
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I.1.3 Question Answering

Within the domain of language and vision, there has been growing interest in language-

based question answering (i.e., “query” modality) of entities in the visual, video, or 

embodied domain (i.e., “queried” modality). Datasets such as Visual Question Answering 

[4], Social IQ [178], and Embodied Question Answering [36] have been proposed to 

benchmark the performance of multimodal models in these settings. A core challenge lies in 

aligning words asked in the question with entities in the queried modalities, which can take 

the form of visual entities in images or videos, and actions in embodied environments. We 

plan to add these datasets as soon as possible, and also plan to add QA over multiple queried 

modalities such as text, images, and tables as proposed in recent work [63, 147].

I.1.4 Grounding

Grounding is the task of linking entities (often at their most granular level) in one modality 

with entities in another modality. As an example, in the domain of language and vision, a 

well-studied grounding task is visual referring expressions - the task of localizing an object 

in an image referred to by a natural language expression (e.g., half of a sandwich on the right 
side of a plate nearest a coffee mug) [32]. Grounding can be seen as a more fine-grained 

version of retrieval where the retrieved modality of interest is at the level of sub-patches of 

an image. We currently do not include tasks in the grounding area since there are no datasets 

outside using language to query images (and their subregions). We plan to include grounding 

datasets in the language and vision domain but also encourage research in extending this 

research problem to other modalities (e.g., using language to query video/audio/sets/tables).

I.1.5 Reinforcement Learning

Learning from multiple modalities in an interactive setting is an area of interest as a step 

towards building more intelligent embodied agents that can perceive the visual world, 

language instructions, auditory feedback, and other sensor modalities. These research areas 

broadly span language-conditional RL (i.e., instruction following, learning a reward function 

from instructions, language in the observation or action space) and language-assisted RL 

(language as domain knowledge, language to structure policies) [110]. Recent work has 

also explored audio as a modality in an agent’s multisensory interaction with the world 

[38]. Modern robot systems are also equipped with multiple sensors to aid in their decision-

making and there has been considerable research in learning multimodal representations 

from multiple sensors for robot manipulation [89–91].

These multimodal problems are fundamentally different from those that are concerned with 

prediction tasks. Alongside the core challenges in learning complementary information 

and aligning entities in language instructions to those in the visual environment, there 

also lies the core challenge of learning actionable representations that link to the set of 

actions that can be taken and their associated long-term rewards [110]. We plan to include 

these datasets in a future version of MULTIBENCH. We also encourage research in extending 

these multimodal tasks beyond language and vision to truly incorporate the diverse set of 

modalities humans use in everyday interactive tasks.
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I.2 Models

By partitioning the structure of multimodal code into the distinct areas in Appendix E 

(data processing, unimodal and multimodal model design, optimization objectives, and 

training structures), MULTIZOO enables easy addition of new innovations from all areas. It 

is easy to add new unimodal encoders as they are developed in areas such as computer 

vision and natural language processing. Similarly, it is extremely simple to add multimodal 

methods while ensuring compatibility with existing unimodal encoders, fusion paradigms, 

optimization objectives, and training structures. Please refer to Appendix F for code snippets 

changing multimodal models, optimization objectives, and training structures.

The authors maintain a reading list for topics in multimodal ML [98] that is regularly 

updated for the latest advances in the area. We plan to periodically add proposed methods to 

the MULTIZOO toolkit with help from the community as well.

I.3 Evaluation

MULTIBENCH is designed with holistic evaluation in mind. Currently, MULTIBENCH supports 

evaluation for prediction performance, time and space complexity, and robustness to noisy 

and missing modalities. There are several other crucial evaluation dimensions that we plan to 

include in the following versions of the benchmark:

I.3.1 Uncertainty Estimates

There has been important work in building ML models that return uncertainty estimates 

along with their prediction targets [52, 57] along with recent interest in building multimodal 

models with similar capabilities [20, 169]. As ML models are increasingly deployed in 

real-world sensitive scenarios [12, 34, 160], there is an increasing need to quantify when ML 

models do not know the right answer and potentially abstain [107] or defer the prediction 

to a human expert [86]. As future steps, we plan to also include evaluations of uncertainty 

predictions into MULTIBENCH, such as using the recently proposed Uncertainty Toolkit [2, 

30, 153]. This will enable the inclusion and evaluation of uncertainty-predicting multimodal 

models such as the ones proposed in [20, 169].

