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Abstract

Drug therapy is vital in cancer treatment. Accurate analysis of drug sensitivity for specific cancers can guide healthcare professionals
in prescribing drugs, leading to improved patient survival and quality of life. However, there is a lack of web-based tools that offer
comprehensive visualization and analysis of pancancer drug sensitivity. We gathered cancer drug sensitivity data from publicly available
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databases (GEO, TCGA and GDSC) and developed a web tool called Comprehensive Pancancer Analysis of Drug Sensitivity (CPADS) using
Shiny. CPADS currently includes transcriptomic data from over 29 000 samples, encompassing 44 types of cancer, 288 drugs and more
than 9000 gene perturbations. It allows easy execution of various analyses related to cancer drug sensitivity. With its large sample
size and diverse drug range, CPADS offers a range of analysis methods, such as differential gene expression, gene correlation, pathway
analysis, drug analysis and gene perturbation analysis. Additionally, it provides several visualization approaches. CPADS significantly
aids physicians and researchers in exploring primary and secondary drug resistance at both gene and pathway levels. The integration of
drug resistance and gene perturbation data also presents novel perspectives for identifying pivotal genes influencing drug resistance.
Access CPADS at https://smuonco.shinyapps.io/CPADS/ or https://robinl-lab.com/CPADS.

Keywords: drug sensitivity; CPADS; pancancer; gene perturbation; Shiny; web tools

INTRODUCTION
Drug therapy remains a cornerstone in the treatment of many
cancer patients, as it can significantly increase survival rates and
improve quality of life [1]. However, resistance to antineoplastic
drugs—caused by genetic mutations and other nongenetic fac-
tors—has become a major obstacle limiting treatment efficacy
[2–7]. Growing clinical evidence reveals that intrinsic or acquired
tumour drug resistance is often associated with genetic as well
as epigenetic alterations. By comparing omics and experimental
data from tumour samples (or cell lines) before and after treat-
ment, or between responders and non-responders, researchers
have explored the molecular mechanisms associated with drug
resistance [8–10]. For example, Vokes et al. [11] found TP53 dele-
tions caused rapid resistance to the EGFR-targeted drug tyrosine
kinase inhibitors (TKIs) in lung cancer, reducing overall survival
and progression-free survival in patients. Analysing The Can-
cer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO)
data, Yang et al. [12] linked m6A gene expression to lung can-
cer cell sensitivity to etoposide, afatinib and dasatinib. Pothu-
raju et al. [13] showed MUC5AC overexpression mediated col-
orectal cancer resistance to 5-fluorouracil and oxaliplatin via
CD44/β-catenin/p53/p21 pathway activation. In summary, while
cytotoxic and targeted therapies continue to be part of treat-
ment paradigms, resistance to such regimens emerges, thus lim-
iting patient survival. Ultimately, integrative omics profiling pro-
vides a comprehensive understanding of factors influencing drug
response and resistance, thus guiding more personalized cancer
therapy. Systematic utilization of an omics approach could help
to elucidate mechanisms of resistance and inform clinicians of
different drug combinations that may be considered to overcome
such resistance and improve patient outcomes.

Gene perturbation techniques, including knockdown, knockout
or overexpression utilizing Clustered Regularly Interspaced
Short Palindromic Repeats (CRISPR), transgenic models, RNA
interference and other methods, are invaluable for studying
cellular physiological activities, clarifying gene functions and
elucidating genotype–phenotype relationships. In recent years,
increasing evidence shows that gene perturbation can help
researchers discover new therapeutic targets and elucidate
mechanisms of tumorigenesis and drug resistance [14]. Braun
et al. [15] found that transcriptional activation of Mgmt by
fusing dCas9 with the transcriptional activator VP64 induced
temozolomide resistance in acute B-lymphoblastic leukaemia
(B-ALL) cells in vitro and in vivo. In addition, FN3K knockdown
was found to restore sensitivity of hepatocellular and non-
small cell lung cancer cells to erlotinib in vivo, suggesting
FN3K inhibition could block NRF2’s cancer-promoting and drug
resistance effects [16]. Moreover, numerous public databases
and web tools, such as MSigDB and GPSAdb [17], provide high-
quality gene perturbation data. Integration of gene perturbation

with functional genomics datasets could be a promising strategy
for identifying genetic vulnerabilities and genotype–phenotype
relationships. By elucidating cancer cell dependencies, these
approaches may systematically uncover novel anticancer drug
target candidates.

