Skip to main content
. Author manuscript; available in PMC: 2024 May 21.
Published in final edited form as: Adv Neural Inf Process Syst. 2021 Dec;2021(DB1):1–20.

Table 19:

Results on multimodal datasets in the finance domain. U: unimodal models, M: multimodal fusion paradigms, O: optimization objectives, T: training structures. MulT struggles on these datasets even though it performs strongly on similar multimodal time-series datasets in the affective computing domain. Other methods also show high variance across different data partitions.

Dataset Stocks-F&B Stocks-Health Stock-Tech
Metric MSE ↓ MSE ↓ MSE ↓
Mean 2.140 0.575 0.140

U ARIMA
Unimodal
2.199
1.856±0.093
0.620
0.541±0.010
0.152
0.125±0.004

M EF-LSTM
LF-LSTM
EF-Transformer
LF-Transformer
MulT [156]
1.835±0.098
1.893±0.106
2.144±0.014
2.155±0.023
2.053±0.022
0.526±0.017
0.541±0.018
0.573±0.006
0.573±0.006
0.555±0.005
0.121±0.003
0.120±0.008
0.143±0.003
0.143±0.004
0.135±0.003

T GradBlend [167] 1.820±0.138 0.537±0.011 0.138±0.030