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1   |   INTRODUCTION

The immune system is a network comprised of cells, pro-
teins, tissues, and organs which function to protect the host 
from foreign pathogens and tumor development. Although 
the immune system has intrinsic anticancer properties, it 
is not infallible and notably liable for failure in the case of 

those individuals who succumb to cancer.1 The reality of 
this insufficiency prompted the development of therapies 
to reinvigorate immune reactivity, aptly called immuno-
therapies, and includes the likes of vaccines, cytokines, 
adoptive T-cell transfer, and monoclonal antibodies (e.g., 
immune checkpoint inhibitors).2 The scope of these im-
munotherapies, much like the components of the immune 
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Abstract
Although the development of immunotherapies has been revolutionary in 
the treatment of several cancers, many cancer types remain unresponsive to 
immune-based treatment and are largely managed by chemotherapy drugs. 
However, chemotherapeutics are not infallible and are frequently rendered in-
effective as resistance develops from prolonged exposure. Recent investigations 
have indicated that some chemotherapy drugs have additional functions beyond 
their normative cytotoxic capacity and are in fact immune-modifying agents. Of 
the pharmaceuticals with identified immune-editing properties, gemcitabine is 
well-studied and of interest to clinicians and scientists alike. Gemcitabine is a 
chemotherapy drug approved for the treatment of multiple cancers, including 
breast, lung, pancreatic, and ovarian. Because of its broad applications, rela-
tively low toxicity profile, and history as a favorable combinatory partner, there 
is promise in the recharacterization of gemcitabine in the context of the immune 
system. Such efforts may allow the identification of suitable immunotherapeutic 
combinations, wherein gemcitabine can be used as a priming agent to improve 
immunotherapy efficacy in traditionally insensitive cancers. This review looks 
to highlight documented immunomodulatory abilities of one of the most well-
known chemotherapy agents, gemcitabine, relating to its influence on cells and 
proteins of the immune system.
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system itself, is widespread and encompasses agents that 
both invoke and inhibit the immune response as modes 
of therapeutic management.3–6 Immunotherapies, partic-
ularly immune checkpoint inhibitors, have revolutionized 
treatment and patient outcomes for several cancer types, 
such as Hodgkin's lymphoma, melanoma, non-small cell 
lung cancer, and renal cancer.7–14 Despite these promising 
developments, multiple other cancers have not displayed 
sensitivity to tested immunotherapies in the current set-
ting. This unresponsive phenotype is often derived from 
insufficient mutational burden, inhibitory immune check-
point expression patterns, and defects in antigen presenta-
tion.15–18 Immunotherapy-ineligible patients instead rely 
on transiently effective, resistance-prone chemotherapy 
drugs as the backbone of disease management.19–21

As the need for improved treatment options intensifies, 
attention has turned to “old-school” chemotherapies as an 
untapped source of potential. Although chemotherapeutics 
were initially approved for their cancer-killing properties, 
some are now known to be potent immunomodulators, ca-
pable of suppressing or invigorating the immune system.22–27 
The repurposing of these old school drugs with their novel 
immune-editing abilities may allow for improved antitumor 
outcomes in the form of combination therapies. Specifically, 
chemotherapeutic immunomodulators can be paired with 
immunotherapies, wherein the chemotherapy drug can act 
as a priming agent and allow for enhanced immunothera-
peutic efficacy in cancers that are normally unresponsive. 
One such drug that exhibits both chemotherapeutic and im-
munomodulatory abilities is gemcitabine.

Gemcitabine is a chemotherapy drug initially approved 
by the Food and Drug Administration in 1996 for the 
treatment of locally advanced and metastatic pancreatic 
cancer,28,29 and it remains active in clinical use today for 
the treatment of breast, non-small cell lung, and ovarian 
cancer, in addition to pancreatic cancer.30 Gemcitabine's 
use as a monotherapy is infrequent, and it is most often 
prescribed in combination regimens with other chemo-
therapies, including platinum and taxol-based agents.31–34 
Gemcitabine's reputation as a favorable combination part-
ner is derived in part from its limited toxicity, with adverse 
effects like myelosuppression, hair loss, nausea, and vom-
iting reported as mild or rarely of clinical significance.35