Many public databases, such as GEO [18] Genomics of Drug
Sensitivity in Cancer (GDSC) [19], containing drug sensitivity data,
are available to support physicians and researchers. However, it is
difficult for medical researchers without programming expertise
to access and analyse drug sensitivity datasets and correspond-
ing clinical information. To better assist in elucidating tumour
drug resistance mechanisms, several web-based tools for drug
sensitivity research have been developed, including canSAR [20],
CellMiner [21], DrugBank [22], GSCALite [23], PharmacoDB [24]
and DRESIS [25]. These web-based applications, which integrate
current oncology therapeutics, enable analysis of drug sensitiv-
ity data from selected sources. For instance, canSAR presents
extensive drug and protein data to predict tumour cell drug
sensitivities and associated protein targets [20], and CellMiner
enables analysis of miRNA, DNA methylation and drug sensitivity
data from multiple cell lines, including the NCI-60 panel, enabling
analyses of miRNA, DNA methylation and drug sensitivity [19].
Although facilitating investigations of tumour-related drugs to
a certain extent, most of these web tools only utilize a sin-
gle database (e.g. GDSC) rather than providing a comprehensive
dataset from the many available sources for drug sensitivity
studies. Therefore, extensive anti-tumour drug data in GEO and
TCGA remains largely untapped. Furthermore, none of these web
pages directly enables simultaneous analysis of gene perturbation
data and pancancer drug resistance. In terms of the richness of
analysis modules, these webpages often only provide basic infor-
mation listings or simple graphical displays, which cannot meet
the diverse data analysis and visualization needs of users. Finally,
in terms of customization, these web-based applications usually
only allow users to use fixed colour schemes and methodological
parameters.

To address these limitations, we developed the Comprehensive
Pancancer Analysis of Drug Sensitivity (CPADS), a user-friendly
web-based tool for analysing drug sensitivity across cancer types.
CPADS integrates data from several major public databases,
encompassing diverse cancer types and drug classes. CPADS
enables differential expression analysis, correlation analysis,
pathway analysis and genetic perturbation analysis, with
accurate, high-definition visualization of results in a customized
manner. The intuitive interface and detailed guidelines make
CPADS widely accessible to clinicians and researchers alike.
Overall, CPADS harnesses extensive omics resources to deliver
actionable insights into tumour drug response and resistance
through flexible, interactive analytics and visualizations tailored
to each user.

https://smuonco.shinyapps.io/CPADS/
https://smuonco.shinyapps.io/CPADS/
https://smuonco.shinyapps.io/CPADS/
https://smuonco.shinyapps.io/CPADS/
https://smuonco.shinyapps.io/CPADS/
https://robinl-lab.com/CPADS
https://robinl-lab.com/CPADS
https://robinl-lab.com/CPADS
https://robinl-lab.com/CPADS
https://robinl-lab.com/CPADS


CPADS: a web tool | 3

MATERIALS AND METHODS
Data collection
The data in CPADS cover 177 datasets from GEO, 33 datasets from
TCGA, drug sensitivity information from the GDSC database, and
gene perturbation data from GPSAdb [17] (Supplementary Table 1).
The microarray data from GEO were downloaded using the
downloaded GEOquery [26] package, and high-throughput data
were obtained directly from the GEO database website (https://
www.ncbi.nlm.nih.gov/geo/). TCGA data were obtained from the
TCGAbiolinks [27] package, which downloaded RNA-seq data
in count format. GDSC data were downloaded from the GDSC
webpage (https://www.cancerrxgene.org/). The gene perturbation
data were obtained via the GPSAdb web tool (https://www.
gpsadb.com/) and from the Chemical and Genetic Perturbations
(CGP) collection in MSigDB. The above data were further screened
and cleaned based on the inclusion criteria: (i) sample source of
human or mouse, (ii) complete clinical information and expres-
sion profile data (microarray/high-throughput sequencing), (iii) at
least 10 samples with no less than 3 samples before and after drug
use and (iv) samples with a single drug treatment (to better study
the effect of drug treatment on gene expression, we temporarily
did not include samples with multidrug combination treatment).

Data pre-processing and analysis
Data pre-processing
For GEO microarray data, the corresponding expression profile
data obtained from the GEOquery package were normalized via
the limma [28] package. Similarly, the remaining high-throughput
sequencing data were normalized using the limma [28] package
for expression profile data. Finally, all transcriptome data were
log2 transformed. The delineation of sensitive versus resistant
groups for data from GEO was based on the groupings in the
clinical information form provided by the data uploader, and
the delineation of data from GDSC and TCGA was based on
the median of the IC50 predicted by the GDSC or using the
pRRopheticR package.