I.3.2 Robustness to Distribution Shifts

Distribution shifts, spanning shifts in dataset distributions and label distributions, are among 

core challenges currently preventing machine learning systems from being safely deployed 

in real-world settings [130]. Subtle changes in the data distribution can significantly impact 

performance, a phenomenon exemplified by adversarial examples [146], and shifts in the 

label distribution can significantly compromise accuracy as well [185].

Distribution shifts in multimodal settings have not been explored by the research 

community. Multimodal data can exhibit shifts in the marginal data distribution of each 

modality as well as in the joint distribution across modalities, which makes the problem 

inherently more complex. To enable research in benchmarking and analyzing distribution 

shift in multimodal settings, we plan to include:
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1. Data: Data partitions (or new datasets) to MULTIBENCH that test for generalization 

across domains and subpopulations, in a manner similar to [85]. Building on 

the current datasets available in MULTIBENCH, some examples include affect 

recognition across different users, robotic manipulation across different physical 

robots, and medical diagnosis across different age groups.

2. Algorithms: On the algorithmic side, we plan to include currently established 

methods for distribution shift in a single modality (which has been the bulk 

of existing work) into MULTIZOO, which will enable both theoreticians and 

practitioners to analyze the new challenges that multimodal data brings to the 

study of distribution shift.

3. Evaluation: Finally, to evaluate robustness to distribution shift, we plan to 

build a standardized evaluation pipeline into MULTIBENCH (in a similar way for 

robustness tests currently implemented). We will also tap into insights from 

the experimental protocol in [130] which includes evaluation metrics to detect 

dataset shift before attempting to correct it.

I.3.3 Fairness

To safely deploy human-centric multimodal models in real-world scenarios such as 

healthcare, HCI, legal systems, and social science, it is necessary to recognize the role 

they play in shaping social biases and stereotypes. Recent work has shown that word-level 

embeddings reflect and propagate social biases present in training corpora [18, 23]. Machine 

learning systems that incorporate these word embeddings can further amplify biases [13] 

and unfairly discriminate against users, particularly those from disadvantaged social groups. 

Similar observations have been observed for datasets and models in the visual domain such 

as facial recognition [6] and image captioning [67] tasks, which has called for immediate 

efforts towards better documentation and risk analysis of both ML datasets [54] and models 

[115].

We believe that the ability to make fair judgments is even more important in a multimodal 

setting for the following reasons:

1. Human behavior is inherently multimodal. As a result, many research problems 

in multimodal learning involve human-centric data and tasks such as healthcare, 

affective computing, HCI, multimedia, human-robot interaction. As multimodal 

systems (such as emotion recognition systems) are deployed in the real 

world, it is crucial to characterize possible social biases they encode and 

design algorithms to mitigate these biases. Otherwise, real harm can be 

brought to under-represented populations which unfair machine learning models 

disproportionately harm [18].

2. While there has been a large body of work investigating the fairness of 

representations learned from language and images, there is little work currently 

investigating this for other modalities, as well as for the wide spectrum 

of multimodal models integrating multiple modalities which can potentially 

compound biases stemming from each one [141].
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There are many definitions of fairness and bias in ML and it is unclear which are important 

in which multimodal settings. While we do not have the best answer to conclusively evaluate 

for fairness in multimodal systems, we are making it a priority to include this feature in 

future versions of MULTIBENCH. In reference to [113], certain dimensions of fairness we are 

currently exploring and plan to add to MULTIBENCH include:

1. Data: A better fine-grained understanding of bias in data, which we plan to 

achieve via human annotations for several multimodal datasets in MULTIBENCH 

(especially those that involve human-centric tasks such as affect recognition).

2. Algorithms: Algorithmic fairness, including training models that satisfy 

individual and group fairness, analyzing trained models from a geometric 

perspective (i.e., studying whether biases are encoded in representations learned 

by a model [18, 99]), and methods for preprocessing and post-processing data 

and models to satisfy fairness metrics.

3. Evaluation: Bias evaluation of trained multimodal models as well as those 

trained within a single modality, to determine the relationship between biases 

in a single modality versus those that manifest in multimodal problems, and 

comparing them to current progress in this direction on the language and vision 

modalities [133, 141].

