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d Machine learning identifies synaptic transmitters from

electron micrographs

d Six transmitters predicted across the whole fly brain
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d Explainable AI reveals ultrastructural differences between

transmitter identities

d Fly brain hemilineages predominantly express one fast-

acting transmitter
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SUMMARY
High-resolution electronmicroscopy of nervous systems has enabled the reconstruction of synaptic connec-
tomes. However, we do not know the synaptic sign for each connection (i.e., whether a connection is excit-
atory or inhibitory), which is implied by the released transmitter. We demonstrate that artificial neural net-
works can predict transmitter types for presynapses from electron micrographs: a network trained to
predict six transmitters (acetylcholine, glutamate, GABA, serotonin, dopamine, octopamine) achieves an ac-
curacy of 87% for individual synapses, 94% for neurons, and 91% for known cell types across a
D. melanogasterwhole brain. We visualize the ultrastructural features used for prediction, discovering subtle
but significant differences between transmitter phenotypes. We also analyze transmitter distributions across
the brain and find that neurons that develop together largely express only one fast-acting transmitter (acetyl-
choline, glutamate, or GABA). We hope that our publicly available predictions act as an accelerant for neuro-
scientific hypothesis generation for the fly.
INTRODUCTION

Generating a synaptic connectome entails identifying all neurons

and synapses in a sample. Recent advances in volume electron

microscopy (EM) have enabled connectome generation for

entire nervous systems.1–6 Automated methods for segmenting

neurons,7–11 detecting synapses,12–16 and proofreading17 have

significantly reduced the human effort required. These methods

have been applied to create connectomes for the Drosophila

melanogaster brain6,18,19 and its ventral nerve cord.5,20 However,

EM does not directly tell us about gene expression, most

crucially the transmitter pathways active in each neuron. This

gap hinders our understanding of key neurobiological processes

relevant to circuit function.

The action that a neuron has on its downstream targets de-

pends on the transmitter it releases and the postsynaptic recep-
2574 Cell 187, 2574–2594, May 9, 2024 ª 2024 The Authors. Publishe
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tors that receive it. The so-called classical fast-acting transmit-

ters (i.e., acetylcholine, glutamate, and GABA) are most

common.21,22 They are contained in small, clear vesicles. Mono-

amines such as dopamine, serotonin, and octopamine are pack-

aged into clear core or small dense core vesicles.23 About 53

neuropeptides and peptide hormones24–26 are contained in

larger dense core vesicles.27,28 While co-transmission of a small

molecule transmitter and a neuropeptide is common,21,22,29 the

usage of acetylcholine, glutamate, and GABA is largely mutually

exclusive.30,31 Therefore, Dale’s law, an expectation that each

neuron expresses a single small molecule transmitter, often

guides our hypotheses about neuronal function.32,33 We expect

that this transmitter expression will be stereotyped for cell types

across individuals, given their shared gene expression profiles.34

We also expect transmitter expression to be organized at higher

levels, for example by hemilineage. Hemilineages are basic
d by Elsevier Inc.
eativecommons.org/licenses/by/4.0/).
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developmental units of the insect brain and typically consist of

dozens of cell types. In the ventral nerve cord Lacin et al.31

comprehensively showed that only one of acetylcholine, gluta-

mate, or GABA is expressed per hemilineage. By analogy with

Dale’s law, we call this observation Lacin’s law. It was unclear

whether Lacin’s law also holds in the brain.

In larger organisms, experts can distinguish excitatory and

inhibitory transmitters based on synaptic vesicle ellipticity35–37

or synapse symmetry.38 However, in invertebrates transmitter

identity cannot be consistently identified by human annotators

from electron micrographs. Instead, investigators use molecular

biology and light microscopy pipelines to link RNA expression

data or immunoreactivity to proteins involved in transmitter

biosynthesis with specific neuronal morphologies.22,39–44 Stan-

dard high-throughput methods such as single-cell RNA-seq

cannot be used since they do not retain morphology information.

Therefore, researchers profile sparse genetic driver lines,45,46

which target only a few neurons, followed by accurate morpho-

logical matching to EM reconstructions.47,48 Since these exper-

imental pipelines can take weeks per cell type and are limited by

the availability of sparse genetic driver lines, they do not scale to

whole nervous system discovery. Consequently, the transmitter

identity is known for only �700 of the �7,000 cell types of the

adult D. melanogaster central brain.49,50 However, this subset

provided ground truth that we can use to learn the features of

specific transmission types, bymapping known transmitter iden-

tities to previously localized presynaptic sites in two brain data-

sets (FAFB [the Full Adult Fly Brain]6 and the HemiBrain51).

RESULTS

Assembling ground-truth neurotransmisson data
We compiled a list of 356 D. melanogaster neuronal cell types

from 21 studies (Data S1), selecting those with robust transmitter

data. We identified these same cell types within the FAFB-

Catmaid and HemiBrain datasets (Figure 1A). We selected cell

types with clear transmitter data from RNA expression or immu-

nohistochemistry, complemented by specific cell type targeting

through the GAL4/split-GAL4 system.46 We did not generally

pursue types reported to exhibit co-transmission (see STAR

Methods). Given thatD. melanogaster neurons are highly stereo-

typed,50 these cell typeswere identifiable in our EMdatasets.We

chose to proceed with transmitters supported by at least 10 EM

reconstructions per dataset, i.e., acetylcholine, glutamate,

dopamine, serotonin, and octopamine (Data S1, see STAR

Methods). All presynapses for each neuronal reconstruction

were assumed to use the single small-molecule transmitter re-

ported in the literature (Figure 1B). In total, we matched 3,025

FAFB-Catmaid neuronal reconstructions (211,564 synapses)

and 5,902 HemiBrain reconstructions (840,535) to cell types

with a known transmitter (Data S2).

We took a slightly different approach in selecting presynapses

from our two datasets. For HemiBrain, we used automatically

predicted presynaptic sites across many brain cell types, of

which a proportion are false detections.13 In FAFB, however,

we used manually placed synaptic markers laid by human re-

searchers from a smaller pool of manually reconstructed neu-

rons (see STAR Methods). Therefore, compared with
HemiBrain, our FAFB-Catmaid dataset contained higher-quality

synapses from a smaller number of neurons. Note that in later re-

sults, to work with the full connectome, we explored transmitter

predictions across automatically detected presynapses12 in the

newer FAFB-FlyWire reconstruction project.17,18,50 After building

our ground truth, we expanded our literature review to find 268

more cell types with the reported transmission of one of our six

transmitters (Data S7), which we could use to further validate

our results.

Network architecture, training, testing, and validation
datasets
For each transmitter y˛ {GABA, acetylcholine, glutamate, sero-

tonin, octopamine, dopamine}, we partitioned the data into

training, testing, and validation sets by randomly assigning entire

neurons (neuron split), such that approximately 70% of presy-

napses were used for training, 10% for validation, and the re-

maining 20% for testing. This approach mirrors real-world sce-

narios where we typically know the transmitter of an entire

neuron and are interested in predicting the transmitter of a

different neuron. We employed a 3D deep convolutional network

based on the Visual Geometry Group (VGG) architecture52 to

predict transmitter identity from cubes of EM image data (edge

length 640 nm), each centered on a presynaptic site (Figure 1C).

The cube size was chosen to be large enough to provide sur-

rounding context, including synaptic features like vesicles,

T-bars, clefts, and postsynaptic densities, while at the same

time being small enough to fit into the limited memory of a

GPU. The network consisted of four functional blocks, each

with two 3D convolution operations, batch normalization, ReLU

non-linearities, and subsequent max pooling with a downsam-

pling factor of 2, except for FAFB where we limited downsam-

pling to the x and y dimensions for the first three blocks to ac-

count for image voxel anisotropy. The last block was followed

by three fully connected layers with dropout (p = 0.5) applied

to the last one. We trained the network to minimize cross-en-

tropy loss over the six classes (GABA, acetylcholine, glutamate,

serotonin, octopamine, and dopamine) using the Adam opti-

mizer.53 We trained for a total of 500,000 iterations in batches

containing eight samples and selected the iterationwith the high-

est validation accuracy for testing.

For the FAFB neuron split, the testing set consisted of a total of

40,104 presynapses from 185 neurons that the network was not

trained on. The network achieved an average per-transmitter ac-

curacy of 87% on FAFB and 78% on HemiBrain. We assigned

each neuron with over 30 presynapses in the testing set a trans-

mitter through a majority vote of its presynapses, yielding an

average accuracy of 94% for transmitter prediction per neuron

on FAFB-Catmaid and 91% on HemiBrain (Figure 2A). Our goal

was to train a network with high prediction accuracy based on ul-

trastructural features of synapses. Cytological correlates of syn-

apse location or neuron development might have driven trans-

mitter identification by our network. We, therefore, split the

data by the neuropil (i.e., brain region) location of synpases54

(Figure 2B) and their developmental origin (hemilineage) (Fig-

ure 2C). Accuracy in these split datasets remained high (Fig-

ure 1D), indicating that the network is unlikely to use related

features.
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Figure 1. Method overview

We assembled a dataset of neurons with known transmitter expression (see STARMethods) in twoD.melanogaster brain EMdatasets (FAFB andHemiBrain) and

retrieved corresponding synaptic locations.

(A) Typically, neurons had been genetically tagged to identify their transmitter identity and reconstruct their coarse morphology using light microscopy (Data S1).

(B) Light microscopy tracings of neurons are then matched to corresponding EM reconstructions with annotated synaptic locations, yielding a dataset of EM

volumes of synaptic sites with known transmitter identity.

(C) We used the resulting pair (x, y) where x is a 3D EM volume of a synaptic site and y is the transmitter of that synaptic site (one of GABA, acetylcholine,

glutamate, serotonin, octopamine, or dopamine) to train a 3D VGG-style deep neural network to assign a given synaptic site x to one of the six considered

transmitters. We used the trained network to predict the transmitter identity of synapses from neurons with so far unknown transmitter identity. Panels i, ii, and iii

denote convolution, down-sampling, and fully connected layers, respectively.

(D) Overview of our results on the FAFB dataset. Shown are the number of presynapses for training, testing, and validation as well as average synapse and neuron

classification accuracy on the testing set for each data split.

See also Data S2.
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Applying Dale’s law to the entirety of both datasets, we adop-

ted themost frequent synapse-level transmitter prediction as the

neuron-level transmitter prediction and developed a confidence

score based on the proportion of presynapses that ‘‘voted’’ for

the neuron-level transmitter prediction and our confusion
2576 Cell 187, 2574–2594, May 9, 2024
matrices (see STAR Methods). The distribution of confidence

scores across the two datasets suggested the network was

most confident in acetylcholine predictions (Figure 2D). In gen-

eral, we found excellent agreement with the literature (Data

S7). We predicted most known cholinergic cell types correctly
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Figure 2. The accuracy of the trained classifier on a per-presynapse and per-neuron basis

(A) Left: visualization of the training (upper) and testing (lower) data (split by entire neurons) that we used for the results in this manuscript. Presynapse locations

are color coded according to their z-depth; anterior-posterior shown as purple-orange, neuron skeletons in black. Right: confusion matrices for the trained

(legend continued on next page)
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(FAFB-FlyWire, 91%; HemiBrain, 91%), as well asmost glutama-

tergic (FAFB-FlyWire, 91%; HemiBrain, 95%), GABAergic

(FAFB-FlyWire, 96%; HemiBrain, 97%), dopaminergic (FAFB-

FlyWire, 90%; HemiBrain, 85%), and octopaminergic (FAFB-

FlyWire, 85%; HemiBrain, 100%) cell types (Figures S2D and

S2F). Notably, the optic lobe, which has the most known trans-

mitter assignment,39 was largely not used in our ground truth

due to a relative paucity of FAFB-Catmaid reconstructions and

its absence from the HemiBrain dataset. Nevertheless, 96% of

�29,000 cholinergic optic lobe neurons were predicted

correctly, as well as 87% of �3,600 GABAergic neurons and

91% of �1,600 glutamatergic neurons.

However, we noticed a few clear mispredictions and discrep-

ancies, most commonly in cases of suspected co-transmission

(see STAR Methods). For example, Kenyon cells had been mis-

predicted for dopamine in both HemiBrain and FAFB-FlyWire

rather than acetylcholine,55 some known serotonergic neurons

(Figure S2E) were not predicted for serotonin in either data-

set,56–60 many first-order sensory neurons and antennal lobe

local neurons weremispredicted for serotonin rather than acetyl-

choline in both datasets61–64 and some intrinsic neurons of the

fan-shaped body were mispredicted in HemiBrain but not in

FAFB-FlyWire and vice versa. Overall, serotonin was our least

reliable prediction (FAFB-FlyWire, 33%; HemiBrain, 38%) likely

due to its relative paucity in our ground-truth data. Our results

for a full ventral nerve cord (MaleVNC, 82% accuracy, limited

to acetylcholine, glutamate, and GABA) are reported

elsewhere.5,65

Classifier synapse feature analysis
The classifier’s high accuracy on test datasets raised questions

about how transmitter classes are discriminated, as human an-

notators cannot reliably determine transmitter identity from EM

alone. We reasoned that identifying the visual features that our

network used to label transmitters could verify that decisions

were not based on class-irrelevant confounders and discover

unknown ultrastructural differences between synapse classes.

To visualize these features, we explored post hoc single-input

attribution methods that derive an attribution map for a single

input image, highlighting image areas crucial for classification.

Existing methods66–69 did not provide images we could interpret

since the highlighted areas were too large and variable. This may

be because single-input attribution methods are subject to high-

lighting non-class-specific ‘‘distractors,’’70 e.g., features stem-

ming from different orientations of the synapse, section thick-

ness, or intensity variations. We introduced an attribution

method to focus on class-relevant features between pairs of

classes while disregarding distractors71 and used the FAFB da-
classifier on the testing data, shown per presynapse and as amajority vote per neu

more than 30 presynapses.

(B) Classification results on alternative training and testing data (split by brain reg

(C) Same as (B) but split by hemilineage. It was not possible to generate a fully bala

testing set, as indicated by the grayed-out rows.

(D) The distribution of neuron-level confidence scores by transmitter, across ou

FlyWire, 136,927; HemiBrain, 24,666). Vertical dashed line, median value. Colo

tests (n.s., not significant; *p % 0.05; ****p % 0.00001).

See also Figure S1 and Data S3 and S4.

2578 Cell 187, 2574–2594, May 9, 2024
taset for its superior x,y resolution. Given a real image xRof a

class yR, we first created a counterfactual image xC by trans-

lating xR into an image of another class yC using a

CycleGAN,72 resulting in paired images of different transmitter

types. Crucially, this domain translation of an image from class

yR to class yC keeps class-irrelevant distractors (e.g., the orien-

tation of the synapse) intact. Class-relevant features, however,

are changed due to the adversarially trained discriminator of

the CycleGAN. We used our previously trained classifier to

confirm that the domain translation was successful: we filtered

all images such that xR was classified as yR and the counterfac-

tual xC as yC. We then identified a small region in xC, that when

swapped with xR changed the prediction of the trained classifier

(Figures 3A and 3B). Specifically, we identified a minimal binary

mask m, such that the hybrid image xH = m$xR + ð1 � mÞ$xC
was classified as yR. To find m, we used a modified version of

the DeepLift method, where we used the counterfactual xC as

the neutral ref.71.

This method allowed us tomanually identify at least one distin-

guishing feature (Figure 3C) between each pair of transmitters

(see Data S8). We only included features consistently observed

in both directions, e.g., translating a real GABA image to acetyl-

choline results in a brighter cleft and translating a real acetylcho-

line image to GABA produces a darker cleft. Comparing trans-

mitter identities in paired images allowed us to observe

features as subtle as sub-pixel changes in vesicle diameters

(e.g., between GABA and glutamate), which would be near

impossible to pick up in unpaired images. We confirmed the

identified features between the classical transmitters GABA,

acetylcholine and glutamate on the original synapse images by

manually segmenting the synaptic cleft, vesicles, and T-bars of

222 synapse images (75 GABA, 85 acetylcholine, 62 glutamate;

annotators were blind to the predicted transmitter class). We

found strong support for each of the identified features between

those transmitters (Figures 3D–3F): acetylcholine has a brighter

cleft than GABA and glutamate (p % 0.0001), glutamate has

larger vesicles than GABA (p % 0.001) and glutamate has a

darker T-bar than acetylcholine (p % 0.001).

Comparing neurotransmitter predictions for neuron
homologs across datasets
The insect brain consists of thousands of isomorphic cell types.