Differentially expressed gene analysis
For the GEO dataset, all samples were divided into groups based
on drug treatment status (before or after drug treatment) or drug
resistance status (resistant or sensitive) based on clinical data.
Subsequently, depending on the data type and data format, the
limma [28] package or DESeq2 package [29] was used for gene
difference analysis, i.e. microarray data. Some high-throughput
sequencing data (FPKM and RPKM formats) were processed using
the limma [28] package, while the remaining count-based high-
throughput sequencing data were processed using the DESeq2
package. The samples from GDSC were divided into a sensitive
group with a low half-maximal inhibitory concentration (IC50)
and a resistant group with a high IC50 based on the IC50 values
under different drug treatments provided on the GDSC website
and were analysed for differences using the limma [28] package.
Notably, CPADS does not provide a variance analysis function for
TCGA because this database does not provide detailed drug IC50
information. The ridge regression model was used as a proxy to
predict the corresponding IC50 information for TCGA samples,
and CPADS does not use this value as a basis for differentiating
between drug resistance and drug sensitivity. For visualization of
the variance analysis results, the ggplot package was used to draw
volcano plots and box plots, and the pheatmap package was used
to construct heatmaps.

Correlation analysis
For normalized expression profile data, the Spearman and Pear-
son algorithms were applied to compute single gene and multi-
gene correlation analyses (using the ggstatsplot and stats pack-
ages, respectively). For visualization of the correlation analysis
results, we used the ggstatsplot package, the ggplot package and
the ComplexHeatmap [30] package to draw correlation scatter
plots and heatmaps.

Pathway analysis
A total of 13 632 commonly used tumour-associated gene sets
from the MSigDB database, including Hallmark, C2: Canonical
pathways (CP) and C5: Gene Ontology gene sets (GO), were down-
loaded (Supplementary Table 2). Three common pathway analysis
algorithms, including Gene Set Enrichment Analysis (GSEA), Sin-
gle Sample Gene Set Enrichment Analysis (ssGSEA) and Pathview,
were implemented via the ClusterProfiler [31] package, GSVA [32]
package and Pathview [33] package, respectively. For visualization
of pathway analysis results, GSEA plots, dot plots, bar plots,
ridge plots, enrichment plots and heatmaps were generated via
the GseaVis package, ggplot package, enrichplot package and
pheatmap package for implementation.

Drug analysis
All samples were divided into high- and low-expression groups
based on the median expression of the genes. A box plot of
drug IC50 values according to the corresponding grouping was
generated via the ggplot package. The analysis between the two
groups was calculated by the Wilcoxon rank sum test via the
ggpubr package.

Gene perturbation analysis
This module incorporates 3405 gene perturbation data points
from CGP and 6096 gene perturbation data points from GPSAdb
in the MSigDB database [17]. The GPSAdb perturbation data are
derived from RNAseq data of 3048 human cell lines with gene
knockdown in the GEO, and this dataset enables the identifica-
tion of causal candidate perturbation genes from the differen-
tially expressed gene after individual knockdowns [17]. Relying
on the ClusterProfiler [31] package and GSVA [32] packages, we
performed both GSEA and ssGSEA on the above data. For visu-
alization of the results of the enrichment analysis, users can
choose from various plots: GSEA, point, bar, ridge and enrichment.
Heatmaps are generated with various packages: GseaVis, ggplot,
enrichplot and pheatmap.

Web server implementation
CPADS is a free web page open to all users, and no features
require a login. CPADS is available at https://smuonco.shinyapps.
io/CPADS/ or https://robinl-lab.com/CPADS. CPADS development
is mainly based on R (v.4.1.3) and the Shiny package.

Statistical analysis
All analyses used were provided by R (v.4.1.3). Comparisons
between two groups of variables were performed using the
Wilcoxon rank sum test, and all correlation coefficients were
calculated by Spearman’s method and/or Pearson’s method.
P < .05 was considered to indicate statistical significance, and
asterisks indicate different significance levels based on P-values:
‘∗’: P < .05, ‘∗∗’: P < .01, ‘∗∗∗’: P < .001, ‘∗∗∗∗’: P < .0001.
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RESULTS
CPADS currently incorporates 177 datasets from three databases
(TCGA, GEO and GDSC) comprising 969 tumour samples across
44 cancer types and 288 drugs (Figure 1A). The main modules
include differential expression analysis, correlation analysis,
pathway analysis, drug analysis, genetic perturbation analysis
and an overview of sample selection. A key highlight is the
genetic perturbation module for screening potential drug
resistance genes, which can be validated using the differential
expression and correlation modules to aid drug resistance
gene discovery. All analysis visualizations are provided as high-
resolution, publication-quality PDF images. Detailed analysis
results, expression profiles and clinical summary tables are
downloadable in Excel format from each analysis module or the
Data section.