These tasks tackle benchmarking and analysis of biases in multimodal methods from 

different perspectives spanning data, algorithms, and evaluation, which make them 

compatible with our proposed modular framework in MULTIBENCH and MULTIZOO. We plan 

to include additional data annotations in the MULTIBENCH data loader, a suite of algorithms 

designed to mitigate bias for unimodal and multimodal models in MULTIZOO, and evaluation 

metrics for fairness in the MULTIBENCH evaluation pipeline.

I.4 Broader Outreach

In workshops and competitions:

The authors have extensive experience in organizing challenges, workshops, 

and tutorials at leading ML, NLP, and computer vision conferences. 

Among these include large-scale challenges in multimodal language analysis 

at NAACL 2021 (http://multicomp.cs.cmu.edu/naacl2021multimodalworkshop/), ACL 

2020 (http://multicomp.cs.cmu.edu/acl2020multimodalworkshop/), and ACL 2019 (http://

multicomp.cs.cmu.edu/acl2018multimodalchallenge/). We plan to use MULTIBENCH as the 

subject of future workshops to accelerate reproducible research in multimodal learning. 

These workshops will focus on both new algorithms as well as careful analysis of existing 

algorithms in the field. Both directions will be accelerated via our resources: we plan to 

provide MULTIBENCH as a starting point for loading datasets and MULTIZOO as starter code for 

multimodal modeling, evaluation, and analysis.

In academic courses:

We plan to use the MULTIBENCH benchmark as well as the standardized MULTIZOO codebase 

as an educational tool to support the Multimodal ML course taught annually at CMU 
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(https://cmu-multicomp-lab.github.io/mmml-course/fall2020/). Students can choose to use 

one of the datasets provided in MULTIBENCH or add a new one to the current suite 

of multimodal datasets. When designing new algorithmic contributions, students can 

implement their approaches in the MULTIZOO toolkit which enables easy testing on multiple 

datasets, quick logging and analysis of results, and reproducible testing. This method of 

community-based expansion is also likely to see great leaps in the variety of datasets and 

models supported by this toolkit.

Community-based expansion:

Finally, we plan to present a system for expanding the datasets and models in MULTIBENCH 

via input from the research community. Since MULTIBENCH is publicly released and will be 

regularly maintained, the existing starting benchmark, code, evaluation, and experimental 

protocols can greatly accelerate the addition of new datasets and models in the future. In 

the public GitHub (https://github.com/pliang279/MultiBench), we have included a section 

on contributing to MULTIBENCH through either task proposals or additions of datasets 

and algorithms. The readme includes detailed instructions for adding new datasets and 

dataloaders, as well as new algorithms by modifying according to the code structure we have 

developed and standardized. The readme also contains details for writing a main function to 

test new data loaders and multimodal algorithms, and a test script to ensure compatibility 

with existing experiments. The authors will regularly monitor new proposals through this 

channel. Periodically, the authors will select popular task proposals (datasets and models) 

and add it into new versions of MULTIBENCH. The ease of loading datasets and evaluating 

models will naturally encourage interest in building new datasets and models on top of the 

toolkit. We further plan to encourage participants/students in our organized workshops and 

courses to use MULTIBENCH and contribute task proposals as well.
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Figure 1: 
MULTIBENCH contains a diverse set of 15 datasets spanning 10 modalities and testing for 

more than 20 prediction tasks across 6 distinct research areas, thereby enabling standardized, 

reliable, and reproducible large-scale benchmarking of multimodal models. To reflect real-

world requirements, MULTIBENCH is designed to holistically evaluate (1) performance across 

domains and modalities, (2) complexity during training and inference, and (3) robustness to 

noisy and missing modalities.
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Figure 2: 
MULTIZOO provides a standardized implementation of a suite of multimodal methods in a 

modular fashion to enable accessibility for new researchers, compositionality of approaches, 

and reproducibility of results.
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Figure 3: Tradeoff between performance and complexity.
Size of circles shows variance in performance across (a) all datasets and (b) datasets on 

which we tested >6 approaches. We plot a dotted blue line of best quadratic fit to show 

the Pareto frontier. These strong tradeoffs should encourage future work in lightweight 

multimodal models that generalize across datasets, as well as in adapting several possibly 

well-performing methods (such as MFAS or MULT) to new datasets and domains.
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Figure 4: Tradeoff between performance and robustness.
Size of circles shows variance in robustness across datasets. We show the line of best linear 

fit in dotted blue. While better performing methods show better relative robustness (a), some 

suffer in effective robustness since performance drops off faster (b). Few models currently 

achieve both relative and effective robustness, which suggests directions for future research.
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Table 1:

MULTIBENCH provides a comprehensive suite of 15 multimodal datasets to benchmark current and proposed 

approaches in multimodal representation learning. It covers a diverse range of research areas, dataset sizes, 

input modalities (in the form of ℓ: language, i: image, v: video, a: audio, t: time-series, ta: tabular, f: force 

sensor, p: proprioception sensor, s: set, o: optical flow), and prediction tasks. We provide a standardized data 

loader for datasets in MULTIBENCH, along with a set of state-of-the-art multimodal models.

Research Area Size Dataset Modalities # Samples Prediction task

Affective Computing

S
M
L
L

MUSTARD [24]
CMU-MOSI [181]
UR-FUNNY [64]

CMU-MOSEI [183]

{ℓ, v, a}
{ℓ, v, a} 
{ℓ, v, a}
{ℓ, v, a}

690
2,199
16,514
22,777

Sarcasm
sentiment

humor
sentiment, emotions

Healthcare L MIMIC [78] {t, ta} 36,212 mortality, ICD-9 codes

Robotics M
L

MUJOCO PUSH [90]
VISION&TOUCH [92]

{i, f, p}
{i, f, p}

37,990
147,000

object pose
contact, robot pose

Finance
M
M
M

STOCKS-F&B
STOCKS-HEALTH

STOCKS-TECH

{t ×18} {t ×63}
{t ×100}

5,218
5,218
5,218

stock price, volatility
stock price, volatility
stock price, volatility

HCI S ENRICO [93] {i, s} 1,460 design interface

Multimedia

S
M
M
L

KINETICS400-S [80]
MM-IMDB [8]

AV-MNIST [161]
KINETICS400-L [80]

{v, a, o}
{ℓ, i}
{i, a}

{v, a, o}

2,624
25,959
70,000
306,245

human action
movie genre

digit
human action
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Table 2:

Standardizing methods and datasets enables quick application of methods from different research areas 

which achieves stronger performance on 9/15 datasets in MULTIBENCH, especially in healthcare, HCI, robotics, 

and finance. In-domain refers to the best performance across methods previously proposed on that dataset and 

out-domain shows best performance across remaining methods. ↑ indicates metrics where higher is better 

(Acc, AUPRC), ↓ indicates lower is better (MSE).

Dataset MUSTARD ↑ CMU-MOSI ↑ UR-FUNNY ↑ CMU-MOSEI ↑ MIMIC ↑

Unimodal 68.6±0.4 74.2±0.5 58.3±0.2 78.8±1.5 76.7±0.3

In-domain 66.3±0.3 83.0±0.1 62.9±0.2 82.1±0.5 77.9±0.3

Out-domain 71.8±0.3 75.5±0.5 66.7±0.3 78.1±0.3 78.2±0.2

Improvement 4.7% - 6.0% - 0.4%

Dataset MUJOCO PUSH ↓ V&T EE ↓ STOCKS-F&B ↓ STOCKS-HEALTH ↓ STOCKS-TECH ↓

Unimodal 0.334±0.034 0.202±0.022 1.856±0.093 0.541±0.010 0.125±0.004

In-domain 0.290±0.018 0.258±0.011 1.856±0.093 0.541±0.010 0.125±0.004

Out-domain 0.402±0.026 0.185±0.011 1.820±0.138 0.526±0.017 0.120±0.008

Improvement - 8.4% 1.9% 2.8% 4.0%

Dataset ENRICO ↑ MM-IMDB ↑ AV-MNIST ↑ KINETICS-S ↑ KINETICS-L ↑

Unimodal 47.0±1.6 45.6±4.5 65.1±0.2 56.5 72.6

In-domain 47.0±1.6 49.8±1.7 72.8±0.2 56.1 74.7

Out-domain 51.0±1.4 50.2±0.9 72.3±0.2 23.7 71.7

Improvement 8.5% 0.8% - - -
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