Gemcitabine belongs to the antimetabolite class 
of chemotherapeutics, joining pharmaceuticals like 
5-fluorouracil and methotrexate.36 Its cytotoxic function 
is exerted via masked chain termination in which gemcit-
abine, masking as a nucleoside (deoxycytidine), is mistak-
enly incorporated into the DNA strand. Following addition 
of a single nucleotide, DNA polymerase is released, the 
replication fork collapses, and the cell succumbs to apop-
tosis (Figure  1A).37,38 The fork collapse is accompanied 
by ataxia telangiectasia mutated and Rad3-related (ATR) 

pathway activation, and it has been demonstrated that in-
hibition of ATR interferes with PD-L1 upregulation that 
would otherwise occur via interferon regulatory factor 1 
(IRF1) signaling.39,40 In a concurrent mechanism, gemcit-
abine covalently binds to the active site of ribonucleotide 
reductase (RNR), an enzyme responsible for conver-
sion of ribonucleotides (NTPs) to deoxyribonucleotides 
(dNTPs). Impairment of RNR function disrupts dNTP 
levels, thereby improving gemcitabine's propensity for 
DNA incorporation in a process called self-potentiation 
(Figure 1B).38

Multiple studies have indicated that gemcitabine holds 
not only cytotoxic capabilities but also boasts additional 
immune-modifying functions. In fact, gemcitabine treat-
ment has demonstrated immuno-altering properties 
across several cancer types. For example, gemcitabine in-
creases expression of immune system proteins like MHC 
class I chain-related protein A and B (MICA/B), major 
histocompatibility class I (MHC-I), programmed death-
ligand 1 and 2 (PD-L1, PD-L2), calreticulin (CRT), and 
others.24,41,42 The immunomodulatory abilities of gem-
citabine extend beyond alterations of tumor cells them-
selves—this drug also influences both the behaviors and 
relative abundance of several immune cell populations 
(Figure 2).43–45 Because of its potential to improve patient 
sensitivity to immunotherapy-mediated intervention, 
gemcitabine's immune-editing capacity relative to im-
mune cells and tumor cells will be highlighted within this 
review.

2   |   IMMUNOMODULATORY 
EFFECTS OF GEMCITABINE ON 
IMMUNE CELLS

Tumor cells are not the sole perpetrators of malignant be-
haviors; rather, they require and extort neighboring im-
mune cells to further their proliferative and migratory 
objectives. Thus, the presence and abundance of certain 
tumor-promoting immune cells within the microenviron-
ment can have consequences for disease progression.46 
Finding mechanisms either to deplete such immuno-
suppressive cells or to increase the presence of antitu-
mor immune cells is an ongoing area of investigation.46 
Pharmaceutical intervention may hold the answer to such 
an immunological dilemma and is described in the con-
text of gemcitabine in the section below.

2.1  |  Regulatory T cells

Regulatory T cells, or as they are commonly denoted, 
Tregs, play an important role in regulation of the 
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immune response via release of suppressive cytokines 
and inhibition of T cell proliferation.47–49 Normally, 
these immunosuppressive functions are critical for 
the prevention of autoimmunity, promotion of self-
tolerance, and maintenance of homeostasis.50 However, 
while such immunoregulation is protective in a healthy 
host system, it can become pathological in the context 
of cancer. Consequently, Tregs' infiltration is often 
characterized as a blockage to effective tumor immu-
nity and thus a poor prognostic factor in several solid 
tumor cancers.51–53 Identifying mechanisms to facilitate 
the depletion or inactivation of Tregs may allow for can-
cer management by restoring the antitumor immune 
response.

Gemcitabine exposure is known to influence Tregs 
across several models. A modest but significant increase 
in survival was illustrated in an orthotopic pancreatic can-
cer mouse model, which demonstrated reduced levels of 

Tregs following gemcitabine treatment.23 The increase in 
survival appeared to be in part derived from the depletion 
of Tregs, as the administered gemcitabine dosage was 
suboptimal and did not affect the volume of the primary 
tumor.23 In peripheral blood samples from mesotheli-
oma patients, gemcitabine exposure was associated with 
decreased Treg proliferation.54 In conjunction, a study 
conducted by Eriksson et  al. observed a higher percent-
age of circulating Tregs in chemonaïve pancreatic cancer 
patients in comparison with healthy donors.44 However, 
treatment with gemcitabine reduced the average percent 
of peripheral blood Tregs in these patients.44 In addition, 
the mean effector: Treg ratio of this patient cohort was 
augmented during the gemcitabine cycle, suggesting that 
gemcitabine likely increased the favorable effector T cell 
population, lessened the number of circulating, suppres-
sive Tregs, or expedited an advantageous combination of 
both.44