Differentially expressed gene analysis
This module enables the comparison of gene expression changes
between conditions. CPADS provides volcano plots and heatmaps
to visualize differential expression across 177 GEO datasets and
30 cancer types in the GDSC under various drug treatments.
Specifically, CPADS allows differential expressed gene analysis
for 177 GEO and 30 GDSC datasets under different drug treat-
ments. These analyses can be implemented via the ‘Volcano
Plot’ and ‘Heatmap’ sections based on the preferred visualization
method. Upregulation and downregulation of genes are depicted
in volcano plots (Figure 2A and B) and heatmaps. By default, plots
are labelled with the top 10 most significantly up/downregu-
lated genes. For customized needs, the left-side controls offer
options, including gene names, significance criteria, P-value and
fold change thresholds, colour schemes, etc. Detailed results are
available in the ‘Data’ section, where upregulation and downreg-
ulation can be assessed by table shading and text hints. In the
Heatmap section, CPADS compares differential gene expression
between groups (control/treatment and sensitive/resistant) with
significance marked on the graphs (Figure 2C).

Furthermore, the ‘Gene Analysis’ section enables differential
expression analysis for 121 GEO datasets containing cell line,
tissue or genotype information. This allows users to explore the
expression differences of target genes between groups. Results
are presented as box plots (Figure 2D). Users can also download
refined visualizations and detailed result tables (Figure 2E).

Correlation analysis
In this module, CPADS provides two submodules for single-gene
and multigene correlation analysis, along with visualization of
results. Users can explore correlations in gene expression across
cancers before and after drug treatments.

The single gene correlation module enables analysing cor-
relations between two genes’ expression levels under different
groupings (control/treatment or sensitive/resistant) for GEO data.
This reveals drug effects on expression patterns. For GDSC and
TCGA data, it allows correlating gene expression with IC50. Two
methods (Pearson and Spearman) and multiple colour schemes
are available. Figure 3A shows ZZZ3 and TP53 correlation after
cerulenin treatment in GSE102791. Figure 3B shows FGD1 expres-
sion and imatinib IC50 correlation in pancreatic cancer.

The multigene module allows multigene correlation analysis
of up to 15 genes simultaneously for GEO and GDSC data.
Correlation heatmaps are plotted (Figure 3C), with colour
combinations visualizing correlations between target genes’
expression levels across groupings (control and treatment groups,

sensitive and resistant groups). Customization of algorithms and
colour schemes is enabled.

Pathway analysis
The GSEA module enables pathway enrichment analysis of
differentially expressed genes from GEO data and GDSC data.
Users can select specific pathway sets (including the common
18 803 tumour-associated gene sets in MSigDB) for visualiza-
tion as classic GSEA plots (Figure 4A), dot plots (Figure 4B),
bar plots (Figure 4C), ridge plots (Figure 4D) and enrichment
plots (Figure 4E). Full enrichment results can be viewed in
‘Data’ to facilitate further screening of pathways of interest.
For example, with GSE138863 (Figure 4A), the MYC-related
HALLMARK_Myc_Targets_V1 gene set decreased after disulfiram
treatment. This aligns with Meier et al., who determined MYC
expression using qPCR and Western blotting after disulfiram
treatment of SF188 cells and GPC16 cells. Further GSEA revealed
disulfiram not only decreased MYC expression but also led to
downregulation of MYC target genes [34]. After enrichment
analysis using GSE130437 (Figure 4E), the palbociclib-treated
group showed significant changes in cell cycle-related gene sets
compared to control, consistent with Lanceta et al., who found
palbociclib altered expression of cell cycle-related genes [35].

The ssGSEA module allows ssGSEA for 1–20 pathways of inter-
est, and the calculated enrichment score results are presented in
a heatmap form (Figure 4F). The Pathview module maps and inte-
grates transcriptome data from drug-treated pathways of interest
based on user-selected Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways. It then visualizes the altered expression of
individual genes within those pathways (Figure 4G).

