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ABSTRACT

Studying protein dynamics and conformational heterogeneity is crucial for understanding biomolecular systems and treating disease. Despite
the deposition of over 215 000 macromolecular structures in the Protein Data Bank and the advent of AI-based structure prediction tools
such as AlphaFold2, RoseTTAFold, and ESMFold, static representations are typically produced, which fail to fully capture macromolecular
motion. Here, we discuss the importance of integrating experimental structures with computational clustering to explore the conformational
landscapes that manifest protein function. We describe the method developed by the Protein Data Bank in Europe – Knowledge Base to iden-
tify distinct conformational states, demonstrate the resource’s primary use cases, through examples, and discuss the need for further efforts to
annotate protein conformations with functional information. Such initiatives will be crucial in unlocking the potential of protein dynamics
data, expediting drug discovery research, and deepening our understanding of macromolecular mechanisms.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/4.0000251

INTRODUCTION

As of February 2024, the Protein Data Bank (PDB),1 the global
repository of experimentally determined structures, hosts over 215 000
macromolecular structures. Recent advances in protein structure pre-
diction—made by the new generation of AI-based tools such as
AlphaFold2,2 RoseTTAFold,3 and ESMFold4—have predicted almost
1� 109 further structures, archived in the AlphaFold Protein Structure
Database (AFDB),5 the ESM Metagenomic Atlas,4 and the Model
Archive.6 Although significant work is ongoing to generate ensemble
models, these tools generally predict a single structure per sequence.7

To realize the relationship between protein sequence, structure, and
function, wemust consider their dynamics—relative movements between
residues. The structure of a protein navigates a high-dimensional confor-
mational landscape, where stable conformations occupy free energy min-
ima.8 The transitions between these minima represent conformation
changes, often crucial for protein function, both under physiological

conditions or in disease progression.9,10 Changes to the landscape’s topol-
ogy may be induced via ligand association, solvent packing, oligomeriza-
tion, pH changes, or post-translational modification11–16 [Fig. 1(a),
right]. On the far end of the conformational flexibility spectrum are the
intrinsically disordered proteins (IDPs), whose free energy landscapes
lack deep energy minima [Fig. 1(b)], instead being littered with shallow
dips that could become more favorable upon environment changes.17–19

Investigating these landscapes requires diverse experimental techniques,
each contributing unique insights into conformational states or motion
of proteins20–22 [Fig. 1(c)].

X-ray crystallography has been instrumental in providing atomic-
resolution models of proteins. Despite its tendency to capture proteins in
static states due to crystal packing, advancements such as temperature-
jump and time-resolved serial femtosecond crystallography (SFX) can
observe local dynamic processes within crystallized proteins.23–27 In con-
trast, small-angle x-ray scattering (SAXS) is a low-resolution method
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for studying larger, global conformation changes in solution.28–31

Combined with experimentally derived or predicted atomic mod-
els, integrative SAXS models can offer impressively comprehensive
views of macromolecular states and dynamics.24,32

In recent years, cryogenic electron microscopy (cryoEM) has
dramatically improved to solve thousands of macromolecules—
particularly those that are difficult to crystallize.34 Like x-ray crystallog-
raphy, cryoEM has traditionally produced single, static models from

FIG. 1. Illustration of functional protein conformation changes. (a) Hypothetical free-energy landscape (top) of adenylate kinase’s coordination state before (left) and after (right)
ligand binding. A dominant minimum is plotted in the ligand-free environment, facilitating one apo conformation (PDB: 6S36, green). Addition of ADP changes the landscape to
accommodate a second minimum for the adoption of a closed conformation (PDB: 8CRG, orange), while permitting the existence of the original conformation (PDB: 6F7U,
indigo). An energy barrier between these states must be overcome to transition between the conformations. (b) Hypothetical free energy landscape of the human nuclear pore
complex protein Nup153—an IDP (PDB: 2EBV). (c) Conformational states of E. coli transcription factor RfaH binding the NusG N-terminal domain (NGN, left), the NusG
C-terminal domain (KOW, middle), and when bound to an operon polarity suppressor (ops) DNA sequence in the transcription elongation complex (opsEC, right).33 KOW-
bound structure is truncated—solved for the N-terminal domain only. PDB: 2OUG, blue; PDB: 2LCL, purple; PDB: 6C6S, green.
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three-dimensional (3D) projections of many images.35,36 However,
advances in direct-electron detectors and image classification software
facilitate the reconstruction of conformational ensembles,37–41 offering
views of proteins in states closer to their physiological conditions.
Furthermore, the study of individual molecules from cryo-electron
tomography (cryoET) reveals the conformation of macromolecules
in situ.42–47 Such physiological insight was once the preserve of
nuclear magnetic resonance (NMR) spectroscopy, which excels at
detailing structure and dynamics over a range of timescales in near-
physiological conditions.48–51 NMR can detect both transient states52