F I G U R E  1   Gemcitabine's chemotherapeutic mechanisms of action. The figure depicts the primary modes by which gemcitabine 
induces cancer cell death (others exist which are not described). (A) Gemcitabine in its prodrug form enters the cell via a nucleoside 
transporter. In the cytoplasm, gemcitabine is converted to its nucleoside-mimicking active state. DNA polymerase incorporates gemcitabine 
into the DNA chain and an additional nucleotide is added, securing gemcitabine in the DNA strand (masked chain termination). The 
polymerase is unable to proceed which promotes fork collapse and cell death. (B) Gemcitabine occupies the active site of RNR. RNR 
inhibition disrupts dNTP pools, increasing the likelihood of gemcitabine's incorporation into DNA (self-potentiation), and initiating cell 
death by masked chain termination. dNTP, deoxyribonucleotide triphosphate; GEM, gemcitabine; NTP, ribonucleotide triphosphate; RNR, 
ribonucleotide reductase.
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2.2  |  Myeloid-derived suppressor cells, 
monocytes, and macrophages

Like Tregs, myeloid-derived suppressor cells (MDSCs) 
are well known for their immune-quelching activities.55 
Both immature cells of granulocytic and monocytic lin-
eage are classified as MDSCs and exert their immuno-
suppressive functions primarily through inhibition of 
T-cell activation, but also by mitigating macrophage-
mediated cytokine secretion and NK cell cytotoxic-
ity.56–58 The role of MDSCs in maintaining homeostatic 
conditions remains somewhat ambiguous, albeit these 
cells are known to promote favorable immunosup-
pression in semi-allogeneic states of pregnancy and 
transplantation.59,60 Under cancerous conditions, the 

immunosuppressive functions of MDSCs are exploited 
by tumors in attempts to avoid immune detection and 
maintain their proliferative agenda. Circulating MDSC 
levels are often enhanced in several cancer types, in-
cluding melanoma, pancreatic cancer, and squamous 
cell carcinoma of the head and neck.61–63

Interestingly, gemcitabine appears to reduce MDSC 
levels. In a study conducted by Le et al., mice were sub-
cutaneously injected in the flank with murine mammary 
tumor cells.64 Because MDSCs can accumulate in periph-
eral lymphoid organs, the population of MDSCs in the 
spleen was evaluated after 3 weeks.64 Upon harvesting, 
MDSCs had amassed within the spleen and accounted 
for approximately 30% of splenic cells in the untreated 
group.64 However, MDSCs in the spleen were depleted 

F I G U R E  2   Pro-immune effects of gemcitabine in cancer. The figure highlights gemcitabine's positive immunomodulatory properties 
on immune cells and immune-related proteins reported in at least one type of cancer. Gemcitabine reduced levels of circulating (MDSCs, 
Tregs) and intratumoral (Tregs) immunosuppressive cell populations in various cancer models. In addition, gemcitabine intensified 
the antitumor abilities of NK cells, including their tumor infiltration and lytic activity. The proliferative potential of NK cells was also 
improved by gemcitabine in patients with malignant mesothelioma. In pancreatic cancer patients treated with gemcitabine, the number 
of DCs in circulation increased. Gemcitabine also improved the cross-priming of CD8+ T cells in tumor-bearing mice. The proliferative 
capacity of effector T cells was not diminished after gemcitabine treatment in pancreatic cancer patients, and tumor infiltration of CD8+ 
and CD4+ effector T cells was stimulated by gemcitabine in a mouse model of ovarian cancer. Gemcitabine augmented expression of 
immune-promoting proteins, including surface CRT on cancer cells. Plasma membrane-resident CRT can act as an “eat me” signal and 
induce engulfment by phagocytic cells. Increased expression of the MHC-I complex, a cytotoxic T cell-activating molecule, has also been 
documented in cancer models following gemcitabine exposure. [Green arrows indicate signal activation.] CRT, calreticulin; DC, dendritic 
cell; MDSC, myeloid-derived suppressor cell; MHC-I, major histocompatibility complex class I; NK, natural killer cell; Treg, regulatory T 
cell.
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to 10% in mice that received weekly gemcitabine treat-
ments.64 The findings of this study were similar to those of 
another group which showed that gemcitabine decreased 
the MDSC population localized within the spleen in mice 
bearing large mesothelioma or lung tumors (flank, subcu-
taneously inoculated).65 Despite the gemcitabine-induced 
MDSC loss, there was no corresponding decrease in ef-
fector CD4+ or CD8+ T cells within the spleens of these 
animals.65 Gemcitabine treatment also affects MDSC pop-
ulations within human patients. Eriksson et  al. showed 
that gemcitabine administration reduced peripheral 
MDSCs in patients with pancreatic cancer to levels near 
that of the healthy donor cohort.44 Similar results were 
published in a study of individuals diagnosed with recur-
rent breast cancer who were prescribed gemcitabine.66 
Both prior and post-chemotherapy administration, the 
percentage of circulating MDSCs was evaluated.66 Levels 
of MDSCs in the peripheral blood significantly decreased 
following gemcitabine treatment.66 Furthermore, the per-
centage of circulating MDSCs after the gemcitabine cycle 
was not statistically different from that of the healthy vol-
unteer group, indicating gemcitabine favorably modulates 
MDSC levels in refractory breast cancer cases.66