Drug sensitivity analysis
CPADS shows the relationship between gene expression and IC50
values for 30 tumour types in GDSC and 33 types in TCGA, using
box plots. The ‘By Drug’ submodule divides samples into the
sensitive (low IC50) and the resistant (high IC50) groups based on
the selected drug’s IC50. It plots the box diagram of differences in
gene expression between high and low IC50 groups; for example,
TCGA data for lung adenocarcinoma (LUAD) cases were divided
into sorafenib-resistant and sensitive groups, showing high and
low EGFR expression, respectively (Figure 5A).

The ‘By Gene’ module groups cases by median expression of
a selected gene, depicting IC50 value differences across drugs.
For example, dividing LUAD in the TCGA by DDIT4 expression
showed significantly different dasatinib IC50 values between high
and low expression groups (Figure 5B), indicating that DDIT4 is a
key for dasatinib resistance in LUAD cases, consistent with find-
ings by Shi et al. [36] Notably, screening differentially expressed
genes by sensitivity results or screening drugs by differentially
expressed genes is very common but often laborious. To enable
batch screening, P-values for all drug/gene groups are calculable
at once (Figure 5C and D). Users can view full tables in ‘Data’ to
obtain information for differentially expressed genes versus drug
sensitivity.

Gene perturbation analysis
In this section, CPADS presents enrichment analysis results of
GEO, GDSC and TCGA data in CGP and GPSAdb gene perturbation
data, providing users with information on genes and pathways
associated with drug resistance traits. The GSEA module performs
enrichment analysis on GEO and GDSC differential gene data
using 9501 perturbation gene sets from CGP and GPSAdb. Visu-
alizations include classic GSEA plots (Supplementary Figure 1A),

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae237#supplementary-data
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Figure 1. Workflow of CPADS. (A) CPADS is a web platform for pancancer pharmacovigilance analysis. A total of 177 datasets with more than 29 000
tumour samples from three databases, GEO, GDSC and TCGA, involving 288 drugs and 44 cancer types, were collected. All data passed the standard
preprocessing step. CPADS enables five main types of analysis: differentially expressed gene analysis, correlation analysis, pathway analysis, drug
analysis and gene perturbation analysis. The web pages are built based on R language and Shiny, and all analysis results are available in PDF format
with corresponding visualization and EXCEL format with result tables. (B) The workflow diagram shows how the gene perturbation analysis module can
be combined with other modules to explore potential drug resistance targets. Gene perturbation analysis is used to screen the set of genes perturbed
by gene perturbation analysis that are associated with drug resistance in tumour cells, followed by the use of differential analysis, correlation analysis
and other modules to verify whether the relevant set of genes can be used as potential drug resistance targets and finally to identify the genes involved
in the drug resistance process.

dot plots, bar plots, ridge plots and enrichment plots. Considering
differential contributions of up/downregulated genes to pathway
enrichment, we divided all genes into upregulated, downregulated
and combined up/downregulated groups. Users can select from
three groups according to the type of data they need to analyse.
Moreover, all enrichment analysis results for the dataset are
viewable in ‘Data’ for further investigation of genes or pathways
of interest.

The ssGSEA module allows 1–20 pathways from GPSAdb and
CGP selection for ssGSEA enrichment analysis, and the calculated
enrichment scores can be presented in a heatmap form to show
the high and low pathway scores and enrichment results across
samples (Supplementary Figure 1B), and correlation scatter plots
depict pathway score-IC50 correlations. For example, sorafenib
IC50 positively correlated with the CDK7 pathway score in liver
cancer (Supplementary Figure 1C), suggesting CDK7’s key role

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae237#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae237#supplementary-data
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Figure 2. Differentially expressed gene analysis module: differential gene expression analysis in control/drug-treated groups (drug-sensitive/resistant
groups). (A) The results of gene difference analysis between the ganetespib drug treatment group and the control group in GSE100317 are shown in the
volcano plot. (B) The results of differentially expressed gene analysis between cisplatin-treated and control breast cancer cell lines in GDSC are shown
in a volcano plot. BRCA, breast cancer. (C) Heatmap showing the results of differentially expressed gene analysis: between camptothecin-sensitive and
drug-resistant lung adenocarcinoma cell lines in GDSC. P-values were calculated by the Wilcoxon rank sum test. ns: P > .05; ∗: P < .05; ∗∗: P < .01; ∗∗∗:
P < .001; ∗∗∗∗: P < .0001. LUAD, Lung adenocarcinoma. (D) The box plot demonstrates the difference in DHX5 expression in different cell lines in GSE20185
before and after treatment with cisplatin. P-values were calculated by the Wilcoxon rank sum test. (E) The table shows the results of the analysis of the
variance module.
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Figure 3. Genetic correlation analysis module: correlation analysis of multigene expression/single gene expression with drug IC50 before and after drug
treatment. (A) The scatter plot demonstrates the correlation between ZZZ3 and TP53 before and after cerulenin treatment in GSE120791, and the R
value was calculated by Spearman. (B) The scatter plot shows the correlation between the expression of the FGD1 gene and IC50 in pancreatic cancer
cases treated with imatinib. The R value was calculated by the Spearman algorithm. (C) The bubble plots demonstrate the polygenic correlations in
GSE100317 for the ganetespib treatment group compared to the control group. The upper right corner represents the correlation in the treatment group,
and the lower left corner represents the correlation in the control group.

