Skip to main content
. Author manuscript; available in PMC: 2024 May 21.
Published in final edited form as: Adv Neural Inf Process Syst. 2021 Dec;2021(DB1):1–20.

Table 4:

Table of hyperparameters for prediction on affective computing dataset.

Component Model Parameter Value
GRU Encoder GRU Input sizes [5,20,35,74,300,704]
Hidden sizes [32,32,64,128,512,1024]
Num of layers 1 or 2
Dropout 0:0 or 0:1

Transformer Encoder [158] Transformer [158] Input sizes [5,20,35,74,300,704]
Hidden sizes [32,32,64,128,512,1024]
Num of layers 2 or 3
Dropout 0.2

Head MLP Input sizes [5,20,32,64,128,256]
Hidden sizes [5,20,32,64,128,256]
Num layers [2
Dropout 0.2

MCTN [123] Encoder GRU Input sizes 300
Hidden sizes [32, 64]
Num of layers 1 or 2
Dropout 0.0 or 0.1

MCTN [123] Decoder GRU Input sizes [32, 64]
Hidden sizes 300
Num of layers 1 or 2
Dropout 0.0 or 0.1

MCTN [123] Seq2Seq GRU+GRU teaching ratio 0.5
Embed sizes 32
μt1,μc ,μt2 0.01

Fusion LRTF [106] Num ranks 64
Output sizes 128

MI-Matrix [77] Hidden size 128

MulT [ Hidden size 40
Num heads 8 or 10

Training Loss MAE or Cross Entropy
Batch size 32
Seq Length 50 or 20
Num epochs 100 or 300
Early stop True
Patience [8,20]
Activation ReLU
Optimizer AdamW
Weight Decay 1×10−4
Learning rate 1×10−4