Every cell type has a copy on each hemisphere. These cell types

contain only a few neurons (median, 2, IQR, 2, neurons per cell

type per hemisphere for the HemiBrain dataset, excluding the

largest outlier classes of Kenyon cells and sensory receptor neu-

rons), often only a single neuron per hemisphere (41% of cell

types in HemiBrain). We refer to these neurons as singletons.
ron, on datasets FAFB and HemiBrain. We considered only those neurons with

ions) from FAFB.

nced split and as a result there are no serotonin and octopamine neurons in the

r pool of central brain neurons in the FlyWire and HemiBrain datasets (FAFB-

red boxes with stars indicate statistical comparisons, Wilcoxon two-sample
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Figure 3. Classifier feature analysis using a discriminative attribution method

(A) Example translations of real synapse images to fake counterfactual images. Highlights show attributionmasks indicating themost important changes between

the two classes. Classifier scores are shown above each image. Left, two columns show the translation of real GABA synapses into counterfactual octopamine

synapses. Right, same as left but for octopamine to GABA.

(B) Same as (A) but for GABA-acetylcholine.

(C) Pairwise differences between transmitters, found through manual inspection of real and counterfactual images. Dense core vesicles, DCVs; postsynaptic

densities, PSDs.

(D) Normalized density plot showing the distribution of cleft intensity among original synapse images. Number of annotated synapses: acetylcholine 84, glutamate

61, GABA 74.

(E) Same as (C) for T-bar intensities. Number of annotated synapses: acetylcholine 85, glutamate 62, GABA 75.

(F) Same as (C) for vesicle sizes. Number of annotated vesicles: acetylcholine 1,729, glutamate 1,153, GABA 1,382. Vertical dashed line, median value. Colored

boxes with stars indicate statistical comparisons, Wilcoxon tests. Note that the vesicle size comparison assumes that vesicle sizes from the same synapses are

conditionally independent given the transmitter (n.s., not significant; *p % 0.05; **p % 0.001; ****p % 0.00001).

See also Figure S1 and Data S8.
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They provide a natural mechanism by which to test whether our

transmitter predictions are consistent as, being unique on each

hemisphere, they can be unambiguous matching to their

homologs between hemispheres and brains (Figure 4A). We

matched 1,586 right hemisphere singletons to their left hemi-

sphere homologs in FAFB-FlyWire and 1,318 to their

HemiBrain homologs.50

We found good agreement between left-right matched FAFB-

FlyWire singletons (Figure 4B) and FAFB-HemiBrain matched

singletons (Figure 4C) for cholinergic, glutamatergic, and

GABAergic pairs. Inconsistent results between matched neu-

rons were more common with singletons predicted to express

dopamine, serotonin, or octopamine. The average confidence

score for FAFB-FlyWire right (mean, 0.79, SD, 0.16), FAFB-

FlyWire left (mean, 0.79, SD, 0.17), and HemiBrain (mean, 0.67,

SD, 0.14) neurons were significantly higher when there was no

mismatch between our paired neurons than when there was a

conflict (FAFB-FlyWire right: mean, 0.62, SD, 0.22; FAFB-

FlyWire left: mean, 0.47, SD, 0.14; hemibrain: mean, 0.43, SD,

0.13) (Figure 4D).

We found that matched singleton pairs and cell types corre-

lated in their neuron-level transmitter prediction scores

(Figures 4D–4F and S2A). When the network was less confident

it was consistently less confident for both members of a pair,

both across hemispheres and datasets, although within-dataset

comparisons were more similar (Figure 4E). In cases where

changes in the confidence score were correlated, the reason is

more likely to be biological than dataset specific. For example,

low, correlated scores could indicate that the network has

encountered a biological situation that is rare in, or outside of,

our training data.

We also examined isomorphic cell types in the HemiBrain da-

taset for which there was more than one member of the cell type

per hemisphere (Figures 4F and S2B). Only 14% of cell types

with more than one member per hemisphere did not have the

same neuron-level transmitter prediction for each member.

Moreover, we matched 2,626 neuronal cell types between

FAFB-FlyWire and the HemiBrain datasets and found that 95%

agree in their neuron-level transmitter prediction between the

two datasets (Figures S2B and S2C). Again, among these

conflicted types, the mean neuron-level transmitter prediction

score was significantly lower (Figure S2C). Together, this sug-

gests that there may be a biological factor, e.g., the expression

of transmitters not in our training data or co-transmission, that

leads to lower confidence scores and incorrect or inconsistent

predictions with certain cell types, rather than a confound related

to the EM data quality.

An overview of neurotransmitter usage in the nervous
system
We next wanted to get an overview of transmitter usage in the

D. melanogaster nervous system (Figures 5A and 5B), including

a breakdown by axon and dendrite connections across the brain

(Figures 5C, 5D, and 6B). We also explored potential correlations

between neuron-level morphological features and transmitter

predictions (Figures 5E, 5F, and S3), alongside variations in

transmitter usage across sensory systems within the fly brain

(Figure 6A).
2580 Cell 187, 2574–2594, May 9, 2024
We calculated neuron-level transmitter predictions for all

24,666 well-reconstructed neurons in the HemiBrain dataset

(Data S3), all 49,985 central brain and 86,942 optic lobe FAFB-

FlyWire neurons (Data S4), and 23,503 ventral nerve cord neu-

rons from the MaleVNC dataset. In the central brain, the largest

fraction of neurons were predicted to be cholinergic with smaller

fractions for glutamatergic and GABAergic neurons (Figure 6A).

Single-cell RNA sequencing has suggested a breakdown of

44%–45% cholinergic, 14%–15% glutamatergic, and 10%–

15% GABAergic neurons21,22 in the central brain. Dopaminergic

neurons had distinctive features, such as higher mitochondrial

density (Figure S3C), a diverse set of input neurons but fewer

downstream targets (Figure S3I), primarily in deeper sensory

layers (Figure 6C). They are encountered after Kenyon cells in

the olfactory system (often thought of as a conditioned stimulus)

but before the mushroom body in the gustatory system (typically

an unconditioned stimulus). These observations suggest that

dopaminergic neurons are highly active and sample widely

from more superficial brain layers to provide teaching signals

to select target neurons of a deeper sensory layer.

One interesting new insight from large-scale neuron-level

transmitter predictions concerns the fan-shaped body. This cen-

tral brain structure computes navigational variables75,76 and is

built as a matrix with �9 rows and �10 columns.77 Our predic-

tions show that row-wise tangential input is overwhelmingly glu-

tamatergic (�84%), with no inhibitory local neurons in the struc-

ture. There are some dopaminergic78 but very few GABAergic or

cholinergic row-wise inputs. In contrast, acetylcholine was pre-

dicted for almost all column-wise input types (�87%), intrinsic

neurons (�88%), and output types (�96%); the small number

of non-cholinergic neurons are likely mispredictions (see STAR

Methods). These findings can be compared to the elegant layout

of transmitter expression in the mushroom body,79 a discovery

that has accelerated research in this associative memory struc-

ture in recent years.

The identity of the presynaptic and postsynaptic neuronal

compartments is another factor, in addition to transmitter usage,

that determines the effect of a synaptic connection.80 Insect

neurons frequently possess arbors with amix of input and output

synapses, but morphological features can resolve axons and

dendrites in most cases19,73,74,81–83 (Figure 5C). Axons and den-

drites can synaptically connect with either being the source or

the target (Figures 5C and 5B). We ‘‘split’’73 thousands of neu-

rons into separate axonal and dendritic compartments (see

STAR Methods). Although most presynapses are on the axon

(FAFB-FlyWire: median 76%, SD, 21%; hemibrain: median

70%, SD, 21%), neurons had a large proportion of their output

sites on their dendrites (FAFB-FlyWire: median 23%, SD, 21%;

hemibrain: median 30%, SD, 21%). We found that while the ma-

jority of the synaptic budget is spent on axo-dendritic connec-

tions (FAFB-FlyWire: 55%; hemibrain: 48%), a large fraction is

spent on axo-axonic connections (FAFB-FlyWire: 22%; Hemi-

Brain: 20%) and a similar amount on dendro-dendritic connec-

tions (FAFB-FlyWire: 19%; hemibrain: 21%). These figures are

comparable to those recently reported for the D. melanogaster

larva19 (axo-dendritic, 54%; axo-axonic, 36%; dendro-dendritic,

8%; dendro-axonic, 3%). Neurons tended to receive strong

input on their axons from just one of acetylcholine, glutamate,
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Figure 4. Comparing neuron-level transmitter predictions between connectome datasets from separate animals and between hemispheres

(A) Images of co-registered, matched neurons between the HemiBrain (navy) and the FAFB-FlyWire (red) datasets. Histograms show synapse-level transmitter

prediction scores for exemplar pairs. Neurons can be matched despite missing data (left, grey dashed box). PS053a has conflicting neuron-level transmitter

predictions.

(B) Confusion matrix compares matched singleton FAFB-FlyWire-right and FAFB-FlyWire-left pairs’ neuron-level transmitter predictions (1,586 pairs).

(C) Confusion matrix comparing matched FAFB-FlyWire-right and HemiBrain-right neuron-level transmitter predictions (1,318 pairs). Cells colored by the pro-

portion of FAFB-FlyWire right neurons of each transmitter type (row normalized) that are matched to its homolog-columns give homolog prediction.

(D) Neuron-level transmitter prediction scores between matched singletons that have (red, right) or do not have (green, left) a conflict between their neuron-level

transmitter predictions, across all three hemispheres. Matches:mismatches across all comparisons for FAFB-FlyWire right: 2,650:170 FAFB-FlyWire left,

1,562:40, and HemiBrain neurons, 1,088:130.

(E) Comparison of similarity scores for matches (Kullback-Leibler divergence on synapse-level transmitter prediction scores).

(F) The neuron-level transmitter prediction consistency among cell types that have multiple repeats, i.e., not singletons. Green, the mean neuron-level transmitter

prediction confidence for cell types where all members of the type are predicted to use the same transmitter. Red, the mean neuron-level transmitter prediction

confidence for cell types where not all members of the type are predicted to use the same transmitter. Violin plots show the median value (dot) and the inter-

quartile range (line, 25th to 75th percentiles). Data were compared using Wilcoxon two-sample tests (n.s., not significant; ***p % 0.0001; ****p % 0.00001.

See also Figure S2 and Data S7.
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Figure 5. Breakdown of transmitter use across the D. melanogaster nervous system

(A) Our neuron-level transmitter predictions across the female optic lobes and central brain and a male ventral nerve cord (see STAR Methods).

(B) Bar plots for the numbers of neurons predicted for different transmitter usages in each super class in the FAFB-FlyWire dataset.50

(C) Schematic of a neuron broken into its neuronal compartments. Inset, the proportion of presynapses in each of the four compartment types.

(D) Synaptic budget across different connection types in FAFB-FlyWire (left) and HemiBrain (right). Heatmaps show the proportion of synaptic contacts from

neurons of different predicted transmitter types (columns) used in different inter-compartmental connection types (rows). FAFB-FlyWire, 9,123; hemibrain, 10,122

neurons.

(E) Scaled density plots showing neuronal polarity by neuron-level transmitter prediction. Upper, distribution of projection scores, which is the distance in

Euclidean space between the dendritic an axonic midpoint. Lower, segregation index: the higher the score, the more polarized the neuron.73

(F) Scaled density plots showing the distribution of excitation-inhibition balance (proportion of excitatory, acetylcholine, input minus the proportion of inhibitory

input; GABA, glutamate) across neuron-level transmitter predictions and compartments. Vertical dashed line, median value. Colored boxes with stars indicate

statistical comparisons, Wilcoxon two-sample tests (n.s., not significant; *p % 0.05; ***p % 0.0001; ****p % 0.00001).

See also Figures S2 and S3 and Data S3 and S4.
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or GABA (Figure S4A), in patterns that were consistent between

the two datasets (Figure S4B, cosine similarity > 0.9). Axons may

therefore be particularly selective in their inputs, particularly

inhibitory inputs (Figure S3E).
2582 Cell 187, 2574–2594, May 9, 2024
Comparing putative inhibitory and excitatory neurons
Putative excitatory neurons predominate in the brain (Figure 5A).

The principal excitatory transmitter is acetylcholine,84,85 and the

main inhibitory transmitter is GABA.86–88 Glutamate can act in
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either an inhibitory89–92 or excitatory capacity.93–95 Analyzing the

FAFB-FlyWire dataset using a probabilistic layer assignment

model,18,74 we observed shifts in the proportions of transmitter

use across sensory systems. For example, there is a greater pro-

portion of GABAergic neurons in the early olfactory system, with

glutamatergic neurons rising later. This switch also suggests that

neurons in deeper layers are likely to be inhibited by glutamate

because GABA is scarce.

Cholinergic (mean 0.21, SD, 0.75) and glutamatergic (mean

0.07, SD, 0.57) neurons tended to target higher-layer neurons

(Figure 6B) i.e., predominantly feedforward connectivity;

GABAergic neurons had no such bias (mean �0.02, SD,

0.61). On average, GABAergic neurons were more ‘‘local’’ in

Euclidean space than cholinergic neurons (Figure 5E upper);

they were also smaller by cable length (Figure S3A) and less

polarized (Figure 5E lower). However, on average GABAergic

neurons had more input neurons and downstream targets (Fig-

ure S3I). These connections may have a stronger effect than

their cholinergic counterparts for two reasons; first, they show

greater synaptic count (Figure S3F), and second, because

they are located slightly closer to the target neuron’s primary

branch point (Figure S3H), which could enable more powerful

inhibition.96 Additionally, GABAergic neurons had higher mito-

chondrial density than cholinergic or glutamatergic neurons

(Figure S3C), which could indicate a higher level of energy

use and neuronal activity. Lastly, GABAergic neurons received

more excitatory than inhibitory drive onto their dendrites

compared with cholinergic neurons (Figure S3E). Instead,

cholinergic neurons often have large inhibitory inputs onto their

axons (median, �0.16). Together, this could mean that

GABAergic neurons are more active and integrate a wider array

of inputs to inhibit a wider array of downstream neurons than

cholinergic neurons; both their axons and dendrites make out-

puts but these are mainly local, perhaps inhibiting many

competing elements in a local circuit.73,87,97,98 In particular,

they may gate the output of cholinergic axons. On all these

metrics, glutamatergic neurons lie between GABA and

acetylcholine.

Example transmitter-dependent circuit hypotheses
Our brain-wide transmitter predictions now enable many test-

able circuit hypotheses. We present three examples that also

illustrate how we think about potential confounds.
Figure 6. Transmitter usage through sensory layers and specific circu

(A) Schematic depicts the probabilistic graph traversal model used to ‘‘layer’’ di

Dorkenwald et al.18 Starting from first-order central brain input neurons, we recor

encountered by the simulation.18 Bar charts show transmitter input across distin

layer score (width 0.2); text reports neuron count. Kenyon cells are shown in pin

transform in the brain, in brown so that the reader can compare layer progressi

Olfactory sensory neurons mispredicted for serotonin are corrected to acetylc

analysis.

(B) Feedforward and feedback connectivity across sensory systems by neuron-le

than 100) between a source and target neuron, we calculated a target-source laye

source neuron. Y axis gives the proportion of unitary connections in each bin (w

(C) A potential circuit for righting the fly’s body axis relative to celestial cues. Pur

(D) A potential circuit for differential leg extension/retraction control.

(E) A potential circuit for steering away from unpleasant odors. Numbers give sy

See also Figure S4.
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Ocellar righting circuit

In a vignette on ocellar circuitry by Dorkenwald et al.,18 our

FAFB-FlyWire predictions strongly predicted that 12 OCG01

neurons (with extremely similar axonal morphologies) fall into

three glutamatergic and three cholinergic cell types (Figure 6C).

A hypothesis emerged: these neurons form pairs, each

comprising one inhibitory and one excitatory neuron. For

instance, OCG01b (glutamate) and OCG01f (acetylcholine) may

collaborate to induce a righting reflex in response to sky-light

cues during a roll. The hypothesis was strengthened by the inter-

nal control that having two FAFB hemispheres provides; the

HemiBrain dataset, in which these neurons are heavily trun-

cated, yielded misleading and likely false predictions (all

glutamate).