and intrinsically disordered regions,53,54 providing insight into protein
movements and interactions crucial for biological function. However,
its application is typically limited to smaller proteins and complexes—
complementing the data collected by cryoEM, which struggles to
resolve smaller macromolecules.38,48

The success of AI-based tools at predicting protein structures from
amino acid sequences has marked a significant milestone in structural
biology.2–4 However, modeling the conformational states of proteins
remains a frontier,55–59 as demonstrated by the general tendency of
AlphaFold2 to predict structures in similar conformations.56,60–65

Innovations have emerged where modifications to the multiple sequence
alignments (MSAs), a key input for many structure prediction tools,
enable the exploration of more diverse protein conformations.7,61,64,66,67

For example, the AF-Cluster technique has demonstrated through
experimental validation that AlphaFold can predict multiple states of
the fold-switching protein KaiB.65,68

While structure prediction tools can help investigate conforma-
tional heterogeneity, molecular dynamics (MD) simulations remain
indispensable for probing the theoretical dynamic behavior of macro-
molecules, complementing the generally static models provided by
AI-based predictions and experimental data.69–71 Despite their compu-
tational cost and the challenges associated with force field accuracy,
MD simulations are invaluable tools for exploring the conformation
space and potential biological activities of proteins, helping to identify
novel ligand-binding sites crucial for drug discovery.63,72–74

Here, we describe the method the Protein Data Bank in Europe –
Knowledge Base75 (PDBe-KB) uses to aggregate and cluster protein
conformational states, primarily from x-ray, cryoEM, and NMR struc-
tures deposited in the PDB.

METHODS

The first step of the clustering process is to collate polypeptide
chains from the PDB with 100% sequence identity into groups called
segments [Fig. 2(a)]. A single segment will contain only structures
mapping to a contiguous section of their corresponding UniProt
sequence, potentially resulting in multiple segments per UniProt
sequence (such as truncated N- or C-terminal domains). Each poly-
peptide in the PDB archive is mapped to a corresponding UniProt
sequence using the SIFTS annotation tool.76,77 Only chains within seg-
ments are subsequently considered for clustering.

Next, we calculate the Euclidean distances between Ca atoms per
residue pair, leading to a transformation-independent Ca distance matrix.
Polypeptides are compared pairwise by calculating the absolute difference
between their Ca distance matrices, capturing the chain–chain differences
in Ca position, independent of the chains’ original Cartesian coordinates.
The distance matrix is filtered by reducing elements to zero if below 3Å,
removing small discrepancies in Ca placement between structures. To
condense this filtered difference matrix, the upper diagonal elements are

summated and normalized by multiplication with the fraction of modeled
residues, penalizing any gaps in the structures [Fig. 2(b)]. This measure
captures the GLObal CONformation (GLOCON) difference as a dissimi-
larity score between chains.

Next, we use UPGMA agglomerative clustering to group chains
based on their GLOCON scores, splitting the segment into clusters—
approximating potential conformational states [Figs. 2(c) and 2(d)].
Based on the GLOCON dissimilarity score, small structural differences
(such as changes in loop position) are noticeable by this clustering
method, such as in the manganese ABC transporter’s Leu127-Lys135
region (UniProt accession: P0A4G2). However, small differences could
be obscured where small and large differences occur (such as domain
movements or fold switches). Reasonable separation into clusters is gen-
erally achievable at 70% of the maximum GLOCON score, although
this threshold could be further optimized per segment. All chains are
superposed (independently of the clustering step) using GESAMT,
which identifies structurally conserved regions between possibly hetero-
geneous structures.78 Where NMR structures are clustered, the first
model of the ensemble is selected as a reference. PDBe runs this pipeline
weekly,75 predicting conformations for the entire PDB archive.