Monocytes, and upon their differentiation, macro-
phages, play a critical part in mediating inflammation, 
namely through phagocytosis, secretion of cytokines, 
and activation of the adaptative immune response.67 
Phenotypically distinct subtypes of monocytes and mac-
rophages have unique roles in the suppression or promo-
tion of tumor development.68 In patients with advanced 
pancreatic cancer, Soeda et al. reported an increase in the 
absolute number and percentage of circulating CD14+ 
monocytes after gemcitabine treatment.69 However, be-
cause additional phenotypic markers were not used to 
further stratify these monocytes (e.g., HLA-DRlow/neg),68 it 
is difficult to infer the clinical significance. Gemcitabine's 
pro-tumor effect extends to macrophages, as this chemo-
therapy drug has been observed to facilitate intratumoral 
infiltration by anti-inflammatory M2 macrophages.70 
Mice with orthotopic xenograft pancreatic tumors were 
found to have more macrophages within the tumors if the 
mice had been treated with gemcitabine, and conditioned 
culture media from gemcitabine-exposed pancreatic can-
cer cells induced polarization of macrophages to the M2 
phenotype.70 In a mouse model of breast cancer, gemcit-
abine treatment stimulated monocyte development, and 
subsequently increased the presence of CCR2+ monocytes 
and macrophages in the lungs, thereby potentiating tumor 
metastasis.71

Neutrophils are often credited as the initial responders 
in sites of injury, inflammation, or infection.72 In cancer, 
the pro-tumor and antitumor effects of neutrophils re-
main inconclusive.72 Gemcitabine monotherapy, as well 

as its combination with other chemotherapies, may in-
duce levels of neutropenia (and thrombocytopenia) that 
can be of clinical concern.73–75 Surprisingly, incidence of 
chemotherapy-induced neutropenia (CIN) has been cor-
related with improved survival in cancer patients,76 and 
for gemcitabine-treated pancreatic cancer patients, early-
onset CIN was identified as a predictor of more favorable 
prognosis.77

2.3  |  Natural killer cells

Natural killer cells, or NK cells as they are commonly 
called, are a population of lymphoid cells which were 
discovered in the 1960s.78 As indicated by their name, 
this cell type is naturally cytotoxic, requiring no previ-
ous antigen exposure to induce lysis of a target cell.78–80 
NK cell-mediated lysis and granule secretion are primar-
ily regulated through the presence and/or absence of 
various receptors and molecules on the surface of target 
cells.81–85 This cytolytic capacity is critical to the host's de-
fense against cells that have been either virally infected or 
malignantly transformed.86 The presence of NK cell popu-
lations, which have corresponding antitumor abilities, is 
considered to be a favorable phenotype in an array of solid 
tumors.87

Notably, gemcitabine has demonstrated an ability to 
influence NK cell populations in cancer . Gürlevik et  al. 
established an R0 resectable transgenic mouse model 
of pancreatic cancer in which mice developed a single, 
pancreas-specific tumor.45 Following R0 resection, gemcit-
abine was administered in a localized fashion to the pan-
creas remnants.45 Mice that received adjuvant gemcitabine 
exhibited enhanced infiltration of NK cells at the resection 
margins in comparison to the untreated control group.45 
Furthermore, this gemcitabine-perpetuated increase in 
NK cells was therapeutically relevant as depletion of NK 
cells enhanced local disease recurrence in this cohort.45 
Gemcitabine also stimulated NK cell-mediated cytotoxicity 
in a study conducted by Zhang et al. Splenic NK cells were 
purified from subcutaneous tumor-burdened mice and co-
cultured in vitro with lung tumor cells.43 The NK cells ob-
tained from the gemcitabine-treated mice lysed a higher 
percentage of tumor cells than those collected from the 
untreated mice, suggesting that gemcitabine positively en-
hances NK cell activity.43 Gemcitabine also appears to mod-
ulate the proliferative capacity of circulating NK cells in 
individuals with malignant mesothelioma.54 Mesothelioma 
patients received first-line platinum-pemetrexed chemo-
therapy, and those without progressive disease were later 
given either gemcitabine as maintenance therapy or basic 
supportive care (BSC) treatment.54 NK cell proliferation 
was significantly upregulated in the cohort which received 
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maintenance gemcitabine treatment in comparison to the 
BSC group.54

2.4  |  Cytotoxic and helper alpha beta 
T cells, gamma delta T cells, dendritic 
cells, and B cells