Leg extension circuit

Cheong et al.99 uncovered an inhibitory majority in local circuits

controlling leg movement. The GABAergic interneurons IN19A

were identified as key regulators, reciprocally inhibiting each

other to prevent inappropriate co-contraction of opponent leg

muscles. Upstream neurons were predicted cholinergic,5

creating a circuit architecture facilitating leg extension; a neuron

such as IN21A004 could promote leg extension by inhibiting a

flexor and disinhibiting a downstream extensor. In this case, it

was initially unclear whether the 6 IN20A projection neurons

(one per leg) were cholinergic or glutamatergic since 3/6 were

predicted glutamatergic. However, all derive from the same

hemilineage, which was majority predicted cholinergic. Since

Lacin’s law is strongly followed in the ventral nerve cord,31,65

all six IN20A neurons are likely cholinergic.

Simultaneous excitatory and inhibitory control

The cholinergic, bilateral mushroom body output neuron,

MBON26, is known to cause turning upon optogenetic activa-

tion100 and innervates mushroom body compartments involved

in innate olfactory aversion and appetitive learning.79 It directly

connects to the downstream turn-control descending neuron,

DNa03, and indirectly connects via a predicted glutamatergic

local neuron, LAL051 (Figure 6E). If glutamate were purely inhib-

itory, we might expect unilateral MBON26 activation to result in

both ipsi- and contralateral DNa03 inhibition, with slightly more

ipsi-DNa03 activity and therefore an ipsilateral turn. If glutamate

were purely excitatory, wemight expect unilateral MBON26 acti-

vation to result in both ipsi- and contralateral DNa03 activation,

with slightly more contra-DNa03 activity and therefore a
its

fferent sensory systems, adapted from Schlegel et al.,74 underlying data from

ded the mean step (‘‘layer’’) at which each subsequent FAFB-FlyWire neuron is

guishable sensory systems.18 Bars normalized and binned by target neurons’

k and descending neurons, i.e., the last captured point of the sensory-motor

on between systems. Vertical line shows the mean descending neuron layer.

holine.64 ‘‘Uncertain’’ neurons (see STAR Methods) were removed from this

vel transmitter prediction. For each unitary neuron-neuron connection (greater

r difference: the layer value74 for the target neuron minus the layer value of the

idth 0.1).

ple arrow weight indicates activity level.

naptic counts from HemiBrain.
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contralateral turn. If glutamate excited DNa03 (via AMPA, kai-

nate, or NMDA receptors, e.g., Li et al.101) and inhibited

MBON26 (e.g., via GluClAlpha), we might expect unilateral

MBON26 activation to result in ipsilateral DNa03 inhibition and

contralateral DNa03 activation, and so a stronger contralateral

turn command. Therefore, combining both circuit structure and

transmitter predictions, we suspect that glutamate both excites

and inhibits in this circuit to steer the fly away from an aversive

olfactory stimulus.
The distribution of neurotransmitter predictions within
developmental units
The nervous system may already naturally group neurons by

their transmitter expression because of their development as

hemilineages:31 these are groups of �100 neurons that have

developed together in a discrete bundle, the hemilineage tract

(see STAR Methods for assignment detail). To assess Lacin’s

law in the brain, we examined the neuron-level transmitter pre-

dictions of all neurons in the 183 secondary (larval-born) hemili-

neages per brain hemisphere in the FlyWire dataset50 (Data S5

and Data S6).

We asked how likely it is to observe a given prediction of trans-

mitters in a hemilineage under some error rate given by the

confusion matrix on the test set, if Lacin’s law is obeyed. We

then compared this likelihood to the alternative hypothesis that

a hemilineage consists of neurons with more than one trans-

mitter. We calculated the Bayes factor K2;1 = pðby jm = 2Þ
pðby jm = 1Þ and

K3;2 = pðby jm = 3Þ
pðby jm = 2Þ for our selected hemilineages from synapse-level

transmitter predictions: i.e., the likelihood ratio of the observed

model predictions given that a hemilineage expresses two rather

than one transmitter or three rather than two transmitters,

respectively (see STAR Methods). Maximal one-versus-rest

Bayes factors (Km;:m) summarized our predictions of the number

and set of transmitters for each hemilineage (Figure 7C). We

found only 19 of 183 hemilineages with evidence of expressing

two transmitters (n = 19 decisive) and 3 hemilineages with evi-

dence of expressing three fast-acting transmitters (n = 1 deci-

sive, n = 2 good). These hemilineages are flagged in Figure 7C.
(B) Example of homologous FAFB-FlyWire hemilineages on both sides of the brain

member of each hemilineage with a different neuron-level transmitter prediction,

dashed box indicates a hemilineage with potential split transmitter expression.

(C) Bayes factor analysis of hemilineage consistency. For each hemilineage (row)

expressing that number of transmitters versus the likelihood of any other number

101; strong ***Ks 103/2; decisive ****Ks 102.103 The left set of columns indicates

greater than the maximum likely number of transmitters shaded lighter. ‘‘LB0

transmitters.

(D) Neuron level entropy (H(Nh)) versus average synapse level entropy (H(Sh)) for

synapses per neuron. Dashed lines indicate 25% and 75% percen

q75(H(Sh)) = 0.41.Type equation here:

(E) NBLAST UMAP plots of selected hemilineages that exhibit some degree of pr

similarity scores between all possible pairs of neurons in each hemilineage. Points

lines bound examples with a morphology-transmitter split, red dashed lines boun

annotation issues may explain split usage.

(F) ‘‘LALv1’’ has two hemilineages: dorsal (developmentally defined by Notch-ON

(rows): dorsal (developmentally defined by Notch-ON) and ventral (Notch-OFF), co

left, histogram of neuron-level transmitter prediction by birth order.102

See also Figure S5 and Data S6.
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However, some of these hemilineages (�12) such as ‘‘TRdla’’

and ‘‘LALv1 dorsal’’ showed high synaptic entropy H(Sh) (see

STAR Methods, Figure 7D), indicating that individual neurons

within the hemilineage contain substantial multimodal trans-

mitter predictions (Figure 7C). As such, multimodality at the

neuron level is at least partially explained by uncertain or inho-

mogeneous predictions between individual synapses within a

neuron. This is in contrast to hemilineage ‘‘LALv1 ventral,’’ which

has a synaptic entropy within the 75%percentile, and for which a

large Bayes factor K2,1 value directly stems from neuron-level

segregation of the predicted transmitters within the hemilineage.

Wepredicted the remaining 163 hemilineages to express a single

transmitter (n = 161 decisive, n = 1 good, n = 1 substantial). Re-

sults for 154 HemiBrain hemilineages were very similar (Fig-

ure S5A, Data S5).

Therefore, 88% of our hemilineages’ predictions were strongly

biased toward a singular transmitter identity (Figures 7B, 7C, and

S5A). The entropy of neuron-level transmitter predictions for

each hemilineage was correlated strongly between left and right

hemispheres (Figure S5C), suggesting that the observed varia-

tion is biological in origin rather than data quality related. In

some cases, only a few neurons deviated from the majority pre-

diction (Figure 7B, black arrows). We suspect that these neurons

are the ‘‘first-born’’ neurons of the hemilineage, which often have

a divergent morphology from the rest of the hemilineage31,102;

they may also be divergent in their transmitter usage.

Other prominently split hemilineages also demonstrated

morphology-correlated shifts in transmitter expression (Figures

7C, S5A, and S5D). This suggests discrete switches in expres-

sion during development, presumably at stereotyped develop-

mental time points. For instance, LALv1 ventral (Figure 7F) re-

vealed a discernible switch in transmitter expression

accompanied by morphological differences. Because a recent

analysis delineated the birth order of LALv1 neurons,102 we

were able to map this transmission-morphotype switch into its

developmental sequence (Figure 7F, lower). In a few cases (Fig-

ure 7E, lower), split expression occurred without overt morpho-

logical differences, raising questions about sporadic switches

and potential confounds. Often, glutamatergic and GABAergic

neurons are mixed—our network’s most common confusion
, colored by neuron-level transmitter prediction. Black arrows point to one stray

which is likely a first-born neuron with distinct morphology31,102 (Data S5). The

, the right set of columns corresponds to the likelihood ratio of the hemilineage

(l = 16; ~cexp = 0:67). Evidence strength: substantial *K s 101/2; good **K s

the frequency ranked transmitter predictions within the hemilineage, with ranks

posterior’’ did not have substantial evidence for any particular number of

all predicted hemilineages with more than 10 neurons and more than 30 pre-

tiles: q25(H(Nh)) = 0.00, q25(H(Sh)) = 0.22, q75(H(Nh)) = 0.17, and

edicted split transmitter usage. UMAPs are based on NBLAST morphological

represent neurons, colored by neuron-level transmitter prediction. Black solid

d examples with no such clear divide. Red text label examples for which data

) and ventral (Notch-OFF). NBLAST UMAPs for the two ‘‘LALv1’’ hemilineages

lored by birth order (left) and neuron-level transmitter prediction (right). Bottom
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(Figure 2A). Notably, potentially as much as 3% of the brain ex-

pressesmRNA formachinery related to both,21 and at least a few

may transmit both.104 Comparing �6 GABA-glutamate mixed

hemilineages in FlyWire to HemiBrain indicates that perhaps

they more uniformly express GABA (Figure S5A). In two cases

(the ‘‘DL1’’ hemilineages), we think that the striking

morphology-transmitter correlated splits reveal a hemilineage-

based division in a lineage-associated tract that was otherwise

hard for human annotators to make, i.e., an issue of data

annotation.

Challenges surfaced with the ‘‘ALl1 dorsal’’ and ‘‘ALv2’’ hemi-

lineages that produce antennal lobe local neurons, a morpholog-

ically variable and diverse class of neuron.105 They seem to

break Dale’s law104,106 and Lacin’s law (Figure 7C), with similar

morphology types predicted to express different transmitters

(Figures S5F and S5G). Despite these challenges, we could align

our results with existing literature (see STAR Methods). Surpris-

ingly, 18%–27% of antennal lobe local neurons may be cholin-

ergic, suggesting that lateral excitation is a more prominent

feature of antennal lobe processing than previously thought.

DISCUSSION

Using high-level annotations to learn low-level features
In evaluating our predictions as broadly as we could, we have

found them to be correct for 91% of 624 FAFB-FlyWire cell types

and 91% of 524 HemiBrain cell types (Data S7). This result likely

depended on three properties of the data that we selected. (1)

For both training and inference we used a specific sub-cellular

domain (the synapse), likely to contain image features related

to our molecules of interest. (2) We aggregated these features

on a per-cell basis; this was crucial for linking ground-truth labels

and input data and also for improved prediction accuracy. (3) By

using cross-modal matching of cell types between EM and light-

level neuronal morphology data, we were able to build an expan-

sive ground-truth dataset from molecular information external to

the EM data. We anticipate broad applications for this general

approach in the biological sciences. Our methodology could

be repurposed to identify differences in sub-cellular struc-

tures107 associated with discrete cell types in a range of neuronal

and non-neuronal tissues.

Machine learning reveals key molecular descriptors of
neuronal function
D. melanogaster represented a hard case for transmitter predic-

tion because humans cannot tell fast-acting transmitters apart in

insects. Our classifier accurately predicts transmitter identity

from local 3D EM volumes (Figure 2). We find that the overall ac-

curacy of our synapse-level transmitter predictions were slightly

more performant in FAFB than in HemiBrain; in particular,

HemiBrain is more likely to confuse glutamate for GABA (Fig-

ure 2A). This might be because of different sample preparation

and staining protocols used for those datasets, our use of only

manually annotated presynapses for FAFB ground truth, and/

or the higher lateral resolution of FAFB (4 nm vs. 8 nm).

Given that the relationship between synaptic phenotype and

transmitter identity is not understood inD.melanogaster, we built

an explainable AI method that created counterfactual synthetic
images to investigate class differences71 (Figures 3A and 3B).

This enabled us to manually identify at least one feature differ-

ence between each pair of fast-acting transmitters (Figure 3C).

However, a simple logistic regression classifier trained on three

of those features was not able to discriminate between fast-

acting transmitters at the same level as the classifier (n = 219,

80%/20% randomized training/testing, balanced accuracy

0.52). This indicates that the features we identified are not

exhaustive.

We expect our pipeline to be transferable to other connec-

tomic datasets from diverse species. Analogous work detecting

excitatory versus inhibitory synapses in the Ciona intestinalis

larva has added signs for 49 neurons.108 In vertebrate EM data-

sets, human annotators can see differences in the vesicles for

excitatory and inhibitory synapses.16,35–37,109,110 Symmetric

synapses (usually inhibitory) have already been disambiguated

from asymmetric ones (usually excitatory) automatically and at

scale.38 Using our methodology, performant and more specific

transmitter predictions are likely to be achievable in both verte-

brate and invertebrate datasets.

Sign labeling across a whole-insect central nervous
system
Dale’s law, despite its exceptions, serves as a valuable frame-

work for understanding neural action in the face of incomplete

data. We needed to use it to accumulate synapse-level trans-

mitter predictions into singular neuron-level transmitter predic-

tions. Extending our conceptual framework, we found that La-

cin’s law31 is a useful principle that holds in 88% of

hemilineages (Figure 7C). We posit that the major exceptions

emerge as correlated, discrete switches in both transmitter use

and gross morphotype (Figure 7F). Lacin’s law serves the

network anatomist in threemain ways: supporting prediction val-

idity (Figures S5A and 2D), flagging potential errors when a

neuron-level transmitter prediction deviates from the hemiline-

age majority, and allowing for preliminary transmitter labels to

be applied to whole hemilineages in new insect datasets.111,112

The functional role of a synaptic connection depends on up-

stream transmitters and downstream receptors. Simulating con-

nectomes directly113 at a whole nervous system scale may be

possible with our method (e.g., Shiu et al.114), but incorporating

information on postsynaptic receptor expression canmake brain

models more accurate.113 Most importantly, while acetylcholine

excites andGABA inhibits, glutamate can perform either function

in the fly. In the D. melanogaster central brain, most reported ex-

amples for glutamate are of inhibition via GluClAlpha chan-

nels.89–92,115 The nature of this inhibition could be different,

e.g., possibly subtractive91 rather than divisive.86–88,115 Indeed,

glutamate may be used more for specific long-range feedfor-

ward inhibition and GABA for local divisive inhibition (Figure 6A).

However, central excitatory glutamatergic transmission has also

been reported.93,95,116,117 At the neuromuscular junction, gluta-

mate primarily excites.94 We calculated from single-cell RNA

sequencing118 that�80%of neurons in the central brain express

RNA transcripts for GluClAlpha as well as at least one excitatory

ionotropic glutamate receptor. The sign of a glutamatergic

connection may depend on the sub-localization and ratio of re-

ceptors at recipient sites.119
Cell 187, 2574–2594, May 9, 2024 2587
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Beyond fast-acting transmitters, other factors—such as

cellular compartments80—influence the strengths and signs of

neuron-neuron connections. Notably, a large fraction of the syn-

aptic budget is spent on axo-axonic connections (FAFB-FlyWire,

22%; HemiBrain, 20%). Putative inhibitory connections ac-

counted for two-thirds of the axo-axonic sub-budget (Figure 5D)

and axons often receive a skewed excitatory:inhibitory connec-

tion ratio (Figure 5F). This suggests that the nervous systemmay

employ different circuit logic around axons compared with

dendrites.

Limitations of the study
We can think of this study’s limitations in two major ways: mis-

prediction (perhaps largely because of co- or alternative trans-

mission, see STAR Methods) by our classifier and other limita-

tions on sign labeling from transmitter identity alone.

Outstanding problems thatmust be solved before we have highly

accurate connection signsminimally include: (1) the correction of

transmitter mispredictions, (2) the prediction of other transmit-

ters, notably histamine, tyramine, glycine, nitric oxide, and �53

different neuropeptides, (3) the annotation of monoaminergic

co-transmission, (4) the annotation of peptidergic (co-)transmis-

sion, (5) the annotation of postsynaptic receptor expression, and

(6) the annotation of gap junctions. For (1), community open sci-

ence annotation projects projects such as FlyWire via Codex120

and Virtual Fly Brain121 will be valuable. In particular, our least

performant predictions were for serotonin. Notably, �20 known,

large, neuropeptidergic neurons are predicted for serotonin. This

may be because we included peptidergic, serotonergic neurons

in our ground truth.122,123 Answers to (2), (3), and (4) could be

achieved by linking morphological and transcriptomic cell

types49 to build more ground truth. One could extend our

method to further transmitters and co-transmission combina-

tions as additional training data becomes available (we have

shared our literature review of cell type level co-transmission,

Data S7). In addition, the detection of individual vesicles, espe-

cially dense core vesicles at synapses, or somata could tell us

which neurons express neuropeptides and peptide hormones.