Alongside the experimentally derived structures, our process
allows users to superpose the corresponding AlphaFold2 model, sup-
plementing the cluster results. The root-mean-squared deviation of the
AlphaFold2 model from each cluster’s representative chain is calcu-
lated and displayed, allowing identification of the conformational state
predicted by AlphaFold2. This comparison allows users to quickly
identify the conformational state predicted by the full-length
AlphaFold2 protein, potentially expediting functional characterization.

To test the clustering pipeline, we manually curated a benchmark
dataset of polypeptide chains in the PDB archive that adopt open or
closed conformations,89 similar to previous datasets characterizing dis-
tinct secondary structure changes during fold switching.79 An initial
search identified 630 unique entries with descriptions of open or closed
in their PDB entry title before filtering the results for spurious substrings
(e.g., cyclopentadienyl). Publications for the remaining 315 entries were
read to designate labels of conformational states. The dataset comprises
a range of structural variations at different scales, such as a �5 Å loop
movement in a-fucosidase (UniProt accession: J9UN47), a set of intra-
domain rearrangement of residues in NMR structures (e.g., PDB code:
6qeb) of human carbonic anhydrase (UniProt accession: P00918), and a
�20 Å C-terminal domain movement at 50-deoxynucleotidase’s Glu332
hinge (UniProt accession: P21589). We make the dataset available
through the PDBe-KB’s FTP server and Kaggle.

All the data from the clustering process are openly accessible
from the PDBe-KB FTP area, through API end points in the PDBe
Aggregated API and via the PDBe-KB aggregated views of proteins.
The code is open source and available on GitHub under the Apache
2.0 license.

RESULTS: NOTABLE EXAMPLES FROM THE ARCHIVE

The PDB provides a rich sampling of protein conformation space,
where independently solved structures have identical sequences.
Although a significant portion of the biologically meaningful confor-
mation space has been captured, it is non-trivial to identify distinct
conformations across all PDB entries.80,81 For example, hexokinase
from Sulfurisphaera tokodaii (UniProt accession: Q96Y14) is the first
glycolytic enzyme that initializes respiration and is essential during
anaerobic conditions [Fig. 3(a)]. The kinase is moderately promiscuous
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FIG. 2. Automated identification of protein conformational states across the PDB archive. (a) All chains of a given UniProt accession (100% sequence identity) are assigned to
segments based on their overlap with the reference UniProt sequence. Non-overlapping sequences are grouped into separate segments. (b) Chains are superposed to all other
chains within their assigned segment. (c) Chain–chain GLOCON scores are calculated for all polypeptides within a segment (refer to Ref. 89 for formal definition) before
(d) agglomerative clustering is performed. The results are displayed in 3D on PDBe-KB aggregated views of proteins pages.
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FIG. 3. Notable examples of predicted conformational states by the PDBe-KB. (a) Clustering results in dendrogram (left) and structures (right) of the open–closed conformation
change made by UniProt: Q96Y14. XYP (red) denotes b-D-xylopyranose and ADP (light green) denotes adenosine triphosphate, both bound to 2E2Q chain A. 2E2N chain A is
an apo-form of the polypeptide. RMSD calculated between AlphaFold2 model and experimental structures. (b) Substrate promiscuity illustrated by consistent binding of diverse
ligands (magenta), despite the polypeptide (UniProt: P15121) adopting a consistent conformation. Mean RMSD displayed for the collection of ligand-bound structures (top left),
the AlphaFold2 structure to the two representative chains (top right), and between representative chains (bottom right). Structural variation between ligand-bound structures is
relatively low, with a standard deviation in RMSD of 0.16 Å. Ligand-free structure (yellow) has a displaced loop in the Pro211-Asp230 region. (c) Fold-switch protein (UniProt:
Q79V61) transitioning to control day–night cycle. Clustering dendrogram (left) with AlphaFold2 structure superposed alongside experimentally determined models. RMSD calcu-
lated between AlphaFold2 model and experimental structures.
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to sugar substrates,82 allowing it to associate with glucose, mannose,
glucosamine, xylose, and N-acetylglucosamine. Hexokinase adopts an
open or a closed conformation, dependent on sugar binding, although
ADP binding has a marginal effect on the protein’s shape. Our auto-
mated pipeline can discern between the open and closed states, even
identifying the open and closed chains solved within the asymmetric
unit of 2E2Q [Fig. 3(a)].