in sorafenib resistance, consistent with the findings of Wang
et al. [37].

Case study: L1CAM as a new drug resistance
target
By performing transcriptome analysis of cell lines both before
and after drug treatment as well as gene perturbation (knockout/-
knockdown/overexpression), we obtained differentially expressed

genes for the drug treatment versus gene perturbation conditions.
Associations between drug sensitivity and individual genes can
be explored with an enrichment analysis performed on both
differential gene sets. The enrichment analysis results can
be directly utilized to screen for key genes influencing drug
sensitivity (Figure 6A). Enrichment analysis for the two groups
(drug-treated and knockdown/knockout/overexpression-treated
groups) of differentially expressed genes can be explored for an
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Figure 4. Pathway enrichment analysis module: enrichment analysis of differentially expressed genes in a specified set of genes before and after drug
treatment. (A) The GSEA plot demonstrates the enrichment of GSE138863 in the MYC gene set in the treatment and control groups of disulfiram. (B–D)
Dot, bar and ridge plots showing the significantly altered gene set sequencing of GSE103115 in the treated and control groups of cisplatin, respectively.
(E) The enrichment analysis graph demonstrates the significantly altered gene set of GSE130437 in the palbociclib-treated and control groups. (F) The
heatmap shows the results of ssGSEA of pathway enrichment in the GSE138942 JQ1 treatment and control groups. ns: P > .05, ∗: P < .05; ∗∗: P < .01; ∗∗∗:
P < .001; ∗∗∗∗: P < .0001. (G) Pathview plots show the changes in the expression of individual genes in the ‘adherens junction’ gene set in GSE107707 after
treatment with JQ1.
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Figure 5. Drug analysis module: comparison of drug IC50 values under high and low gene expression groupings (or comparison of gene expression
under high and low drug IC50). (A) Box plot showing EGFR gene expression in the sorafenib-sensitive and drug-resistant groups of LUAD cases in TCGA.
P-values calculated by the Wilcoxon rank sum test. LUAD, lung adenocarcinoma. (B) Box plots show the IC50 of the high and low expression groups of
the LUAD cell line DDIT4 gene dasatinib in GDSC. P-values were calculated by the Wilcoxon rank sum test. (C and D) The table shows the calculated
results of batch screening for differentially expressed genes (C) and drugs (D). Darker background colour of logFC in green indicates a more significant
downregulation of gene expression.

association of drug sensitivity with single genes. Results of this
enrichment analysis can be used to correlate drug resistance with
knockdown/knockout/overexpression treatments, which in turn
can be used to screen for key genes affecting drug sensitivity
(Figure 6A).

As an example of this approach, we explored key genes for cis-
platin resistance in non-small cell lung cancer. First, GSEA enrich-
ment in the gene perturbation module of the cisplatin-treated
dataset GSE116192 in GPSAdb showed the ‘D22150_L1CAM_UP’
gene set was significantly enriched (Figure 6B and C). This sug-
gests overlap between genes differentially expressed after L1CAM
overexpression and those altered by GSE116192 drug treatment.
L1CAM overexpression may confer cisplatin resistance. Further
verification in the differentially expressed gene analysis mod-
ule revealed that L1CAM gene expression was upregulated with
some significance after cisplatin treatment of the cell line in
the GSE116192 dataset (Figure 6D). As seen in the correlation

analysis, L1CAM expression is negatively correlated with cisplatin
IC50 in LUAD from TCGA (Figure 6E). L1CAM high/low expres-
sion groups showed significantly different cisplatin IC50 in LUAD
(Figure 6F). Differences were also seen for bosutinib/rapamycin
(Figure 6G and H). These findings imply L1CAM overexpression
associates with cisplatin resistance, and L1CAM may also mediate
resistance to bosutinib, rapamycin, etc.