For problems (5) and (6), linked transcriptomes alone are unlikely

either to solve the issue or to provide suitable ground truth for

their detection in EM. One path forward would be to assemble

ground-truth data with super-resolution light-level microscopy

to observe endogenous protein sub-localization119,124,125 or

with higher-resolution EM to identify key molecules at identified

synapses in dense biological samples.126 As we showed here

with transmitter usage, the identification of some hundreds of

pairs of connected neurons may provide sufficient ground truth

for a machine-learning solution to predict the remainder across

whole nervous systems.
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Jan Funke

(funkej@janelia.hhmi.org).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d All of our data is also available through Zenodo, https://doi.org/10.5281/zenodo.10593546, and will be available through the

Virtual Fly Brain project.121 Our synapse-level transmitter prediction and neuron-level transmitter predictions are also hosted

by extant connectome annotation and browsing services for the HemiBrain () and FAFB-FlyWire (https://codex.flywire.ai/) data-

sets.120,135 As supplemental data for this paper, we have provided: (1) the studies we have used to generate our ground-truth

data (Data S1), (2) identifiers for the neurons we used for our ground truth data (Data S2), (3) our neuron-level transmitter pre-

dictions for each complete neuron in the HemiBrain dataset, hemibrain:v1.2.1 (Data S3), and the FAFB-FlyWire dataset, 630

materialization (used in this paper but with links to the newer 783 materialization)(Data S4), (5) images of all discerned brain

hemilineages for FlyWire50 andHemiBrain, with neurons colored by their predicted transmitter (Data S5), as well as (6) summary

data on hemilineage transmitter usage (Data S6), and (7) an transmitter expression summary by brain cell type (Data S7). We

have provided a section in these Methods of advice to users on how to use our data.

d Our transmitter classification network and associated training and prediction code are available in our Synister repository

(https://github.com/funkelab/synister) which also contains instructions on how to access the FAFB-FlyWire and HemiBrain

predictions, and through Zenodo, https://doi.org/10.5281/zenodo.10593546.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

The HemiBrain connectome51 is a partial female fly brain that has been semi-automatically reconstructed using flood-filling net-

works8 from data acquired by focused ion-beam milling scanning EM (FIBSEM).136 Presynapses (i.e., sites with T-bars) and postsy-

napses were identified completely automatically. The data can be accessed via the NeuPrint connectome analysis service.135 Auto-

matically detected mitochondria counts in the HemiBrain dataset were pulled from neuPrint135 (https://connectome-neuprint.github.

io/neuprint-python/docs/mitocriteria.html).

The FAFB ssTEM image data comprises an entire female fly brain. Two auto-segmentations of the data exist,17,137 we used the

FlyWire segmentation and automatically detected synapses12 for our biological analyses. However, to build our ground truth data

we used high-fidelity manually reconstructed neurons and synapses that were annotated using CATMAID.73 The manually placed

FAFB synapses in this study were identified in Catmaid.6,73 Catmaid is a collaborative environment in which 27 labs have participated

to build connectomes for specific circuits. For these annotations, we thank Ruairi Roberts, Fiona Love, Lisa Marin, Amelia

Edmondson-Stait, Xincheng Zhao, Jawaid Ali, Johann Schor, Imaan Tamimi, Arian Jamasb, Marisa Dreher, Markus Pleijzier, Robert

Turnbull, Nadiya Sharifi, Steven Calle, Andrew Dacks, Konrad Heinz, Kimberly Meechan, Aidan Smith, Najla Masoodpanah, Serene

Dhawan, Peter Gibb, Corey Fisher, Claire Peterson, Jason Polsky, Tansy Yang, Katharina Eichler, Joseph Hsu, Irene Varela, Lucia

Kmecova, Istvan Taisz, Jacob Ratliff, Kaylynn Coates, Anna Li, Marta Costa, Tyler Paterson, Claire Managan, Adam Heath, Katie

Stevens, Jack Mccarty, Nora Forknall, Laurin Bueld, Neha Rampally, Zane Mitrevica, Kelli Fairbanks, Stanley Tran, Shada Alghailani,

Quinn Vanderbeck, Lauren Warner, Henrique Ludwig, Jeremy Johnson and Levi Helmick, each of whom has contributed over 1,000

synapses.We in particular thank theWellcome Trust UK and USDrosophila Connectomics, Jefferis, Janelia Connectome Annotation

Team, Bock, Preat, Wilson, Dacks, Hampel and Seeds groups for sharing their published and unpublished work in the Catmaid data-

set. Development and administration of the Catmaid tracing environment and analysis tools were funded in part by National Institutes

of Health BRAIN Initiative grant 1RF1MH120679-01 to Davi Bock and Gregory Jefferis, with software development effort and admin-

istrative support provided by Tom Kazimiers (Kazmos GmbH) and Eric Perlman (Yikes LLC). We thank Marissa Sorek for assistance

with community management and Ran Lu, Thomas Macrina, Kisuk Lee, J. Alexander Bae, Shang Mu, Barak Nehoran, Eric Mitchell,

Sergiy Popovych, JongpengWu, Zhen Jia, Manuel Castro, Nico Kemnitz, Dodam Ih for alignment and segmentation of the FAFB EM

volume and registration to the original FAFB EM dataset. Both datasets are from female flies.

METHOD DETAILS

Detail on assembling ground truth data for D. melanogaster

We created a list of 356 neuronal cell types from 21 studies (see Data S1) and identified as many of them as we could in the FAFB-

Catmaid and HemiBrain datasets (Figure 1A).39,40,51,56,57,77–79,88,90,138–158 FAFB neurons were found in extant FAFB-Catmaid data
e2 Cell 187, 2574–2594.e1–e13, May 9, 2024
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(https://neuropil.janelia.org/tracing/fafb) based on the FAFB-Catmaid literature,6,82,96,97,129,142,157,159–161 by using NBLAST47 or by

manually reconstructing them in Catmaid from scratch using previously reported methodologies to approximate candidate locations

for known cell types based on their hemilineage identity.6,73,97,162 The transmitter expression evidence for these cell types in the liter-

ature came from detecting RNA expression related to transmitter usage (minority) or immunohistochemistry (majority). For these

studies, neurons were picked (transcriptomics) or stained (immunohistochemistry) with guidance from green fluorescent protein

expression in a GAL4/split-GAL4 lines.46 These genetic driver lines target transgene expression to a small constellation of discrim-

inable cell types, or even individual cell types or neurons, which could be linked to specific homologs in the EM datasets. There are

only a small number of our identified connectomic cell types for which we found we knew co-transmission of small-molecule trans-

mitters occurred. Mi15 (acetylcholine, serotonin), Mi9 (glutamate, GABA), Mi4 (GABA, nitric oxide), C3 (GABA, nitric oxide), Mi15

(acetylcholine, dopamine, nitric oxide)39 most octopaminergic neurons (octopamine, glutamate)21,163 and a subset of PPL1 neurons

(dopamine, serotonin).78,150 We excluded these cell types from our training data, except for the known octopaminergic neurons

because 70% of them are thought to co-express glutamate. Because each neuron in our ground truth data must have a single trans-

mitter label, these were given ‘‘octopamine’’ alone. Co-transmission of a fast-acting transmitter and a neuropeptide was more com-

mon, e.g., Kenyon cells (at least acetylcholine, sparkly and short neuropeptide F),21,25,55,164 the dorsal paired medial (DPM) neuron

(GABA, serotonin, sparkly, nplp1, proctolin, orcokinin, eclosion hormone, CG34136)25,56,60 and most central complex, mushroom

body output and mushroom body dopaminergic neurons.25,157 Of these, we excluded Kenyon cells due to their unusual synapse

morphology.

For each neuron reported in the literature, we assumed that all associated presynapses obeyed Dale’s law (Figure 1B). The inten-

tionwas that our FAFB ground truth data would consist entirely ofmanually placed presynaptic sites, which has the advantage of later

training our network with only high-fidelity presynapses. Synapses were annotated at presynaptic sites, defined by T-bars, vesicles,

and a thick dark active zone by a synaptic cleft.165 We scored each continuous synaptic cleft as a single presynapse regardless of its

size or the number of associated T-bars. Note that where we say we used FlyWire data, we looked at transmitter predictions across

automatically detected presynapses in FAFB12 using the newer FlyWire (https://ngl.flywire.ai/) reconstruction.17,18,50 This enabled us

to work with the full fly brain connectome.

Many neuronal cell types with transmitter expression data had already been linked to reconstructions in the HemiBrain dataset by

the reporting authors or.51 We matched the remaining unlinked cell types using the morphological match algorithms NBLAST and/or

a color MIP search.47,48,50 We used automatically detected presynapses from identified neurons,13 which were more numerous than

the manually placed ones we had from Catmaid, but potentially contained more low-quality identifications and multiple detections

across the same continuous cleft. Manually placed presynapses were not available in this dataset at scale.

In total, we matched 3,025 FAFB-Catmaid neuronal reconstructions to cell types with a known transmitter. The assembled Cat-

maid ground truth dataset contained 153,593 acetylcholine presynapses (587 neurons), 7,953 glutamate presynapses (50 neurons),

32,836 GABA presynapses (175 neurons), 9,526 dopamine presynapses (83 neurons), 4,732 serotonin presynapses (5 neurons), and

2,924 octopamine presynapses (6 neurons) (see Data S2). We also matched 5,902 HemiBrain reconstructions to cell types with a

known transmitter. It contained 451,033 acetylcholine presynapses (3,094 neurons), 75,239 glutamate presynapses (218 neurons),

80,732 GABA presynapses (242 neurons), 117,054 dopamine presynapses (310 neurons), 70,460 serotonin presynapses (38 neu-

rons), and 46,017 octopamine presynapses (21 neurons).

Due to a relative paucity of linked presynapses when we began this study we did not use our annotations for: allatostatin A (2 neu-

rons in the HemiBrain), corazonin (6), drosulfakinin (6), glycine (9), insulin (23), IPNa (2), Drosophila NPF (3), and SIFamide (4). Hista-

mine is also used in the D. melanogaster brain, primarily by photoreceptor neurons not captured in our original datasets, and a few

ascending neurons. Nitric oxide is used as a co-transmitter,25 we did not include it in our dataset. We therefore only carried forward:

acetylcholine, glutamate, GABA, dopamine, serotonin and octopamine. At least one of these six transmitters is probably expressed

by most neurons in the brain.21

We thankMichael Reiser, Vivek Jayaraman, Arthur Zhao, Tatsuo Okubo, Jenny Lu and Kathi Eichler for identifying neuronmatches

in Catmaid which helped us build our ground truth dataset, Mareike Selcho for helping to confirm our FAFB-FlyWire identifications of

octopaminegic neurons and Clare Pilgrim for further cell type to known transmission annotations.

Chosen neuronal reconstructions
We calculated neuron-level transmitter predictions for all 24,666 well reconstructed neurons in the HemiBrain dataset (see Data S3),

all 49,985 central brain neurons and 86,942 neurons from FAFB-FlyWire (see Data S4) and 23,503 ventral nerve cord neurons from the

MANC dataset. Data was pulled from: HemiBrain: https://neuprint.janelia.org/?dataset=hemibrain:v1.2.1, FAFB-FlyWire: https://

codex.flywire.ai, MANC: https://neuprint.janelia.org/?dataset=manc:v1.0. All FAFB-FlyWire data is from the 630 materialization, a

specific public version of the FlyWire dataset first released with the flagship FAFB-FlyWire dataset preprint.18 Our synapse-level

transmitter predictions can be associated with these segments and therefore neurons built by the community even if they are further

edited (further FAFB-FlyWire dataset releases are planned, i.e., the 783 materialization destined for the publication). Note that the

male ventral nerve cord results were generated using our methodology in theMANC dataset (manc:v1.0) but reported on elsewhere.5

We included all neurons from the project with the status ‘‘Traced’’ and gave 3638 neurons that had fewer than 100 presynapses the

label ‘‘uncertain’’. Due to the availability of single cell type ground truth, only acetylcholine, glutamate and GABA were predicted in

this dataset. Together, these results are part of our data releases and shown in Figure 5A and used in Figure 6.
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For other biological analyses (Figures 5D–5F, S3E–S3H, and S4), we analyzed a subset of central brain neurons from HemiBrain

and FAFB-FlyWire. We excluded Kenyon cells and neurons because we had very high confidence that these predictions were incor-

rect. We kept other possible mispredictions. We excluded truncated neurons and neurons with fewer than 100 presynapses. Trun-

cated neurons typically included bilateral neurons in HemiBrain and ascending, descending and first-order sensory neurons in both

datasets.

For this purpose, 246,66 neurons in HemiBrain were filtered down to 11,277 by excluding neurons without the HemiBrain project

status label ‘‘Traced", neurons with less than 100 presynapses and removing truncated neurons with a large part of their arbor cut

from the dataset (label ‘‘cropped"), including neurons with the terms: LP, LC, LT, DN and LLP in their cell type label. These neurons

were semi-automatically reconstructed by,51 and come from neuPrint release hemibrain:v1.2.1.

For the FAFB-FlyWire dataset we used 88,115 intrinsic brain neurons. Neurons were selected as well traced if a human annotator

could confirm that they appeared to have a full dendrite, axons, cell body fibre tract and cell body (soma). This pool is small compared

with the total 136,927 FAFB-FlyWire neurons because 1) they were selected as well reconstructed in FAFB-FlyWire by the start of

2023 and 2) we only selected neurons that we could ‘skeletonize’ and ‘split’ into separable axons and dendrites73,133 for our biological

analyses and 3) we only chose neurons whose arbors were contained within the central brain.

Neurons are unmatched between datasets in our analyses e.g., (Figures 5 and S3) unless noted otherwise (e.g., Figure 4), i.e., the

corpus of neuronal cell types from each dataset is partially overlapping but distinct, cell type content may account for some of the

FAFB–HemiBrain differences. The full pool of HemiBrain neurons was not cross-matched to FAFB-FlyWire neurons at the time of

writing, only 2626 neuronal cell types.

We thank the flywire.ai community for allowing us to use their semi-automatic FAFB-FlyWire neuronal reconstructions, which took

over 1,366,543 edits from human annotators to build from automatically reconstructed segments.17 We also want to specifically

thank those human annotators that contributed to a smaller pool of 27,706 neurons, built between 2019 and 2022, on which our re-

sults were initially piloted and preprinted. These neurons were built by 1,366,543 edits of automatically reconstructed segments,17

from 100 human annotators Those persons contributing more than 1,000 edits were: Doug Bland, Austin T Burke, Yijie Yin, Laia Ser-

ratosa Capdevila, Kyle Patrick Willie, Arti Yadav, Ryan Willie, Nash Hadjerol, Zairene Lenizo, Griffin Badalemente, J. Anthony Ocho,

Shirleyjoy Serona, Dharini Sapkal, Anjali Pandey, Ben Silverman, Varun Sane, Zeba Vohra, regine salem, Mendell Lopez, J. Dolorosa,

Imaan Tamimi, Chitra Nair, Dhwani Patel, Joshua Bañez, Márcia Santos, Katharina Eichler, Shaina Mae Monungolh, Dustin Garner,

Jay Gager, Joseph Hsu, Mark Larson, Bhargavi Parmar, Rey Adrian Candilada, Dhara Kakadiya, Alexandre Javier, Itisha Joshi, Mi-

chelle Pantujan, Irene Salgarella, JamesHebditch, Kaushik Parmar, Darrel Jay Akiatan, Kendrick Joules Vinson,Marina Gkantia, Ariel

Dagohoy, remer tancontian, Chan Hyuk Kang, Hane Two, Markus Pleijzier, Emil Kind, Olivia Sato, Yashvi Patel, Miguel Albero, Eva

Munnelly, Katie Molloy, Christopher Dunne, Quinn Vanderbeck, Rashmita Rana, Merlin Moore, Lucia Kmecova, Alexis E Santana

Cruz, Nadia Seraf, Usb, Claire McKellar, Monika Patel, Mareike Selcho, Greg Jefferis, Steven Calle, Siqi Fang, Arzoo Diwan, Sarah

Morejohn, Christa Baker, Brian Reicher, Sangeeta Sisodiya, Tansy Yang, Paul Brooks, Selden, Marlon Blanquart, Hyungjun Choi,

Celia D, Sanna Koskela, Joanna Eckhardt, Krzysztof Kruk, Wolf Huetteroth, Alisa Poh, Stefanie Hampel, Wes Murfin, Li Guo, Zhihao

Zheng, Szi-chieh Yu, Jones, Farzaan Salman, Amalia Braun, Mark Lloyd Pielago, Nidhi Patel, Ben Gorko, Akanksha Jadia, Fernando

J Figueroa Santiago and Urja Verma. We thank Forrest Collman, Casey Schneider-Mizell, Chris Jordan, Derrick Brittain, Akilesh Hal-

igeri for CAVE development andmaintenance, and Kai Kuehner, Oluwaseun Ogedengbe, Jay Gager, Will Silversmith, RyanMorey for

Neuroglancer development, tools, and Codex development - these tools made efficient reconstruction possible.