The function of the adaptive immune system is carried 
out by the activities of several cell populations, including  
T cells, dendritic cells (DCs), and B cells. Alpha beta T cells 
and gamma delta T cells are distinguished based on their 
expression of the alpha beta T cell receptor or gamma delta 
T cell receptor, respectively.88 Within the alpha beta desig-
nation, CD8+ cytotoxic T cells initiate direct cell-mediated 
lysis upon recognition of MHC-I-bound antigens, while 
CD4+ helper T cells release pro-inflammatory cytokines 
after identification of MHC-II-displayed antigens.1 DCs 
and B cells are both professional antigen-presenting 
cells and promote activation of T cells, though B cells are 
mainly distinguished for their secretion of antibodies.1

The importance of T cells to the therapeutic efficacy of 
gemcitabine was made evident by the discovery that this 
drug is ineffective against tumors in athymic nude mice.89 
Gemcitabine contributes to cross-priming of DCs (by in-
ducing tumor cell apoptosis and other mechanisms), and 
thereby causes antigen-specific stimulation of CD8+ T 
cells.90,91 Furthermore, gemcitabine has been observed to 
increase the number of DCs in peripheral blood samples 
from pancreatic cancer patients.69

Plate et al. evaluated the kinetics of gemcitabine's im-
pact on immune cell populations and found that initial 
drops in T and B cell numbers were reversed as treatment 
of pancreatic cancer patients progressed.92 Anti-CD3 an-
tibody stimulation of peripheral blood mononuclear cells 
obtained from gemcitabine-treated pancreatic cancer pa-
tients showed no diminution of T cell proliferation capa-
bility in comparison to controls.44,93 In a mouse model, 
gemcitabine caused some reduction of CD4+ and CD8+  
T cell numbers, but a more than double impairment of B 
cell proliferation.94 This gemcitabine-mitigated B cell ac-
tivity was accompanied by a substantial reduction of the 
antibody response to a model tumor antigen that was ex-
pressed by mesothelioma tumor cells.94

Ovarian tumor-bearing mice that received gemcit-
abine had more CD4+ and CD8+ T cells infiltrating the 
tumors.95 Gemcitabine has been noted to have positive ef-
fects on CD8+ cytotoxic T cell antitumor activity, possibly 
as a consequence of diminishing the viability of MDSCs 
in the tumor microenvironment,65 as well as by its above-
mentioned ability to enhance T cell priming. In the con-
text of mesothelioma, gemcitabine treatment of patients 
led to increased expression of co-stimulatory molecules by 

CD4+ helper T cells and CD8+ cytotoxic T cells, indicating 
phenotypic changes in these cell populations.54

In addition to the alpha beta T cell receptor-expressing 
CD4+ and CD8+ T cells, the gamma-delta T cell receptor-
expressing subset can also have antitumor activities. 
However, gamma delta T cell-mediated cytotoxicity is in-
dependent of antigen presentation by MHC molecules.96 
Shimizu et al. showed that low-dose gemcitabine pretreat-
ment augmented the cytolytic activity of zoledronic acid-
stimulated gamma delta T cells against urinary bladder 
cancer cells, and this combination also reduced tumor 
burden in vivo.97 In a study of patients treated with gem-
citabine alone or with both gemcitabine and gamma delta 
T cell therapy, no statistically significant survival differ-
ences were found.98 However, there was a correlation be-
tween the persistence of gamma delta T cells in the blood 
and the absence of disease recurrence, suggesting that a 
clinical trial with a larger enrollment of patients would 
possibly yield more evidence of efficacy for this combina-
tion therapy.98

3   |   IMMUNOMODULATORY 
EFFECTS OF GEMCITABINE ON 
CANCER CELLS

Although off-target effects certainly exist, the intended 
quarries of chemotherapeutics (gemcitabine included) are 
the cancer cells themselves.99,100 As such, it is not surpris-
ing that a number of the immunomodulatory effects of 
gemcitabine manifest within the tumor. Tumor cells em-
ploy multiple tactics to evade immune surveillance, for ex-
ample, the downregulation and upregulation of proteins 
that promote and curtail the immune response, respec-
tively.101–103 Thus, pharmaceutical-induced expression of 
proteins that can restore the immune response is an active 
area of interest. Gemcitabine's impact on several of these 
immune-related proteins is described below.