L1CAM is a 220-kDa transmembrane glycoprotein belonging to
the neuronal immunoglobulin superfamily, originally described as
a neural adhesion molecule involved in neuronal cell migration
[36]. Outside the nervous system, aberrant L1CAM expression can
promote tumour cell proliferation [37]. Previous studies demon-
strate L1CAM expression associates with growth and metastasis
in non-small cell lung carcinoma (NSCLC) [38]. L1CAM can confer
cisplatin resistance by promoting phosphorylation of the extracel-
lular signal kinase (ERK) and protein kinase B (AKT) pathways [39,
40]. These pathways also play key roles in NSCLC development,
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Figure 6. Screening for the drug resistance gene L1CAM using gene perturbation analysis. (A) Workflow diagram showing the process of screening for
the drug resistance gene L1CAM by combining the gene perturbation module with other drug sensitivity analysis modules. (B) The GSEA graph shows
the enrichment analysis of the differentially expressed gene of GSE116192 in the gene set ‘D22150_L1CAM_UP’. (C) The bar graph shows the enrichment
of GSE116192 in GPSAdb. The colours represent the high and low P-values. (D) Volcano plot showing the results of the differential analysis performed by
GSE116192. L1CAM gene expression was increased after cisplatin treatment. (E) Correlation scatter plot demonstrating the correlation between L1CAM
gene expression and cisplatin IC50 in LUAD cases in TCGA. LUAD, lung adenocarcinoma, R value calculated by the Spearman algorithm. (F) The box
plot demonstrates the difference in the IC50 of cisplatin between the high and low expression groups after grouping LUAD cases in TCGA according to
L1CAM gene expression. P-values were calculated by the Wilcoxon rank sum test. (G) The box plot demonstrates the difference in the IC50 of bosutinib
between the high and low expression groups after grouping LUAD cases in TCGA according to L1CAM gene expression. P-values were calculated by the
Wilcoxon rank sum test. (E) The box plot demonstrates the difference in rapamycin IC50 between the high and low expression groups after grouping
LUAD cases in the TCGA according to L1CAM gene expression. P-values were calculated by the Wilcoxon rank sum test.
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Table 1: Comparison of CPADS with other tumour drug sensitivity analysis web pages

CPADS canSAR [18] CellMiner [19] GSCALite [21] PharmacoDB [22] DRESIS [23]

Dataset TCGA, GDSC,
GEO(including
NCI-60)

TCGA, ICGC GDSC, CCLE, CTRP,
NCI-60

GDSC, TCGA, GTEx NCI-60, GDSC,
PRISM, CCLE, gCSI

DrugBank, CCNSC,
TTD

Sample ∼29 000 ∼25 000 1400 23 594 1757 –
Cancer Type 44 26 60 33 30 125
Cancer Analysis
Module

1©Differential
expression gene
analysis

Genomic data
analysis

Correlation
analysis

1©Genomic data
analysis

1©Genomic data
analysis

Resistance
mechanisms
analysis

2©Correlation
analysis

2©Pathway activity 2©Correlation
analysis

3©Pathway
analysis(GSEA,
ssGSEA, Pathview)

3©miRNA network 3©Drug sensitivity

4©Drug analysis 4©Drug sensitivity
5©Gene

perturbations
Parameters
Customization

YES NO NO NO NO NO

Colour
Customization

YES NO NO NO NO NO

TCGA, The Cancer Genome Atlas; GDSC, The Cancer Genome Atlas; GEO, Gene Expression Omnibus; GSEA, Gene Set Enrichment Analysis; ssGSEA, Single
sample gene set enrichment analysis; ICGC, International Cancer Genome Consortium; CCLE, Cancer Cell Line Encyclopedia; CTRP, Cancer Therapeutics
Response Portal; NCI, National Cancer Institute; GTEx, Genotype-Tissue Expression; PRISM, Profiling Relative Inhibition Simultaneously in Mixtures; gCSI,
Genentech Cell Line Screening Initiative; CCNSC, Cancer Chemotherapy National Service Center; TTD, Therapeutic Target Database.

metastasis and drug resistance [7, 41–43]. These studies further
validate the significance of L1CAM in NSCLC biology and its
connection to cisplatin resistance.