Neuron skeletonization and axon-dendrite splits
Some morphology analyses required ‘‘skeletonized‘‘ neuronal reconstructions and splitting them into axon and dendrite.73 For

HemiBrain we retrieved neuronal skeletons from the HemiBrain neuPrint project,135 which were generated by an edge collapse

method. For FAFB-FlyWire we calculated skeletons using the ‘‘wavefront" (rays = 2) algorithm as implemented in the python library

‘‘skeletor".128 We ‘‘skeletonized" or retrieved skeletons for a subset of neurons (HemiBrain: 11,277, FAFB-FlyWire: 88,115)

Separate axons and dendrites73,81,83 were discerned using a graph theoretic algorithm,73 implemented in the R based natverse

toolbox.133 To improve the results of this algorithm, we removed likely erroneous presynaptic detections on the soma, primary neurite

or otherwise outside of the synaptic neuropil, a mean of � 5% per neuron. In general, the soma, cell body fibre tract and linker cable

(primary dendrite) do not contain a large number of synaptic contacts. The raw numbers of synapses after filtering can be quite

different between the FAFB-FlyWire and HemiBrain datasets (FAFB-FlyWire: median 202, hemibrain: median 386). This method

benefited from the O2 High-Performance Compute Cluster, supported by the Research Computing Group, at Harvard Medical

School (https://it.hms.harvard.edu/our-services/research-computing).

Neuron level transmitter prediction confidence
Assuming Dale’s law holds for all neurons, we labeled each neuron with a single transmitter and provided a confidence score for this

assignment. To do this, we first retrieved all presynaptic sites associated with each neuronal reconstruction. We removed potential

erroneous presynapses by employing standard thresholds for synapse detection for each dataset (a cleft score above 50 for FAFB-

FlyWire auto-detected synapses,18 and a confidence score above 0.5 for HemiBrain auto-detected synapses51). We only considered

neurons with at least 100 presynapses. We further validated our cut-off for automatically-detected FAFB presynapses12 by evenly

sampling 4,306 presynapses across all six synapse-level transmitter predictions and neuronal compartments (see Figure 5C) and
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determining whether the auto-detected preynapses were valid by cross-checking with a human annotator. 32% of auto-detected

presynapses were erroneous. Our chosen threshold eliminates� 13%of valid presynapses and� 60%of erroneous detections (Fig-

ure S1A). Because a higher proportion of auto-detected presynapses on the primary dendrite, cell body fiber tract and soma were

erroneous, we retained only axonic and dendritic presynapses. (Figure S1B). Presynapses had also to be no less than 15 mm from a

neuron’s cell body, and 0.1 mm from its primary dendrite, to ensure that erroneous detections on non-synaptic cable were not used,

this accounted for� 5% of presynaptic connections per neuron. Filtering presynapses produced a different neuron-level transmitter

prediction in 4% of neurons (columns ‘top_nt’ (unfiltered after the 50 cleft score threshold) and ‘conf_nt’ (filtered)). Notably, a larger

proportion of octopamine predicted presynapses proved erroneous (43%), indicating that the network may be more likely to guess

octopamine for dark features of non-synaptic origin (Figure S2F).

To calculate neuron-level transmitter predictions, we determined which synapse-level transmitter prediction was most common

for each neuron. If the difference between the top and second highest transmitter was < 10%, a neuron’s neuron-level transmitter

prediction was designated uncertain. To determine a neuron-level transmitter prediction confidence score for each neuron (or

neuronal compartment), we computed the average confusion matrix value of each presynapse prediction as given in the row of

the winning transmitter. More formally, we assigned a confidence value cðnÞ to a neuron n as:

cðnÞ =
1

jSnj
X
s˛Sn

Cŷn ;ŷs ; (Equation 1)
whereSn is the set of presynapses of neuron n, by the winning tran
n smitter of the entire neuron, bys the predicted transmitter of synapse

s, andC the confusionmatrix as computed on the test dataset. For example, if we determined a FAFB-FlyWire neuronwas cholinergic

because a majority of its presynapses were predicted to transmit acetylcholine, each presynapse predicted as acetylcholine would

contribute a value of 0.95—the proportion of cholinergic ground-truth presynapses correctly determined as cholinergic (Figure 2A)—

and any presynapse presumably mispredicted as GABA would contribute a value of 0.02 (the proportion of ground-truth cholinergic

presynapses mispredicted as GABAergic). A neuron’s confidence score is the mean of these values over all presynapses. The dis-

tribution in these scores across the FAFB-FlyWire and HemiBrain datasets shows that we have most confident predictions in acetyl-

choline and least confident in serotonin (Figure 2D). Indeed, our serotonin predictions are less reliable, with several suspected mis-

predictions including missing known serotonergic neurons (Figure S2E).

It should also be noted that each neuron was given a predicted transmitter identity even if in reality it would express none of the six

transmitters with which we trained. When the network is applied to data outside of the training distribution, it is often less confident in

its erroneous prediction, but not always.

Correlating misprediction with reported unlearned transmsison types
In examining our neuron-level transmitter predictions together with reported expression in the literature, we noticed a few issues and

errors, which we have investigated to try to establish the major reasons for misprediction.

For HemiBrain neurons we know to use transmitters outside of the six we learned,51 we found that glycinergic neurons143 were

mostly predicted to use acetylcholine (mean confidence 0.66), Allatostatin A143weremostly predicted to useGABA (0.7) (even though

itmost commonly co-transmits with glutamate21), Corazonin166 usewas predicted as acetylcholine (0.3), Drosulfakinin167,168 usewas

mostly predicted as octopamine (0.47), insulin-like peptides169,170 use was mostly predicted as acetylcholine or serotonin (0.44), IP-

Namide154 use was mostly predicted as glutamate (0.32), Drosophila neuropeptide F145 use was mostly predicted as octopamine

(0.46) and SIFamide171 use was mostly predicted as octopamine (0.43).

Mispredictions in which one of our six learned transmitters is predicted when another should have been, can occur in one dataset

but not the other (Figures S2D–S2F). For example, our mispredictions include neurons thought to be dopaminergic being assigned

serotonin (FB4L), octopamine (FB4M) or glutamate (PPM1024) in HemiBrain but correctly in FlyWire, and other dopaminergic neurons

being mispredicted as glutamatergic (PAM01) in FlyWire but not in HemiBrain, which may happen due to unclear dataset-specific

confounds. However, some of themost notablemispredictions occur in both. For example, the largest scalemisprediction we caught

was our network’s incorrect mass prediction of Kenyon cells as dopaminergic. Immunohistochemistry and RNA sequencing data

have shown that Kenyon cells express the machinery necessary for cholinergic transmission.21,55,164 Despite this, our neuron-level

transmitter predictions guessed dopamine across all Kenyon cell types (FlyWire: 99.9%, HemiBrain: 99.9%) with high confidence

(FlyWire: mean, 0.627, s.d., 0.99, HemiBrain: mean, 0.54, s.d., 0.046). A possible source of error might be contamination by nearby

presynapses belonging to other neurons. For example, dopaminergic PAM neurons were used in our ground truth data, and are syn-

aptic partners of Kenyon cells in the highly synapse-dense region of the mushroom body (Figure S3I). The cube of image data (edge

length 640 nm) centered on each predicted presynaptic location was not masked with neuronal identity, and features from proximal

presynapses may have skewed the result. However, if we consider presynapses on Kenyon cell axons (in the mushroom body lobes,

dense dopaminergic innervation) and dendrites (mushroom body calyx, only sparse dopaminergic innervation78) separately, we see

that dopamine is still the most common prediction for both (77% of axons and 95% of dendrites in FlyWire). This suggests that the

confusion may arise either due to the uncommon biology of the Kenyon cell presynapse or because the network saw Kenyon cell

presynaptic features near labelled dopamine presynapses during training - rather than observing dopamine presynaptic features

near Kenyon cell presynapses when testing. More generally, across our dataset we observed a small percentage of axon-dendrite
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prediction mismatches in their compartment-level transmitter predictions (FAFB-FlyWire: 6.5%, hemibrain: 11.0%) (Figure S3G). In

neurons where there was no mismatch, there was a strong correlation between the compartment-level transmitter prediction for the

axon and the dendrite (Figure S3A), suggesting that the image features impacting our predictions are the same for both. Because

axons are far from dendrites in Euclidean space, these features are most likely features of the neuron and/or its presynapses

themselves.

Co-transmission with transmitters outside of our training data may be a major reason why our results can sometimes differ from

what we expect. In mammals, cases of co-packaging of fast-acting clear core vesicular transmitters are known, including transmit-

ters of opposing downstream effect.172 While transmitter-related gene expression and immunoreactivity are largely exclusive be-

tween the fast-acting transmitters in flies,21,22,30,31 most neuropeptides and monoamines can co-transmit with fast-acting transmit-

ters.21,163 Co-transmission of especially fast-acting transmitters alongside neuropeptides and other neuromodulators is expected to

be common in the brain, although examples at the resolution of individual cell types are sparse. The ab and g Kenyon cells are known

to express the short neuropeptide F precursor, and immunostain for short neuropeptide F,173 which is highly indicative of neuropep-

tide transmission or co-transmission. Kenyon cells may also express the neuropeptide sparkly.25,174 In addition,Ddc, which encodes

a protein responsible for converting L-DOPA to dopamine, is expressed in a0b0 and g Kenyon cells, where it could play a role in the

biosynthesis of dopamine or another aromatic L-amino acid.21 Indeed, we did not include Kenyon cells in our ground truth data,

because of this evidence for co-transmission.

The other major mispredictions we noticed include the singleton cell type DPM in the mushroom body, some olfactory sensory

neurons of the antennal lobe and some central complex neurons such LPsP, vDelta, hDelta, and a few fan-shaped body tangential

neurons, particularly in HemiBrain. Themushroom body, antennal lobe and central complex are especially synapse-dense regions of

the brain as revealed by presynaptic antibody staining (see Figure S3I for regional biases in transmitter prediction). They are also

known to exhibit diverse neuropeptide expression.106,175 DPM has been found to express the fast-acting transmitter GABA the

monoamine serotonin and several neuropeptides (sparkly, nplp1, proctolin, orcokinin, eclosion hormone, CG34136).25,56,60 DPM

were not used in our ground truth data and in both datasets are predicted to be dopaminergic. 20% of olfactory sensory neurons

in HemiBrain and 25% in FlyWire are likely mispredicted as serotonergic instead of cholinergic.64 There is a glomerular pattern to

the olfactory sensory receptor neuron cell types that are predicted serotonergic, and though this does not match up with known

glomerular patterns for short neuropeptide F expression in sensory neurons106 it may match an as-yet unstudied neuropeptide dis-

tribution in the antennal lobe. Notably, these presynapses are in a region of the brain (antennal lobe) with a high density of true sero-

tonergic presynapses from the CSD neurons, though the CSD is pan-glomerular. The CSD neurons were represented in our ground

truth, but olfactory sensory neurons were not.

Central complex LPsP neurons are potentially mispredicted as glutamatergic instead of dopaminergic78,176 in FlyWire and

HemiBrain and are in a region of the brain (protocerebral bridge) with a high density of true glutamatergic presynapses from the delta7

neurons. It is a rare case of a known dopaminerigc neuron to be mispredicted as something else in both datasets. Interestingly

though, known DopR receptors are only weakly expressed in the region of LPsP output, the protocerebral bridge, and so LPsP

may have in some way unusual dopaminergic presynapses.177 In addition, preliminary data suggests LPsP may co-transmit dopa-

mine and glutamate (personal communication, Pablo Reimers). Both delta7 neurons and LPsP were represented in our ground truth

data. Other protocerebral bridge neurons, IbSpsP neurons, were predicted for acetylcholine in FlyWire but for glutamate in

HemiBrain.

The neurons of the optic lobe, despite being poorly represented in our ground-truth data, are remarkably well predicted. 96% of�
29,000 optic lobe neurons (T4, T5, Tm2-4, Tm9, Tm20, L2-5, Lawf1-2) were correctly predicted acetylcholine. 87% of� 3,600 optic

lobe neurons (C2, C2, Pm4, Mi4, Dm10) were correctly predicted GABA. 91% of � 1,600 optic lobe neurons (TmY5a, Dm8) were

correctly predicted glutamate. However, some cell types exhibited a glutamate GABA confusion. � 5,700 neurons from the known

glutamatergic cell types (L1, Dm1, Dm3, Dm4, Dm11, Dm12) are correctly predicted a putative inhibitory class, but only 61% were

predicted glutamate and 30% GABA. Our only unusual result was that just 3% of Dm9 neurons were predicted glutamate as ex-

pected. Dm9 neurons have � 20-fold more autapses (self-connections) than usual,178 which may present a confound. Mi1 neurons

have a similar rate of autapses and only 67% correct acetylcholine assignment. We note that one wet-lab study reports a different

expression from what we have predicted in some optic lobe cell types, in a study based on mosaic analysis with repressible cell

marker (MARCM) clones generated from drivers such as Cha-GAL4.179 These are TmY5a (acetylcholine from MARCM, glutamate

from prediction), Mi2 (acetylcholine from MARCM, glutamate-GABA from prediction) and Pm1a (acetylcholine from MARCM,

GABA from prediction). We believe that179 were misled by MARCM, our experience has been that clones generated from a Cha-

GAL4 driver are not faithful to acetylcholine transmission.142,159

Our predictions have also provided a starting place for looking for dopamine, serotonin and octopamine neurons unknown to the

literature, but particularly for serotonin we encourage data users to validate predictions in the wet lab. Genetic and histological

studies have estimated there to be � 130 dopaminergic neurons, � 80 serotonergic neurons and � 44 octopaminergic neurons138

in the brain. Discounting Kenyon cells and sensory receptor neurons, we have predicted 6052 dopaminergic, 2000 neurons and 289

octopaminergic neurons in FlyWire. Many of these cases likely indicate co-transmitting neurons, although especially for dopamine

they may also reveal as-yet unknown dopaminergic cell types because the TH-GAL4 line most often used to find dopaminergic neu-

rons is not completely faithful to dopamine transmission.177 Some known monoaminergic neurons were mispredicted. Two mono-

aminergic DNs, DNg28 (serotonin180) and DNg32 (octopamine181 - possibly because most of their presynapses are outside of the
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brain, in the ventral nerve cord. 114 photoreceptor neurons, R1-8, which may express histamine and possibly acetylcholine,39 are

incorrectly predicted for octopamine in FAFB-FlyWire. We advise users to treat these predictions with caution.

In conclusion, by examining known cases of misprediction we think the main two reasons for misprediction are co-transmission

and expression of transmitters outside of our training set. Both issues be remedied by expanding the training data with co-transmis-

sion information and by including neurons with other transmitters. Themethod presented here can be extended to support more than

the six transmitters considered so far. The prediction of co-transmission will require an architecture change, as the current architec-

ture can not confidently pick more than one transmitter at the time. One way this could be achieved is to replace the softmax layer in

the current architecture with element-wise sigmoid activation functions. In addition to mispredictions stemming from co-transmis-

sion or other transmitters, rarer biology (such as autapses, unusual T-bars and unusual postsynapses) may also be a factor some

of the time. Generally, we found that when there is conflict, the FlyWire predictions are often superior.

Working through fan-shaped body neuron expression
The fan-shaped body is a central brain neuropil that computes navigational variables, including internal goals for the fly. We focused

on it because along with the antennal lobe we considered it one of the worst predicted parts of the brain in the HemiBrain dataset. In

brief, it is built as amatrix with 9 rows and 10 columns.77 Tangential neurons input projects to specific, whole layers. Other input types

(e.g., PFN) target specific columns within a single row. Intrinsic neurons can tile rows (e.g., hDelta types) or columns (e.g., vDelta

types). Output neurons sample across several columns (e.g., FC and FS types) or more specific segments (e.g., PFL and FR types).