3.1  |  Major histocompatibility complex 
class I

Major histocompatibility complex class I (MHC-I) is a 
molecule that is expressed at the surface of all nucle-
ated cells and has a critical function in the presenta-
tion of abnormal peptides to CD8+ cytotoxic T cells.104 
Recognition of these peptides as atypical (e.g., virus- or 
tumor-derived) induces T cell-mediated lysis against the 
infected or malignant cell.105 Therefore, MHC-I is a vital 
component in instigating an immune response under 
pathological conditions. As such, many tumors down-
regulate expression of MHC-I as a means of immune 
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escape.106–110 Thus, finding ways to fully restore surface 
expression of this molecule could play a major role in 
reinvigorating the T cell-mediated antitumor immune 
response. Gemcitabine has demonstrated a propensity 
to increase expression of MHC-I in several human can-
cer cell lines, including pancreatic, colon, breast, lung, 
and cholangiocarcinoma.24,111–114 Our own work in 
human pancreatic cancer cell lines demonstrated that 
gemcitabine increased MHC-I mRNA and protein lev-
els, as well as cell surface expression and stability.115 
Of note, we also observed that gemcitabine modified 
MHC-I-displayed peptides on a pancreatic cancer cell 
line and improved these peptides' predicted affinity and 
immunogenicity.115 Liu et al. and Principe et al. showed 
that gemcitabine's stimulation of MHC-I protein expres-
sion was recapitulated in murine models of lung cancer 
and pancreatic cancer, respectively.24,114 In vivo analy-
sis revealed that while gemcitabine alone could enhance 
MHC-I expression in murine pancreatic tumors, it was 
not sufficient to promote effector T-cell infiltration. 
However, with the triple combination of gemcitabine, 
an immune checkpoint inhibitor, and a TGF-β-signaling 
inhibitor, T cell penetration into the tumors was not only 
restored, but the mice also exhibited increased overall 
survival.24 These experiments strengthen the potential 
clinical relevance of gemcitabine's immunomodulatory 
capacity and indicate its ability to act successfully in 
combination therapies.

3.2  |  Calreticulin

Calreticulin (CRT) is a calcium-binding, sarcoplasmic re-
ticulum (SR) and endoplasmic reticulum (ER)-resident 
chaperone protein.116,117 This protein harnesses many 
functions and is involved in regulation of calcium ho-
meostasis, intracellular signaling, gene expression, and 
assistance in protein folding.118–120 Under physically or 
chemically induced cellular stress, CRT can be translo-
cated from the ER to the cell surface.121,122 Following its 
incorporation into the plasma membrane, CRT acts as a 
damage-associated molecular response (DAMP) or “eat-
me” signal at the surface of the cell, initiating phagocytic-
mediated engulfment.123 Elevated expression of surface 
CRT is correlated with improved clinical outcomes and 
considered a favorable prognostic factor in acute myeloid 
leukemia, ovarian cancer, and non-small cell lung can-
cer.124–126 Thus, the translocation of CRT is a desired con-
tributor to the antitumor immune response, and of interest 
in this review, potentially achievable through gemcitabine 
exposure. In vitro analysis of murine bladder and pancre-
atic cancer cell lines revealed gemcitabine's capacity to 
increase surface expression of CRT.41 Such results were 

mirrored in human cholangiocarcinoma and lung cancer 
cells, as well as a murine model of lung cancer.43,127,128 
Interestingly, Smith et  al. observed that human pancre-
atic cancer cells cultured in medium with gemcitabine 
not only had increased surface expression of CRT but also 
a higher frequency of engulfment via monocyte-derived 
dendritic cells, though it cannot be stated that this was spe-
cifically due to CRT upregulation.113 Nonetheless, because 
membrane-bound CRT is a potent DAMP and inducer of 
immune cell-mediated death, combining gemcitabine and 
other immune-enhancing therapies could lead to strate-
gies to increase cancer-directed phagocytosis.