Additionally, human aldose reductase (UniProt accession:
P15121) accepts a diverse range of carbonyl-based substrates, reducing
them to alcohol products using NADH as an electron source
[Fig. 3(b)]. Many structures of this protein have been independently
solved with a variety of ligands, providing information on the confor-
mational heterogeneity within the holo state.83 Individual PDB entries
fail to capture the structural heterogeneity in the b-sheet region span-
ning Val121-Arg156, but our pipeline can separate the only non-
liganded structure in the PDB (1XGD) from all other ligand-bound
chains. Superposition of all chains highlights a structural deviation in
the unliganded structure within the Pro211-Asp230 loop.

Finally, the circadian rhythm protein KaiB (UniProt: Q79V61)
helps regulate the day–night cycle in cyanobacteria and has been previ-
ously characterized as a fold-switch protein79 [Fig. 3(c)]. Associating
with KaiA and KaiC, KaiB from Thermosynechococcus vestitus par-
takes in a concerted cycle of complex formation, autophosphorylation,
and autodephosphorylation of KaiC, completing each oscillation every
�24 h.68 KaiB adopts a homotetrameric ground state during the day
and a thioredoxin-like “fold-switch” state at night. The fold-switch
state is ordinarily stabilized upon oligomerization with KaiC and KaiB
subunits, forming a multimeric complex.68 The clustering method
described here identifies the structures solved in these two states and
highlights that the protein’s AlphaFold2 model from the AFDB is
closer in conformation to the night-dominant fold-switch state.

DISCUSSION

Exploring protein dynamics and conformational heterogeneity is
essential for understanding molecular mechanisms and disease pro-
gression. However, capturing the full range of biologically relevant
conformations—even for a single polypeptide—poses significant chal-
lenges beyond solving or predicting a static structure.22,81 Numerous
experimental and computational methods characterize macromolecu-
lar dynamics, but a lack of standardization hinders comprehensive
data integration. The next generation of integrative methodologies
promises to combine diverse experimental data and computational
techniques to achieve accurate and meaningful representations of con-
formational heterogeneity.22 Here, we have presented the method of
clustering the static structures archived in the PDB. These clusters may
depict some of the most stable, highly populated protein conforma-
tions (at 100% sequence identity) but cannot represent the complete
free-energy topology nor the pathways traversed during conforma-
tional state transitions.

Nevertheless, even a high-accuracy representation of structural
dynamics will be of limited value in answering biological questions
unless contextualized with functional information. Attributing biologi-
cal significance to conformational differences becomesmuchmore chal-
lenging without annotations, such as ligand binding, oligomeric
state, post-translational modifications, and point mutations, to name a
few.11–16 When comparing more distantly related proteins, ontological
annotations and domainmappings from resources such as CATH84 and
SCOP85 can help systematically explore sequence–structure–function

relationships. Automated annotation methods, utilizing structural
motifs, domain composition, and comparative modeling, will be useful
for predicting functions of uncharacterized proteins and their distinct
conformations. Tools such as DALI,86 SSAP,87 and Foldseek88 are cur-
rently available for the identification of evolutionary relationships and
functional similarities via structural comparison. As more conforma-
tions are determined experimentally—improving ensemble-model pre-
diction algorithms—high-quality functional annotations necessitate
integration to enable systematic analysis of structural diversity across
different structure data archives. The PDBe-KB superposition and clus-
tering pipeline presented here is a step toward this goal, but the collation
of annotations is now needed before biological relevance can be system-
atically mapped to distinct protein conformations.

CONCLUSION

Here, we present a deterministic data pipeline that clusters all
proteins in the PDB archive based on model coordinates, indepen-
dently of superposition. We demonstrated that the process can auto-
matically identify distinct conformations, which, due to lack of
standardized labeling in the archive, would otherwise be non-trivial to
find in the PDB.

However, the lack of systematic, high-quality conformational
state annotations impedes our understanding of the biological implica-
tions of protein dynamics. As such, functional annotations become
available, and high-throughput mapping to conformations could be
driven by initiatives such as the PDBe-KB consortium that has laid the
groundwork for creating unified data access mechanisms and standard
data exchange formats for a broad range of functional annotations.

Unlocking the potential of protein dynamics involves a multiface-
ted approach to understand their roles in biological mechanisms. It
demands application of the innovative multimodal approaches seen by
integrative modeling, combined with continued infrastructure
improvement for high-throughput annotation and data access. As the
field advances, these efforts will help with the development of novel
therapeutic strategies and help us realize the relationship between pro-
tein sequence, structure, and function.
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