We further found that almost all intrinsic cell types were predicted to transmit acetylcholine (� 88%), as well as almost all output cell

types (� 96%) and column-specific input types (� 87%) with some misprediction due to a paucity of automatically detected presy-

napses in or near an unusual brain region51 known as the gall (Figure 5G, dashed circles). Synapse detection often fails in the gall,77 as

presynapses here have elongated T-bars and dense core vesicles, indicative of neuropeptide co-transmission (Figure 5G, circles).

We found that almost all tangential neurons are predicted to transmit glutamate (� 84%). Of the remainder, we are confident that 4

neurons (cell types: FB5AB, FB1G) are correctly predicted to transmit acetylcholine because they come from a cholinergic hemiline-

age (‘DM4 dorsal’) (Figure 7B). Indeed, an intersection with a ChA driver line has suggested that FB5AB and so-called ‘vFB’ neurons

are cholinergic,127 though note that vFB morphology is not consistent with FB1G. Interestingly, the only neurons predicted to use

GABA in both FlyWire andHemiBrain are FB5A (primary neurons from lineage ‘EBa1’) and FB3B, FB3C and FB3E (secondary neurons

from lineage ‘EBa1’).50,182 Although the FB3 neurons are predicted for glutamate in FlyWire we suspect the HemiBrain prediction for

GABA could be correct because ‘EBa1’ is majority GABAergic (Figure 7B). Indeed, metabotropic GABA receptors have only been

found specifically in layers 3 and 5.177 A few dopaminergic tangential cell types have been reported (FB5H, FB6H, FB7B).77 In

FlyWire only FB6H is predicted dopaminergic, the others are predicted to transmit glutamate. In HemiBrain, they are all correctly pre-

dicted dopamine. In both datasets, predicted dopaminergic neurons include: FB1C, FB1H, FB2A, FB4M and FB4Y. They all come

from the known dopaminergic PPM3 cluster.77,78,175 FB4L also belongs to the PPM3 cluster but are predicted serotonin in both

HemiBrain and FlyWire. Interestingly, TH, DopEcR and DopR1 immunoreactivity can be detected weakly across the fan-shaped

body,177 likely by ExR2 and neurons receiving ExR2 input. However DopR1 is particularly strong in layers 1-2, DopR2 is expressed

specifically and strongly in layer 3 (due to discrepancies between HemiBrain annotation and literature, ‘‘layer 300 in other literature

seems to be related to the projection pattern of many FB4 neurons), and D2R is expressed specifically in dorsal layers 7-8.124

This is in agreement with our predicted sites of dopamine transmission in the fan-shaped body.

We have also examined neuropeptides in the fan-shaped body as reported in the literature carefully, and here give our thoughts on

how layer-specific expression may have caused some misprediction in this structure. Central complex hDelta cell types77,90,127,183

(not in our ground truth) are a set of 190 neuronswhosemorphologies are very similar, andwhich segment the fan-shaped body of the

fly. However, our HemiBrain prediction results estimate 30% to be cholinergic and 45% to be dopaminergic. While the field lacks

authoritative data, we expected them all to express the same transmitter or set of transmitters, most likely acetylcholine. Indeed,

in FlyWire they come out as 83% cholinergic and 12% serotonergic, suggesting that all of the class should be cholinergic. The

case is even worse with vDelta neurons, another similar class in the same neuropil born from the same set of hemilineages, for which

HemiBrain predictions give us neuron-level transmitter predictions that are 40% glutamatergic and 35% dopaminergic, but are pre-

dicted 85% cholinergic in FlyWire. Fortunately, this issue is not common, only 14% of cell types in the HemiBrain have a transmitter

prediction conflict. The fan-shaped body is known to express leucokinin, allatostatin A, short neuropeptide F, Drosophila neuropep-

tide F, tachykinin, proctolin, dFMRFa, SIFamide and myoinhibitory peptide in a highly specific and layer-wise manner.106,175,177,184

Because we expect all intrinsic and output types of the fan-shaped body to be cholinergic based on FlyWire results, we think the

glutamate predictions for intrinsic cell types fromHemiBrain are erroneous. Themost notable example is the cholinergic hDeltaK neu-

rons, which have been likely mispredicted to transmit serotonin in FlyWire and dopamine in HemiBrain because their presynapses lie

in layer 6 of the fan-shaped body (Figure 5G, arrows), an unusual layer that is known to express allatostatin A, short neuropeptide F

and innexin 6.175,184,185 hDeltaK is the onlymajor case of intrinsic neuronmisprediction in FlyWire. hDeltaC and hDeltaL are also likely

mispredicted to transmit dopamine in HemiBrain and have their axons in layer 6. In addition, short neuropeptide F has been shown to

co-localise in 5-6 neurons with cholinergic transmission specifically in layers 5-6,175 indicative that another hDelta class co-transmits

it because vDelta neurons per layer are more numerous. In particular, hDeltaF and hDeltaG are likely mispredicted to transmit dopa-

mine in this region. We suspect one of those types co-transmits short neuropeptide F. hDeltaJ (layer 4) and hDeltaM (layer 5) are

predicted to transmit dopamine in HemiBrain but acetylcholine in FlyWire. It is less clear what neuropeptide expression, or not,
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may have caused these confounds, but we note that dFMRFa is expressed in layer 4, and SIFamide and proctolin are expressed in

layer 5.175,186 suspect tachykinin expression in vDeltaA neurons, which are majority mispredicted to transmit dopamine in HemiBrain

andminority mispredicted to transmit serotonin in FlyWire. However, only 16-18 neurons are thought to express tachykinin and there

are over 80 vDeltaA neurons. It is also possible that the 16 hDeltaD/E neurons express tachykinin, half of which are mispredicted

dopamine in HemiBrain, but likely correctly acetylcholine in FlyWire.

There are also a few mispredictions of glutamatergic tangential neurons, particularly in HemiBrain. Mispredictions are probably

lower in these tangential neurons because glutamate has been shown mainly not to co-transmit with the most abundant neuropep-

tides in the fan-shaped body – short neuropeptide F, tachykinin and myoinhibitory peptide.175 However, leucokinin neuropeptide is

expressed in layer 6 tangential neurons,184 e.g., FB6A, which are erroneously predicted octopaminergic in HemiBrain but perhaps

correctly for glutamate in FlyWire. We think it is likely that FB6A co-transmits glutamate and leucokinin. Tachykinin is also expressed

in layer 2 of the fan-shaped body. Because it does not co-localize with ChAT stains in this layer and because of cell body placement, it

might be expressed by specific glutamatergic tangential neurons177,187 and may account for why FB2B is mispredicted octopami-

nergic in HemiBrain, and FB2A and FB2I predicted dopaminergic in FlyWire and HemiBrain. Allatostatin A is expressed in layer 6 in

neurons other than ‘‘dFB" FB6A neurons.188 Because in HemiBrain FB6H/L/K/J are potentially mispredicted to transmit dopamine

(likely correctly glutamate in FlyWire) we wonder if these could be the allatostatin A neurons. Proctolin is expressed in layer 5 and

because FB5S has some dark vesicles and 1/7 in HemiBrain was predicted for octopamine, we wonder whether this is a proctolin

co-transmitting type. Curiously, while most 5-HT receptors are not expressed in the fan-shaped body,177 serotonin immunolabeling

revealed that serotonin is used in layers 3, 6 and more ventral layers.150,175 One serotonergic source is ExR3, which projects to layer

6, but there may be others innervating more ventral layers. ExR3 is mispredicted to transmit octopamine in HemiBrain and dopamine

in FlyWire, and has dense core vesicles indicative of unknown neuropeptide co-transmission. A final notable misprediction is the

numerous, expected cholinergic class PFNp, which receives various mispredicted labels in HemiBrain and FlyWire. However, the

class appears to have very few detected output presynapses, only a mean of 56 in HemiBrain, indicative of little or unusual neuro-

transmission, or else automatic synapse detection was problematic in the dorsal nodulus and layer 1 of the fan-shaped body.

Working through antennal lobe local neuron expression
We tackled in detail a difficult case concerning a morphologically variable and diverse class of neurons105 from two split transmitter

hemilineages: local neurons of the antennal lobe. We found we could still make sense of our neuron-level transmitter predictions in

relation to the extant literature. We wanted to draw attention to this case because transmitter usage in these local neurons seems to

break Dale’s law,104,106 Lacin’s law (Figure 7C) and the expectation of uniform transmitter expression within a type (Figures S5F and

S5G), and so presented perhaps the biggest challenge for our resource. They are known to express acetylcholine,63,189,190

GABA,62,89,151 glutamate61,89,104 and various neuropeptides transmitters.106

‘ALl1 dorsal’ is a local neuron hemilineage that our Bayesian analysis identified as having a decisive split in its transmitter usage.

From the literature, we expected � 54 local neurons per hemisphere of which � 90% would be GABAergic.151 We also expected

perhaps as many as � 15 cholinergic local neurons.63,189 In our connectomic datasets, we find � 126 local neurons per hemisphere

for ‘ALl1 dorsal’.74 We found that 143 (left: 74, right: 69) are predicted GABAergic, 48 (left: 20, right: 28) cholinergic, 13 (left: 9, right: 4)

dopaminergic, 14 (left: 7, right: 7) glutamatergic and 37 (left: 18, right: 19) serotonergic. Serotonin and dopamine in the antennal lobe

have been well-studied but no reports of either in local neurons exist in the literature. We, therefore, think that these neurons should

mostly have been predicted GABAergic or cholinergic, perhaps mostly the latter based on morphological similarity (Figure 7E). How-

ever, the other predictions could be valid, albeit surprising. The predicted cholinergic neurons are unilateral and ‘broad’, i.e., pan-

glomerular, in accordance with previous descriptions63,189 but more numerous. Positioned closely among them are other local

lLN1_bc neurons that are predicted to be dopaminergic. We suspect that some cholinergic local neurons have been mispredicted

dopaminergic because at least � 3 cholinergic neurons co-express allatostatin A and� 10-15 co-express myoinhibitory peptide.106

The predicted GABAergic local neurons in the hemilineage have cell body fiber tracts slightly offset from the cholinergic/dopami-

nergic subgroup. Half the local neurons that had previously been categorized as LN2 ‘patchy’ local neurons,74,105 i.e., those that

innervate discontinuous glomeruli in space, were predicted glutamatergic (cell type: lLN2P_a) and half GABAergic (cell types:

lLN2P_b, lLN2P_c). Analogously ‘picky’ local neurons in the larval brain are also known to be glutamatergic, while the grossly

morphologically similar ‘choosy’ neurons are GABAergic.191 A subset of lLN1 neurons is known to express both GABA and glutamate

to effect synaptic plasticity, but it is not known how large this subset is or whether this phenomenon extends to other local neuron

classes.104 Some of these neurons have been predicted GABAergic and some mispredicted serotonergic. Tachykinin is also known

to co-express in� 40 GABAergic ‘ALl1 dorsal’ neurons per hemisphere106 and may have been a confound that generated serotonin

predictions. Specifically, among them are � 13 lLN2T_abc neurons that have a cell body placement and general morphology most

similar to reported cholinergic local neurons.63,189 The remainder is most likely GABAergic, e.g., lLN2_d gross morphology looks

more like related GABAergic neurons.63,189

The remaining, largely bilateral, local neurons come from a second hemilineage ‘ALv2’. This too, appears to be a split hemilineage

containing 133 (left: 67, right: 66) glutamatergic neurons alongside a newly identified sub-population of 28 (left: 14, right: 16) potential

cholinergic neurons. Previous immunohistochemistry work61 found no sign of GABA usage at ‘ALv2’ presynapses, and we predict

only one ‘ALv2’ GABAergic neuron on each side (v2LN41), perhaps a deviant first-born neuron of the hemilineage. One ‘ALv2’ local

neuron was predicted serotonergic (v2LN36), this unusual neuron had previously been determined to be glutamatergic using
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immunohistochemistry and able to undergo stark morphological changes dependent on sex and mating state.192 ‘ALv2’ axons

extend to specific glomeruli in the contralateral antennal lobe. Significantly, this means that specific lateral excitation between

glomeruli on different sides of the brain should be possible. As with their glutamatergic counterparts, these sparse bilateral local neu-

rons focus on connections mainly between thermosensory glomeruli.74 Excluding serotonin and dopamine mispredictions our

HemiBrain predictions were similar, but with some misprediction of ‘ALv2’ neurons as using GABA rather than glutamate. We

have a little further detail on local neuron misprediction in our Methods section on misprediction correlates. In conclusion, we think

there could be far more cholinergic local neurons in the antennal lobe than previously thought which has implications for second-or-

der olfactory information processing. See Figures S5F and S5G. We thank Asa Barth-Maron for discussions and insights into

antennal lobe local neurons.

HEMILINEAGE DEFINITION IN D. MELANOGASTER

The neurons of the central nervous system are generated by a set of stem cells known as neuroblasts. During division, neuroblasts

generate two cells, one additional stem cell and one cell that further divides into two sibling neurons. In only one of these siblings, the

so-called Notch pathway is activated, leading to two different hemilineages of neurons within each lineage, one Notch positive the

other Nothc negative31,193–195 (or more than two in the case of Type II neuroblasts, which mainly contribute to the central complex,

Figure S5A). In some cases, one of a lineage’s hemilineage may apoptose,196 leaving only a single hemilineage. Neurons can be born

in this way during embryogenesis and are known as primary neurons (� 10% of the adult brain134,197). Many neuromodulatory neu-

rons appear to be primary.138,141 Those made during larval development are known as secondary neurons. We found 120 lineages

that broke down into 183 hemilineage-associated tracts, per hemisphere. Of these, we think 144 are secondary Type I hemilineages.

The remainder are secondary Type II. These eight lineages (Type II; ‘DM1-6’; ‘DL1-2’) produce intermediate progenitors, each in turn

delivering two hemilineages. Their relationship with their lineage-associated tracts is often less clear.

Neuronal fibers co-fasciculate with neurons from the same hemilineage and form bundles as they enter the neuropil from the insect

brain’s outer layer of cell bodies. Only secondary hemilineages (each � 100 neurons) can easily be demarcated in adult

D. melanogaster. In EM data annotators can make our ‘‘lineage-associated tracts" (sometimes called ‘‘secondary axon tracts"),

many of which contain a single hemilineage. It should be noted that cases have been identified102 where a single lineage-associated

tract is composed of two hemilineages. Type II hemilineages may be less uniform than Type I in their tract organization. Each inter-

mediate progenitor of a Type II lineage behaves like a ‘‘small neuroblast" and produces 10-20 neurons, divided into two hemiline-

ages.198 According to this idea, there should be around 50-100 hemilineages for each type 2 neuroblast. That does not match the

morphologically visible tracts in BP106 strings in the larva or adult central brain.

Our lineage-associated tracts have been mapped by light microscopy and assigned to named lineage clones.139,199–201,202 We

have discovered them in the adult brain FAFB dataset.50 Lacin et al.31 have shown that Each hemilineage in the adult ventral nerve

cord uses just one of the fast-acting transmitters, acetylcholine, glutamate or GABA, even thoughmRNA transcripts for combinations

of these can appear in the nucleus. We have found the same with our predictions in the ventral nerve cord.65 We refer to this principle

as Lacin’s law. Using the FlyWire dataset we show in this work that it largely holds in the adult central brain with some interesting

exceptions (Figure 7).

Because HemiBrain dataset is only a partial brain, many neurons have largemissing portions or do not exist in this dataset, causing

a discrepancy between neuron count and hemilineage content compared with FlyWire. However, we could still identify most central

brain hemilineages and see that their predicted transmitter expression and projection envelope are similar to those of FlyWire neu-

rons (Data S6). Comparing GABA-glutamate mixed hemilineages (‘LHl1’, ‘VLPl4 dorsal’, ‘LHl4 dorsal’, ‘SLPav3’, ‘WEDd2’, ‘VLPl4

anterior’, ‘VPNp&v1 posterior’, ‘CREa1 ventral’, ‘VESa1’, ‘EBa1’, ‘DM2 central’) in FlyWire to HemiBrain indicates that perhaps

theymore uniformly express GABA (Figure S5A). On the other hand, HemiBrain predictions weremore likely than FAFB-Catmaid pre-

dictions to confuse glutamate for GABA, but not vice verse(Figure 2A). In addition, dopamine misprediction seems be higher in

HemiBrain, ‘CLp1’, ‘SMPpv2 dorsal’, ‘SMPpm1’, ‘VLPd&p1 posterior’, ‘SMPpv1’, ‘SMPpd1’, ‘VLPl&p1 posterior’, ‘CREl1’, ‘LHl2 dor-

sal’, ‘SLPpm3’, ‘VPNp1medial’, ‘DM6 dorsolateral’, ‘DM3 dorsolateral’ have predicted dopaminergic neurons only in HemiBrain. The

largest discrepancy was for ‘DM6 IbSpsP’. IbSpsP neurons were predicted for acetylcholine in FlyWire but for glutamate in

HemiBrain.