DISCUSSION
CPADS is a publicly available, interactive web-based applica-
tion that integrates extensive tumour drug resistance-related
transcriptomic and clinical data from major public repositories,
including GEO, TCGA and GDSC. By consolidating large volumes
of gene expression and drug response data across diverse cancer
types into one platform, CPADS aims to make pancancer analysis
of drug sensitivity more convenient. The intuitive interface and
detailed tutorials empower researchers and clinicians without
programming expertise to easily understand transcriptomic
changes before and after drug treatment for each cancer type.
By elucidating these molecular alterations associated with drug
response, CPADS facilitates the systematic exploration of genetic
mechanisms conferring tumour drug resistance or sensitivity.
These mechanistic insights can ultimately help inform evidence-
based clinical decision-making around optimal therapeutic
strategies for specific cancer subtypes and individual patients.

Compared with web-based tools developed in recent years
to explore drug sensitivity (Table 1), CPADS has several key
advantages in terms of the expansive breadth of integrated
datasets, large sample size, diverse analysis methods and
high degree of customizability. CPADS incorporates data from
sources beyond just GDSC and TCGA—it also includes 177
manually curated datasets identified through comprehensive
screening of the GEO repository and permits future GEO datasets
to be easily added and integrated. By harnessing data from
these three major public resources, CPADS currently amasses
over 29 000 pharmacogenomic samples spanning 288 drugs
and 44 cancer types, greatly expanding the richness of data
compared to previous tools. Moreover, to empower multifaceted
investigation, CPADS offers researchers and clinicians five

analysis modules, including differential expression, correlation,
pathway, drug sensitivity and genetic perturbation analysis. Each
module provides multiple visualization options, including plots,
heatmaps, enrichment graphs and more. Users can customize
all visualizations by tuning parameters, like thresholds, colour
schemes, significance criteria and more to meet their professional
needs and research questions. This flexibility and depth of
analytics enables the exploration of diverse hypotheses related
to tumour drug responses. Overall, the unparalleled scale and
diversity of integrated datasets, coupled with versatile analytics
and customization, make CPADS a comprehensive and user-
friendly portal for pancancer pharmacogenomic research.

While CPADS integrates extensive datasets, we acknowledge
that there are still limitations in terms of the currently incor-
porated data sources. The initial release relies solely on drug
sensitivity data from GEO, GDSC and TCGA. However, valuable
pharmacogenomics data continue to emerge, such as from the
Cancer Genome Project and continuously updated GEO repository.
Our team actively monitors new datasets and literature to iden-
tify promising drug sensitivity resources. We plan to incorporate
additional databases into future CPADS versions to enhance data
breadth. Moreover, as research progresses, new techniques and
tools for analysing drug responses will arise. Moreover, CPADS
still has some limitations in predicting drug sensitivity, and there
is still room for improvement in enhancing the specificity and
sensitivity of prediction compared to existing tools that use algo-
rithms, such as deep learning [44], graph convolutional networks
(GCNs) and autoencoders (AEs) [45]. Next, we will further explore
the integration of antitumour drug data and algorithms and
enhance the prediction effect of CPADS. We will continue honing
CPADS analysis modules to incorporate cutting-edge methods
in the field, ensuring the tool leverages the latest advances in
pancancer pharmacogenomics. We also aim to implement new
modules to meet emerging user needs and apply state-of-the-
art visualizations. We recognize the current limitations in data
sources and analysis capabilities. User feedback will help guide
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optimal expansion of databases, analytical methods and features.
We envision CPADS evolving as a one-stop resource for pancancer
pharmacogenomics through iterative refinement.

We developed CPADS, a user-friendly web-based platform inte-
grating diverse multi-omic datasets. CPADS provides an array of
analytical modules, including differential expression, correlation,
pathway and perturbation analysis, enabling rapid investigation
of drug response across cancer types. Customizable parame-
ters and visualizations allow tailored analysis to meet diverse
research needs. Detailed guidelines make CPADS accessible to
users without programming expertise. By harnessing pharma-
cogenomic resources into flexible, interactive analytics, CPADS
delivers insights into tumour drug sensitivity and resistance. We
envision CPADS evolving into a practical tool assisting in-depth
exploration of tumour pharmacogenomics, guiding more effective
cancer therapies.

Key Points

• CPADS collects over 29 000 pharmacogenomic samples
from GEO, GDSC and TCGA, covering 288 drugs and 44
cancer types, greatly expanding the richness of the data
compared to previous tools.

• CPADS offers researchers and clinicians five analysis
modules, including differential expression, correlation,
pathway, drug sensitivity and genetic perturbation anal-
ysis. It should be noted that CPADS provides a gene
perturbation analysis function that covers both GPSA
and CGP data, which facilitates users to better explore
drug resistance genes and their mechanisms.

• A wide range of analytical modules are available with
flexible customisation options to meet the free and pro-
fessional needs of the user.
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