3.3  |  PD-L1

Programmed death-ligand 1 (PD-L1) was the first discov-
ered ligand of the immune cell-expressed programmed 
cell death protein 1 (PD-1).129 The interaction of PD-1 and 
PD-L1 promotes the inactivation of immune cells, thereby 
decreasing their proliferation and capacity for cytokine 
production.130 PD-L1 is categorized as an immune check-
point, and it is critical in the regulation of self-tolerance 
and homeostasis. However, this checkpoint has a ne-
farious connotation in the setting of cancer, perpetuat-
ing T cell impairment and subduing immune-mediated 
responses against malignant cells.131,132 Expression of 
PD-L1 is significantly increased in many solid tumors, 
including nasopharyngeal carcinoma as well as bladder, 
breast, and gastric cancers.133–135 PD-L1 upregulation is 
characterized as a poor prognostic factor and affiliated 
with lower survival rates in the aforementioned can-
cers.133–135 However, PD-L1 overexpression on tumor 
cells can also be advantageous in terms of enhancing 
the efficacy of monoclonal antibody therapies target-
ing this protein. Immune checkpoint inhibitors, such as 
anti-PD-L1 therapeutics, have been clinically successful 
and paramount in the restoration of antitumor T cell re-
sponses.136,137 Thus, paradoxical as it may seem, the inad-
vertent upregulation of PD-L1 by pharmaceuticals could 
be beneficial in conversion of a traditionally insensitive 
cancer to one that is immunotherapeutically targetable. 
Gemcitabine has been observed to increase PD-L1 across 
several models of pancreatic cancer, including established 
cell lines, primary cell line-derived xenografts, murine cell 
lines, and a mouse model of pancreatic cancer.24,138,139 For 
ovarian cancer cell lines, gemcitabine stimulated mRNA 
levels and surface expression of PD-L1 by threefold and 
sixfold, respectively.95 Furthermore, a study by Jung et al. 
observed that gemcitabine enhanced expression of PD-L1 
by a human colorectal cancer cell line and significantly 
improved tumor infiltration and binding of an anti-PD-L1 
antibody in  vivo.140 Therefore, gemcitabine-stimulated 
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PD-L1 expression may promote advantageous responses 
in the clinic via immune checkpoint combinations.

4   |   POTENTIAL MECHANISMS

The propensity for gemcitabine (and other chemothera-
peutics with similar activities) to engage in both cy-
totoxic and immunomodulatory behavior remains an 
active area of exploration. With such an array of immuno-
modifications induced by gemcitabine, it is unlikely that a 
singular channel is responsible. Instead, this section will 
highlight several potential mechanisms by which gemcit-
abine may influence the immunophenotype of cells.

Gemcitabine's seemingly selective reduction of immu-
nosuppressive cell populations may be in part due to the 
proliferative nature of these cells. Both MDSCs and Tregs 
have the potential for rapid expansion,141–143 and thus may 
be more prone to gemcitabine incorporation than other 
immune populations. Suzuki et al., showed that gemcit-
abine increased apoptosis of MDSCs (Gr-1+/CD11b+), but 
did not affect non-suppressive lymphocyte populations 
in vitro.65 In a similar vein, intratumoral Treg populations 
underwent higher rates of cellular division compared to 
conventional T cell populations in a pancreatic cancer 
model, and thus their reduction by gemcitabine was more 
likely due to preferential proliferative-targeting by this 
drug.23

Transcriptional regulation is often shared between the 
immune system's “on switch” (e.g., MHC-I) and the cor-
responding “off switch” (e.g., PD-L1) to prevent extended 
and unintentional reactivity beyond the initial immune 
response. For example, interferon-sensitive response el-
ements (ISREs) located in the promoters of the PD-L1 
gene and MHC-I-associated genes confer their sensitivity 
to interferon-mediated signaling.144,145 Likewise, nuclear 
factor kappa-light-chain-enhancer of activated B cells 
(NF-κB)binding sites make these genes' susceptible to NF-
κB regulation (e.g., via TNFα signaling).144,146 In a murine 
model of pancreatic cancer, gemcitabine upregulated se-
cretion of several cytokines, including interferon gamma 
(IFNγ) and tumor necrosis factor alpha (TNFα),24 both of 
which are known transcriptional inducers of MHC-I and 
PD-L1.144,146 Thus, it is plausible that in vivo gemcitabine 
instigates cytokine-mediated signaling to modify expres-
sion of immune-related proteins.

This ability for gemcitabine to stimulate secretion of in-
flammatory cytokines may be a byproduct of its inherent 
chemotherapeutic mechanisms (i.e., DNA damage and nu-
cleotide pool disruption). In nasopharyngeal carcinoma, 
MHC-I induction by gemcitabine and a gemcitabine/
cisplatin combination was found to be dependent on the 
STING type I interferon-dependent pathway,147 suggesting 

that chemotherapy-induced DNA fragmentation triggers 
inflammatory cytokine production. Nucleotide depletion 
by gemcitabine has also been shown to stimulate expres-
sion of several interferon-stimulated genes (ISGs).148 
Activity of these ISGs was inhibited by reintroduction of 
certain nucleotides with gemcitabine co-treatment, indi-
cating that it is the nucleotide inhibition by gemcitabine 
which invokes expression of these ISGs.148 Stimulation 
of immune-associated genes via pharmaceutical-induced 
disruption of nucleotide pools has been previously ob-
served and could be a concomitant effect of the infection 
mimicry state induced by these drugs.149–152

The signaling events which relay nucleotide loss to 
these genes requires additional investigation. Of note, a 
recent report by Mullens et al., revealed that stimulation 
of MHC-I associated genes by a nucleotide-disrupting 
drug was abrogated through inhibition of positive tran-
scription elongation factor b (P-TEFb), a protein neces-
sitated for efficient transcription.153 Thus, it appears that 
drug-induced nucleotide depletion is dependent on the 
activity of P-TEFb, but discerning whether this is a con-
served mechanism among agents with similar modes of 
action (e.g., gemcitabine) will require further exploration.