Hemilineage assignments in D. melanogaster

Our work assigning neurons in the FAFB-FlyWire dataset to hemilineages has been reported in Schlegel et al..50 We briefly detail the

process here. Cell body fiber tracts for identified hemilineages had previously been identified using TrakEM2203 in a light-level atlas

for a D. melanogaster brain, stained with an antibody against neurotactin (BP104).199 We extracted these expertly identified tracts

and registered them into a common template brain, JFRC2, using CMTK,204 and then into FAFB space.133 These lineage-associated

tracts could then be be readily identified in EM stacks based on their point of entry and subsequent trajectory. We generally consider

lineage-associated tracts as fiber units belonging to one hemilineage. However, we suspect that the putative hemilineages ‘DL1 dor-

sal’, ‘DL1 ventral’, ‘DL2 dorsal’ and ‘DL2 ventral’ (derived from the Type II lineages ‘DL1’ and ‘DL2’) may be examples where this has

happened, and each of these groupings is a composite of not one but two hemilineages (giving four hemilineages per lineage here,

which is possible because these are Type II lineages,205–207 a Type II would have two).We identified cell body fiber tracts in the ssTEM
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FAFB dataset in the vicinity of the transformed lineage-associated tracts using the flywire.ai Web interface.17 We compared our

candidate neurons to registered images of lineage clones, produced using genetic tools and light microscopy.139,201 Hemilineages

can be told apart in an image of a lineage clone, by the different placement of their cell body clusters, and the tract their cell body

fibers take into the neuropil. From light-level data that labels a whole lineage and all of its hemilineages together,139,199–201 it is oc-

casionally difficult to assess whether there is a single hemilineage or multiple, if the cell body clusters happen to not separate suf-

ficiently. While they can be told apart using developmental genetic tools, e.g., in the case of ‘LALv1’,102 this has not been done

at scale.

In Figure 7E we focused on birth order in ‘LALv1’ because ‘LALv1 ventral’ exhibits split transmitter use. ‘LALv1’ is, fortunately, one

of few hemilineages whose birth order has been delineated.102 ‘LALv1’ neurons were matched 1:1 to FAFB-FlyWire reconstructions

with a combination of visual inspection and morphological clustering47 to the morphological progression by birth order102).

We have used 183 well-annotated hemilineages of the central brain, which were human-reviewed on both the right and left FAFB-

FlyWire hemispheres, in this work. However, assigning neurons to hemilineages is difficult. For example, neurons from the lineage

‘LALv1’ co-bundle between its two hemilineages, making their disambiguation dependent on examining light-level data and single

neuron clones.102 Without prior work102 on this lineage’s detailed composition, we might have incorrectly assumed that its glutama-

tergic and cholinergic neurons from its two separate hemilineages intermingled in a single hemilineage. High-quality light-level data is

not available for every hemilineage, meaning that we had to make some judgment calls in our hemilineage discrimination.

Indeed, the ‘DL1’ hemilineages at first seemed a striking example of split transmitter use within hemilineages, i.e., disobeying La-

cin’s law. However, it is possible that the ‘DL1’ and ‘DL2’ hemilineages we have delineated are actually each not a single hemilineage

but two, i.e., there are four hemilineages in total for ‘DL1/2’.205–207 The split transmitter use may reveal this hemilineage-based divi-

sion in a lineage-associated tract that was otherwise hard for human annotators to make. Therefore we suspect that our split-use

label in this case reveals an issue of data annotation.

Hemilineage prediction entropy
Neuron level entropy

To quantify multimodality of transmitter predictions on neuron level within a hemilineage, we calculated the entropy H of the trans-

mitter distribution over neurons in the following way: Let n˛Nh be a neuron in hemilineage h and byn ˛Y = {GABA, acetylcholine,

glutamate, serotonin, octopamine, dopamine } the predicted transmitter of neuron n. Then

HðNhÞ = �
X
y˛Y

phðyÞlog6phðyÞ;with (Equation 2)
phðyÞ =
1

jNhj
X
n˛Nh

dðbyn = yÞ: (Equation 3)

A value of HðNhÞ = 0 then means that all neurons within hemilineage h have the same predicted transmitter, while a value of

HðNhÞ = 1 means that within hemilineage h all predicted transmitters are equally common.

Synapse level entropy

Similarly, we quantified the averagemultimodality over synapses within neurons of a given hemilineage: Let s˛Sn be the synapses in

neuron n˛Nh of hemilineage h and bys the predicted transmitter. The entropy of predicted synaptic transmitters HðsnÞ in neuron n is

then given by:

HðSnÞ = �
X
y˛Y

pnðyÞlog6pnðyÞ;with (Equation 4)
pnðyÞ =
1

jSnj
X
s˛Sn

dðbys = yÞ (Equation 5)
With this the average synaptic entropy over all neurons within he
milineage h is given by:

HðShÞ =
1

jNhj
X
n˛Nh

HðSnÞ (Equation 6)

A value of HðShÞ = 0 means that all synapses of all neurons in hemilineage h have the same predicted transmitter, while a value of

HðShÞ = 1 means that in all neurons within hemilineage h all synaptic transmitter predictions are equally common. Figure 7D shows

the distribution of HðNhÞ and HðShÞ of all predicted hemilineages’ neurons that have more than 30 synapses each.

On the population level, we found relatively higher values of HðShÞ (Synapse level entropy) than HðNhÞ (Neuron level entropy). 75%

of hemilineages show a synapse level entropy below q75ðHðShÞÞ = 0:41 as compared to q75ðHðNhÞÞ = 0:20. This is reassuring as it
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suggests less variation of transmitter identity of neurons within a hemilineage compared to variations of transmitter identity predic-

tions within individual neurons, meaning there is improved consensus of predictions when aggregating across populations. However,

in cases with a high level of synaptic entropy, such as hemilineage ‘TRdl_a’, it is less clear whether neuron-level multimodality is an

artifact of uncertain, multimodal predictions on the synapse level of individual neurons. In contrast, hemilineages such as ‘SMPpd1’

show high neuron level entropyHðNhÞRq75 but low synapse level entropyHðShÞ%q25, suggesting clear neuron level segregation of

predicted transmitters within those hemilineages. Hemilineages such as ‘ALad1’ with HðShÞRq25 and HðSnÞ<q25 appear homoge-

neous within each neuron and within the entire hemilineage.

Probability to observe transmitter predictions by
Given a neuron has true transmitter y˛Y, the probability that we predict transmitter by ˛Y (assuming that each prediction is indepen-

dent and identically distributed) is given by the categorical distribution

pðby jyÞ = Cy;ŷ; (Equation 7)
where C is the neuron confusion matrix obtained on the test data
set (see Figure 2A).

Let m be the number of different transmitters in hemilineage h. We model the probability pðbyjmÞ of observing transmitter predic-

tions by = fby0; by1;.; byng under the assumption that hemilineage h contains m different transmitters. Here, byj is the predicted trans-

mitter of neuron j in hemilineage h with n neurons total. Let PcðYÞ be the set of subsets of true transmitters Y with cardinality c, then:

pðbyjmÞ =
X

S˛PmðYÞ
pðbyjSÞ$pðSjmÞ; (Equation 8)
where pðbyjSÞ is the probability to observe predictions by if the he
milineage has true underlying transmitters y˛S and pðSjmÞ is the

probability for the set of true transmittersS given the hemilineage containsm different transmitters. Sincewe assume i.i.d. predictionsby, pðbyjSÞ factorizes as follows:

pðbyjSÞ =
Y
j

p
�byj

��S� (Equation 9)
and marginalizing over y˛S yields:
pðbyjSÞ =
Y
j

X
y˛S

p
�byj

��y� $pðyjSÞ (Equation 10)
=
Y
j

X
y˛S

Cy;ŷj$pðyjSÞ: (Equation 11)

Regarding pðSjmÞ and pðyjSÞ we assume a flat prior, i.e.,:

pðSjmÞ =

� jY j
m

�� 1

(Equation 12)
pðyjSÞ =
1

jSj =
1

m
: (Equation 13)
With this, the probability of observing predictions by given m diffe
rent transmitters becomes:

pðbyjmÞ =

� jY j
m

�� 1 X
S˛PmðYÞ

 Y
j

X
y˛S

Cy;ŷj $
1

jSj

!
(Equation 14)

Bayes Factor
With this formalism in place, we can compare hypotheses about the number of true transmittersm in a given hemilineage by using the

Bayes FactorK = pðDjM1Þ
pðDjM2Þ, where D is our observed data (predicted transmitters) andM1,M2 are twomodels about the underlying true

transmitters that we wish to compare. The Bayes factor for a modelM1 withm1 true transmitters per hemilineage and modelM2 with

m2 different transmitters is given by:

Km1 ;m2
=

pðbyjm1Þ
pðbyjm2Þ (Equation 15)
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=

� jY j
m1

�� 1P
S˛Pm1

ðYÞ

�Q
j

P
y˛SCy;ŷj$

1

m1

�
� jY j
m2

�� 1P
S˛Pm2

ðYÞ

�Q
j

P
y˛SCy;ŷj$

1

m2

� : (Equation 16)

So far, we assumed that pðbyj��yÞ = Cy;ŷj
, i.e., we estimated this distribution on the test dataset. However, because our test set is

finite we can not expect that the estimated error rates perfectly transfer to other datasets. To relax our assumptions about this dis-

tributionwe simulated additional errors, by incorporating additive smoothing on the counts of neuronsNy;ŷ that have true transmitter y

and were predicted as transmitter by, i.e.,:
~Cy;ŷ =

Ny;ŷ+bP
ŷNy;ŷ+6b

; (Equation 17)
where b˛N0 is the smoothing parameter. With Cy;ŷ =
Ny;ŷP we

ŷNy;ŷ

then have

~Cy;ŷ =

Cy;ŷ+
bP
ŷNy;ŷ

1+6
bP
ŷNy;ŷ

=
Cy;ŷ+a

1+6a
(Equation 18)
and a˛R the count normalized smoothing parameter. In the li
R 0 mit of a/N, ~Cy;ŷ approaches the uniform distribution with proba-

bility 1=6 for each transmitter, whereas a value of a = 0meanswe recover the observed confusionmatrixC. With this our distributions

are now parametrized by a and the Bayes factor becomes:

Km1 ;m2
=

R
a
pðby;ajm1ÞpðaÞdaR

a
pðby;ajm2ÞpðaÞda (Equation 19)
=
~pðbyjm1Þ
~pðbyjm2Þ , (Equation 20)
where ~pðbyjmÞ is as defined in 14 but with C ^ replaced with its e
y;yj
xpected value EpðaÞ½ ~Cy;ŷj

�.
The prior distribution on a, pðaÞ allows us to encode our prior knowledge about a and use it to weight the likelihood of the corre-

sponding model. Given the data, a value of a = e with epsilon small (0< e � 1), should be most probable, while the probability of

values a> e shouldmonotonically decrease aswe deviatemore from the observed confusionmatrix. Values of a< e should have prob-

ability zero, because they correspond to the un-smoothed confusion matrix with zero entries, i.e., a probability of zero for mis-clas-

sification of certain transmitters. While these probabilities may be small, they are likely greater than zero and an artifact caused by the

finite test set. Many distributions fulfill these criteria, in particular the family of exponential distributions with rate parameter l:

pðaÞ =

�
le� lða� eÞ aR e

0 a< e
: (Equation 21)

Thus l controls theweight for smoothing parameter a in the integral EpðajMÞ½ ~CðaÞy;ŷj � =
R
a

~Cy;ŷj
pðaÞda. For l/0, the expected confu-

sion matrix approaches the unweighted average of all CðaÞ in the integration range. For l/N, the expected confusion matrix ap-

proaches the e-smoothed confusion matrix ~Cy;ŷ =
Cy;ŷ+e

1+6e .

The rate parameter l can also be understood via its influence on the expected average accuracy ~cexp = 1
6

P
iEpðajMÞ½ ~C�i;i. For values

of l/0, the expected accuracy approaches chance level while for values of l/N, the expected accuracy approaches the

e-smoothed, observed accuracy on the test set.

To summarize overall maximum likelihood of number of true transmitters in a given lineage, for a fixed lwe consider a one-versus-

rest Bayes factor:

Km;:m =
~pðbyjmÞP
nsm

~pðbyjnÞ (Equation 22)

Identification of ultrastructural features
We identified ultrastructural features by visualizing relevant differences between pairs of transmitters. To this end, we trained

CycleGANs72 to translate original images of presynapses from one transmitter to counterfactual images of another transmitter. Since
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a single CycleGAN can translate images in both directions (e.g., the same CycleGAN can be used to translate GABA / glutamate

and glutamate/GABA), this required training of a total of 15 CycleGANs to translate each of the six transmitters into any other trans-

mitter. Each CycleGAN was trained on the same FAFB training dataset we used to train our synapse classifier, but limited to 2D im-

ages for efficiency.

For each pair of transmitters ði; jÞ, we then translated each original synapse image of class i into a counterfactual image of class j.

We confirmed that the translation was successful by classifying both the original and counterfactual image. To this end, we retrained

our synapse classifier on 2D images as well and only kept a pair of images if the original image was correctly classified as i and the

counterfactual as j, with a score of at least 0.8 for each. For each image pair, we then found the smallest mask such that swapping the

contents of this mask between the original and counterfactual image flips the classification (details of this procedure are given in71).

We then sorted all image pairs by the size of this mask and visually inspected the 40 pairs with the smallest mask between each pair of

transmitters (Data S8).

We took note of visual differences between the original and counterfactual images within the masked region to obtain hypotheses

about ultrastructural features. Crucially, we only included differences that were symmetric between translations: for each observed

difference, we required that the difference is visible when translating from class i to j, as well as the inverse when translating from j to i.

Advice for resource users
We have publicly released (Zenodo, https://doi.org/10.5281/zenodo.10593546) our comprehensive results encompassing the entire

central nervous system (FAFB-FlyWire, HemiBrain and MaleVNC). We thank Davi Bock, Eric Perlman and Stuart Berg and the flywir-

e.ai project for helping usmake our preliminary results available to the community via CAVE. We thank Clare Pilgrim, Alex McLachlan

and David Osumi-Sutherland for incorporating our predictions into Virtual Fly Brain. Researchers18,50,65,74,76,90,114,202,208–211 have

already utilized our preprinted results to formulate neurobiological hypotheses. The most reliable predictions align across hemi-

spheres, exhibit cohesion within a cell type, adhere to Lacin’s law and remain consistent across datasets. We have provided two

worked examples of less reliable cases, tackling misprediction among major fan-shaped body classes and antennal lobe local neu-

rons. Considerations for users include: (i) Dale’s law in the insect should be taken asmutually exclusive between acetylcholine, gluta-

mate and GABA usage but we expect co-transmission with both monoamines and neuropeptides to be common. (ii) Confounds will

produce an error rate that may differ between neuron classes. A user can note higher-level features to provide greater clarity, e.g.,

Lacin’s law. Users should scrutinize neuron-level transmitter predictions that do not agree with the majority vote in a hemilineage

(Data S6), in particular, GABA versus glutamate confusions (e.g., Figures 5G and S5A). True deviations may occur for distinct

morphological subsets or among first-born neurons. (iii) Direct inspection of presynapses in EM data can reveal confounds, such

as irregular T-bars or large dense core vesicles for co-transmitted neuropeptides. Unusual-looking presynapses are less likely to

yield trustworthy predictions. (iv) Caution is advised for serotonin results, often indicative of uncertainty, while unreported octop-

amine results may only suggest dense core vesicle use (Figures 2D and S2). (v) One can be more confident in results that are consis-

tent for the same cell type between hemispheres and datasets (Figure 4). Where there is conflict, we often find our FAFB-FlyWire

predictions to bemore reliable. (vi) Given the neuron-level transmitter prediction confidence scoreswe see for well-matched neurons,

we suggest that if users wish to be conservative they could use a stringent neuron-level transmitter prediction confidence score

threshold of � 0.62 and � 0.53 for FAFB-FlyWire and HemiBrain neurons respectively (1 s.d. lower than the mean score among

concurring matches). (vii) One needs also to be wary of the opposite roles glutamate could play in a circuit. (viii) Our model is forced

to select one of the six classes, even if there is no evidence for any of them.

QUANTIFICATION AND STATISTICAL ANALYSIS

All violin plot data is presented as the 25th percentile, the median and the 75th percentile, unless otherwise indicated. Unless other-

wise indicated, all statistical tests were Wilcoxon two-sample tests, unless otherwise indicated. The Bayes analyses performed and

our confidence score calculation are described in our method detail. Statistical comparisons were analyzed R. The N in our analyses

are indicated either in the figure legend or in the figure panels themselves. Our Figure 5A provides the total number of neuronal re-

constructions by dataset (FAFB-FlyWire: 136,927, HemiBrain: 24,666). For Figures 5D–5F, S3E–S3H, and S4) a subset of total central

brain neurons that were skeletonised were used in analysis (FAFB-FlyWire: 88,115, HemiBrain: 11,277). Counts by class, lineage,

hemilineage, cell type and matches between datasets (shared cell_type column) can be found in our supplementary data (FAFB-Fly-

Wire: Data S4, HemiBrain: Data S3). Figures were prepared in R130 using Ggplot2132 and were arranged using Adobe Illustrator.
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Figure S1. Human review of auto-detected presynapses in the FAFB-FlyWire dataset, related to Figures 3 and 2

(A) Empirical cumulative density distribution curve for review of 4,306 automatically detected preynapses from the FAFB-FlyWire dataset. A presynapse com-

prises the synaptic machinery and vesicles on the source neuron’s side of the synaptic cleft. Detected preynapses have a ‘‘cleft score’’ that ranges between 0 to

over 200, which indicates how discriminable the synaptic cleft at the presynaptic site is for the detection network.12 Our threshold of 50 is indicated by a vertical

grey line. Green, determined to be a true presynapse by a human annotator; pink, determined to not be a true presynapse.

(B) Rates of false presynapse detection across cleft scores, transmitter types, and compartments. We sampled�180 for each set of conditions.We sampled�10

presynapses per cleft score bin (width 10), presynaptic transmitter prediction type (columns) and neuronal compartment (rows). Histograms show the number of

presynapses determined to be real (green) or not (red) by a human annotator (A.S.B). Presynapses were reviewed using the flywire interface.17
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Figure S2. Comparing neurons’ transmitter predictions between connectome datasets from separate animals (FAFB-FlyWire and

HemiBrain) and between two hemispheres in the same dataset (FAFB-FlyWire), related to Figures 4 and 5

(A) Left. Scatterplots comparing neuron-level confidence scores in the transmitter prediction of FAFB-FlyWire-right central brain neurons, faceted by the neuron-

level transmitter prediction for the FAFB-FlyWire right side homolog. Individual points colored by their FAFB-FlyWire-left or HemiBrain neuron-level transmitter

prediction. Only 40 (2.5%) disagree with the FAFB-FlyWire left side prediction and 94 (7.7%) disagree HemiBrain. Right, scatterplots comparing neuron-level

confidence scores in the transmitter prediction of HemiBrain dataset central brain neurons. Individual points colored by their HemiBrain side neuron-level

transmitter prediction score. Only 94 (7.7%) disagree with the HemiBrain prediction.

(B) A confusion matrix showing the neuronal cell type level prediction (mode of the neuron-level transmitter predictions per neuronal cell type) for neuronal cell

types in the FAFB-FlyWire and HemiBrain datasets. Cells give the number of cross-matched neuronal cell types we examined, and the number of those present in

the ground truth data for at least one of the two datasets.

(C) A scatterplot showing the correlation between our mean prediction confidence scores for FAFB-FlyWire and HemiBrain neuronal cell types. Each point is a

neuronal cell type identified in both datasets (2626). Green points mean that the transmitter prediction agrees between the two datasets and pink points indicate

disagreement. Scatterplots display Pearson’s product-moment correlation, giving R, the coefficient and the associated p-value.

(D) A look at dopamine predicted neurons. We show two scatterplots using data and predictions from the HemiBrain (upper) and FAFB-FlyWire (lower) datasets.

The proportion of presynapses in each neuron (each point) that are predicted as dopamine (X axis) and serotonin (Y-axis). Neurons that have been predicted as

dopaminergic, or known as dopaminergic from the literature (dark circles), are shown. Those neurons from the ground truth data are circled with a black ring.

Upper brain plot shows neurons known to be dopaminergic (colored by their neuron-level transmitter prediction). The visual systemMi15 neurons are thought to

express dopamine and acetylcholine.39 Lower, brain plot shows neurons strongly predicted to be dopaminergic (>50% of presynapses ‘voting’ for dopamine),

excluding those in the upper plot. Many weakly predicted dopaminergic neurons belong to the central complex and mushroom body, where the density of

presynapses from other neurons may have contributed to possible mis-predictions (see STARMethods). Image inset with orange border shows light-level single

neuron skeletons from MultiColor FlpOut experiments from the FlyCircuit project,212 from the TH-GAL4 line which labels most putative dopaminergic neurons in

the fly brain. All neurons have been transformed onto the right hemisphere of the standard FlyCircuit template brain, FCWB. We have found the FlyCircuit

MultiColor FlpOut data (23513 morphologies) to be unfaithful to the expected expression patterns for Cha-GAL4 (cholinergic neurons), vGlut-GAL4 (gluta-

matergic neurons) and Gad1-GAL4 (GABAergic neurons) and therefore of limited use in assigning transmitters, but provide the data for monoamines here to give

the reader some impression of what whole brain expression patterns may look like.

(E) Same as a, but for serotonin predictions. Some PPL101-6 neurons are may co-express dopamine and serotonin but are predicted as dopaminergic. Some

known serotonergic neurons have low proportions of presynapses predicted as serotonergic. Flycircuit neurons from the Trh-GAL4 driver shown in inset. Trh is

involved in serotonin biosynthesis.

(F) Same as a, but for octopamine predictions. Flycircuit neurons from the Tdc2-GAL4 driver shown in inset, which labels putative octopaminergic and tyr-

aminergic neurons. Most octopamine neurons have been identified in prior work. Many of our octopamine predictions (no dark circle) indicate neurons that

express some other dense core vesicle transmitter in abundance, for example, PI neurons which express an insulin-like peptide. Interestingly, the putative

octopaminergic aMe14b neurons138 (also known asOA-AL2b2 neurons) are predicted for acetylcholine. Busch et al. noted that theymight not be octopaminergic,

as not all neurons in cluster AL2 of NP7088 are OA-immunoreactive, and because OA-AL2b2 (HemiBrain type: aMe14b) was identified in NP7088, but not in tdc2-

GAL4. OA-ASM (HemiBrain type: aMe14b) neurons also are not predicted octopaminergic, but serotonergic. On OA-ASM, Busch et al. note: ‘‘There are 8 OA-

immunoreactive somata localized to the anterior superior medial protocerebrum uniquely labeled by tdc2-GAL4 (the ASM cluster). Yet they are not necessarily

octopaminergic, as there are GAL4-positive neurons without OA-immunoreactivity in this cluster."
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Figure S3. Comparing neuron features across transmitter classes, related to Figure 5

(A) Cable length by neuron-level transmitter prediction.

(B) Mitochondria density by neuron-level transmitter predictions. Violin plots show the number of automatically detected mitochondia135 per micron cubed.

Volume measures per neuron originate from the HemiBrain’s automatically reconstructed 3D neuron volumes.51 A mitochondria detection is currently only

available in the HemiBrain dataset. The mean number of mitochondria per neuron is 245, s.d. 275.

(C) Soma, i.e., neuronal cell body, and (D) nucleus size by neuron-level transmitter predictions. The HemiBrain dataset provides a soma segmentation (left), and

the FAFB-FlyWire dataset provides a nucleus segmentation (right)17,135.

(E) Violin plots of excitation:inhibition balance by neuron-level transmitter prediction and compartment.

(F) Correlation between compartment-level transmitter prediction score for axons and dendrites. Each point is a separate neuron in the HemiBrain dataset,

n = 10,122. 11.0% disagree on the compartment-level transmitter prediction (red). The scatterplot displays Pearson’s product-moment correlation, giving R, the

coefficient and the associated p-value.

(G) Scaled density plot showing the density of input connections onto all FAFB-FlyWire and HemiBrain neurons (facets) at different synaptic weights (X axis, log2).

(H) Scaled density plots showing the max-normalised geodesic distance (the distance along a neuron’s arbour) from input synapses (colored by the source

neuron’s neuron-level transmitter prediction) to the target neurons’ cell body.

(I) Differences in the number of outgoing and incoming connections by neuron-level transmitter prediction. The input and output degree for a neuron is the number

of unitary connections it has incoming and outgoing, respectively (the number of synaptic pairs, regardless of synaptic weight). All source-target connections with

a synaptic count R 10 included. Left, boxplots show the distribution of input degrees by the target neurons’ neuron-level transmitter prediction. Right, output

degrees by the source neurons’ neuron-level transmitter prediction. A subset of total central brain neurons that were skeletonized (see STARMethods) were used

for this analysis (FAFB-FlyWire: 88,115, HemiBrain: 11,277).

(J) Breakdown of neuron-level transmitter predictions by brain region in HemiBrain. Plot shows the proportion of synapses in each HemiBrain neuropil that belong

to a neuron of a given neuron-level transmitter prediction (colors). A total of� 4,000,000 were assigned a neuropil and neuron-level transmitter prediction, which

helps buffer erroneous synapse-level transmitter predictions. Number labels give the total number of synapses in each group. Not all the standard neuropils54 are

shown because the HemiBrain only comprises � 1/3 of the central brain. Total number of neuronal reconstructions (see STAR Methods) by dataset: FAFB-

FlyWire: 136,927, HemiBrain: 24,666. (J) Breakdown of neuron-level transmitter predictions by brain region in FAFB-FlyWire. Neuropils54: AB, asymmetric body,

AL, antennal lobe, AME, accessory medulla, AOTU, anterior optic tubercle, ATL, antler, AVLP, anterior ventrolaterla protocerebrum (incomplete in in HemiBrain),

BU, bulb, CAN, cantle, CRE, crepine, EB, ellipsoid body, EPA, epaulette, FB, fan-shaped body, FLA, flange, GC, great commissure (incomplete in HemiBrain),

GNG, gnathal ganglion (incomplete in HemiBrain), GOR, gorget, IB, inframedial bridge, ICL, inferior clamp, IPS, inferior posterior slope, LAL, lateral accessory

lobe, LH, lateral horn, LO, lobula (incomplete in HemiBrain), LOP, lobula plate (incomplete in HemiBrain), ME, medulla (incomplete in HemiBrain), NO1, nodulus

compartment 1, NO2, nodulus compartment 2, NO3, nodulus compartment 3, PB, protocerebral bridge, PLP, posterior lateral protocerebrum, POC, posterior

optic commissure, PVLP, posterior ventrolateral protocerebrum (incomplete), ROB, round body, RUB, rubus, SAD, saddle, SCL, superior clamp, SIP, superior

intermediate protocerebrum, SLP, superior lateral protocerebrum, SMP, superior medial protocerebrum, SPS, superior posterior slope, VES, vest, WED, wedge.

Violin plots show themedian value (dot) and the inter-quartile range (line, 25th to 75th percentiles). Significance values: ns: p> 0.05; *: p%0.05; **: p% 0.01; ***:

p %0.001; ****: p % 0.0001.
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Figure S4. Diversity in targeting by transmitter class and compartment, related to Figure 6
(A) Correlations between opposing input transmitter types by compartment. Plots faceted by the source (upstream) neurons’ neuron-level transmitter prediction

(axis values). Colored by the target (downstream) neurons’ neuron-level transmitter prediction. The X axis shows the proportion of a neuron’s input accounted for

by the input type on the axis label. Each dot is one neuron. For calculating the R2 and p-values, neurons for which a proportion on either the X or Y axis fell below

0.1 or above 0.9 were excluded, to remove outlier cases with a very strong input preference.

(B) Equivalent 451 neuronal cell types from the FAFB-FlyWire and HemiBrain datasets clustered by input type. Only neurons for which at least 50%of inputs came

from well-reconstructed and predicted neurons in our 88,115 FAFB-FlyWire neurons or 11,277 HemiBrain neurons were used. For each source neuron to target

neuron connection, we used the identity (neuron-level transmitter prediction), location (neuronal compartment) and normalized connection weight (number of

synaptic contacts made on that compartment / total number of synaptic inputs to the target neuron). We calculated cell type averages, and separated target cell

types by their transmitter prediction and then clustered within each grouping. Heatmaps show the proportion of synaptic input onto the axon (upper horizontal

color bar, red) and dendrite (blue), separated by the neuron-level transmitter prediction for each input (lower horizontal color bar). Each row is a separate neuronal

cell type (see Figure S4C for names). Cell types are grouped by a hierarchical clustering within their neuron-level transmitter prediction class (vertical color

(legend continued on next page)
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bar: acetylcholine, glutamate or GABA) employing Ward’s clustering criterion. This clustering was performed in the HemiBrain dataset and applied to the FAFB-

FlyWire dataset. Dendrogram (left) colors show a split into 30 groups. The same dendrogam is used in both heatmaps. Cosine similarity, z = 0.892, p-

value < 0.0001, 100,000 row shuffles. A subset of total central brain neurons that had been skeletonized (see STARMethods) were used for these analysis (FAFB-

FlyWire: 88,115, HemiBrain: 11,277).
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Figure S5. The distribution of neuron-level transmitter predictions within secondary hemilineages, related to Figure 7

(A) Consistency of neuron-level transmitter predictions within selected hemilineages in the central adult D. melanogaster brain. Bar plots show the proportion of

neurons in each hemilineage predicted to express each of our six transmitters. Data is shown for neurons of the left (left) and right (middle) hemispheres of the

FAFB-FlyWire dataset, as well as both hemispheres of the HemiBrain dataset (right). Note that the HemiBrain dataset is only a partial brain, many brain neurons

have large missing portions or do not exist in this dataset. Hemilineage names are given on the left of the bar plots, and the numbers of neurons per hemilineage

are on the right. The red bar highlights lineages of cholinergic Kenyon cells, MBp1-4, which aremispredicted dopaminergic. The plot is faceted first by presence in

the HemiBrain dataset (intact, truncated, missing), then by lineage type (Type I and Type II).

(B) Empirical cumulative density plot shows how consistent a transmitter within each hemilineage is predicted to be. The Y axis gives the proportion of hemi-

lineages, and the X axis gives the proportion of neurons in those hemilineages that ‘‘voted" for the top transmitter (color groups).

(legend continued on next page)
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(C) How the Shannon entropy (base 6) in the neuron-level transmitter predictions for each hemilineage correlate, between the hemilineage copy on the right (X

axis) and left (Y-axis) hemispheres of the FAFB-FlyWire dataset.

(D) Dot plot shows themean normalized pairwise NBLAST scores47 between neurons expressing themajority transmitter within a hemilineage (for each green dot,

eachmember of pair expresses themain transmitter) and between these neurons and those expressing other transmitters (pink, at least 10 neurons expresses the

other transmitter). Dots represent means taken per hemilineage (183).

(E) Violin plot shows the distribution of neuron-level transmitter prediction confidences for neurons that are in agreement with their hemilineage’s transmitter use

(green, strictly obey Lacin’s law) and those that do not (pink, strictly obey Lacin’s law).

(F) Majority unilateral, left-side antennal lobe local neurons of ‘ALlv1 dorsal’. Neurons colored by their neuron-level transmitter prediction except for a minority of

predicted serotonergic neurons with the most ventral cel bodies, given in purple. These are the most similar to described Krasavietz positive cholinergic local

neurons.63,189 The upper plot shows neurons predicted to transmit acetylcholine with neurons likely mispredicted to transmit serotonin; they have similar primary

neurite and soma positions. We suspect they all should be predicted for acetylcholine. Lower, GABAergic predicted neurons have been added in.

(G) Majority bilateral, left-side antennal lobe local neurons of ‘ALlv2’. Neuron meshes colored by neuron-level transmitter prediction. Data were compared using

Wilcoxon two-sample tests. Significance values: ns: p > 0.05; *: p %0.05; **: p % 0.01; ***: p %0.001; ****: p % 0.0001.
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