5   |   CONCLUSIONS AND 
PERSPECTIVES

Chemotherapy has proven to be a front-line method of 
disease management for most cancer types. However, 
many forms of cancer suffer from high refractory rates or 
chemoresistance, and there is a continued need to identify 
courses of action to improve prognosis beyond the canoni-
cal neoadjuvant and adjuvant therapies.154 Such a reality 
has prompted a reinvestigation into the mechanisms of 
standard chemotherapy drugs and brought forth additional 
immune-editing abilities for several of these anticancer 
drugs.155 It is believed that the immunostimulatory prop-
erties of chemotherapy drugs, such as gemcitabine, can be 
used to enhance the efficacy of immunotherapies against 
cancers that are traditionally insensitive. Gemcitabine ex-
erts favorable impacts on both immune cell populations 
and tumor cells, including depletion of Tregs and MDSCs, 
infiltration of NK cells and effector T cells, as well as invig-
oration of immune-stimulating surface CRT and MHC-I 
expression (Figure 2). Within the last 3 years, more than 
15 clinical trials have evaluated immunotherapy combina-
tion strategies which include gemcitabine (Table 1).156–171 
Although the results varied between trial settings, cancer 
types, and patient cohorts, positive outcomes were docu-
mented within the published trials. For example, the com-
bination of gemcitabine/nab-paclitaxel and an immune 
checkpoint inhibitor (anti-PD-1) improved 1-year survival 
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from historical averages in patients with metastatic pan-
creatic cancer.158 Thus, there is continued interest in in-
vestigating multi-therapy approaches and identifying the 
cancer types and patient populations most responsive to 
these combinations.

Although this review has focused mostly on the positive 
immune-promoting effects of gemcitabine, it is important 
to note that some of its modulatory properties could be clas-
sified as suppressive and detrimental. The neutropenia and 
thrombocytopenia induced in cancer patients by gemcit-
abine can potentially lead to mortality, yet they are also sta-
tistically associated with improved survival.172,173 Despite 
gemcitabine's propensity to reduce MDSCs in vivo,65 it may 
also activate the inflammasome pathway in these cells and 
accelerate tumor expansion through release of inflamma-
tory cytokines.174 As noted above, gemcitabine has also 
been implicated in increasing tumor infiltration by M2-
polarized macrophages, a phenotype that is typically re-
garded as tumor-promoting.70 In addition, as mentioned 
earlier in this review, gemcitabine treatment is correlated 
with increased production of monocytes, which by homing 
to sites such as the lungs and differentiating to immuno-
suppressive macrophages, can assist metastasis.71

Subsequently, further exploration must be conducted 
to accurately estimate gemcitabine's beneficial modulation 
of immune parameters from potential disadvantageous 
effects. Various investigations have sought biomarker 
correlates of gemcitabine treatment and patient out-
comes,175,176 and some studies have included hematological 
and immunological factors.173,177 For example, Blomstrand 
et  al. profiled blood proteins and cells in pancreatic can-
cer patients and evaluated whether any were prognostic 
for prolonged survival.173 The occurrence of thrombocy-
topenia was a positive prognostic marker for progression-
free survival, but myelosuppression had neither positive 
nor negative linkage to survival in this setting.173 Another 
example of a potential immune-related biomarker is endo-
plasmic reticulum aminopeptidase 2 (ERAP2), which cor-
relates with worse prognosis in pancreatic cancer patients 
and its expression in pancreatic cancer cells is increased by 
gemcitabine treatment.177 ERAP2 is a protein involved in 
the processing of peptide ligands for binding to MHC-I,178 
but it also has a role in the PI3K/AKT/mTOR pathway, and 
whether its immunological function and/or its cell signal-
ing function is the rationale for its correlation with poor 
prognosis is not well understood. Bauer et al. showed that 
gemcitabine therapy decreased DC vaccine impact on B cell 
and CD8+ T cell responses, but the combination of the DC 
vaccine and gemcitabine still was clinically beneficial,179 
showing the difficulty of establishing specific immunologi-
cal biomarkers that correlate with overall clinical prowess. 
In the future, more in-depth knowledge of the immuno-
logical events occurring after gemcitabine treatment, and 

their association with outcomes, may not only influence 
selection of immunotherapy partners, but also aid in the 
establishment of dosages and administration scheduling to 
achieve optimal responses and mitigate potential suppres-
sive effects in the clinical setting.
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