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Abstract

Immune checkpoint blockade (ICB) can induce durable cancer remission. However, only a small 

subset of patients gain benefits. While tumor mutation burden (TMB) differentiates responders 

from nonresponders in some cases, it is a weak predictor in tumor types with low mutation rates. 

Thus, there is an unmet need to discover a new class of genetic aberrations that predict ICB 

responses in these tumor types. Here, we report analyses of pan-cancer whole genomes which 

revealed that intragenic rearrangement (IGR) burden is significantly associated with immune 

infiltration in breast, ovarian, esophageal, and endometrial cancers, particularly with increased 

M1 macrophage and CD8+ T-cell signatures. Multivariate regression against spatially counted 

tumor-infiltrating lymphocytes in breast, endometrial, and ovarian cancers suggested that IGR 

burden is a more influential covariate than other genetic aberrations in these cancers. In the 

MEDI4736 trial evaluating durvalumab in esophageal adenocarcinoma, IGR burden correlated 

with patient benefits. In the IMVigor210 trial evaluating atezolizumab in urothelial carcinoma, 

IGR burden increased with platinum exposure and predicted patient benefit among TMB-low, 

platinum-exposed tumors. Altogether, we have demonstrated that IGR burden correlates with T-

cell inflammation and predicts ICB benefit in TMB-low, IGR-dominant tumors, and in platinum-

exposed tumors.
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Introduction

One of the most important breakthroughs in cancer treatment was the development of 

immune checkpoint blockade (ICB) (1,2). However, only up to 12.5% of cancer patients 

receive benefit from such treatments (3). In addition, 10–25% of patients receiving ICB 

experience severe or even lethal immune-related adverse events (irAEs) (4,5) and 4–29% 

of patients experience ICB-induced dramatic acceleration of disease, which is known as 

‘hyperprogressive disease’ (HPD) (6). Thus, predictive biomarkers of ICB responses are in 

high demand to ensure patient benefits and to avoid adverse clinical outcomes.

Besides the commonly used PD-L1 tests, several genetic biomarkers are associated with 

T-cell inflammation and ICB effectiveness, including tumor mutation burden (TMB) (7), 

somatic copy number alternation (SCNA) (8), gene fusions (9), insertion–deletion mutations 

(Indels) (10), and microsatellite instability (MSI) (11). However, none of these genetic 

markers are sufficient to distinguish ICB responders from nonresponders across a broad 

spectrum of cancer types. For example, in triple-negative breast cancer (TNBC), defined as 

breast tumors that lack expression of estrogen receptor, progesterone receptor, and HER2, 

only a small fraction of tumors have high TMB (12), but a much larger fraction of tumors 

are inflamed (13,14). Moreover, TNBC tumors with high T-cell inflammation show lower 

TMB and fewer SCNA (15,16), but respond well to ICB treatment (17). This suggests 

the existence of an unidentified source of neoantigens in TNBC. Similarly, most ovarian 

tumors have low TMB and the IMagyn050 trial showed that TMB was not predictive of 

ICB response in ovarian cancer (18). In esophageal adenocarcinoma (ESAD), TMBhigh 

and MSIhigh tumors account for only 2.4% and <2% of tumors, respectively (19), and 

TMB is neither associated with T-cell infiltration nor does it predict response to ICB (20). 

Additionally, biomarker analysis of the CheckMate649 trial suggested that nivolumab (anti-

PD1) plus chemotherapy resulted in a higher overall survival compared to chemotherapy 

alone in ESAD, regardless of TMB levels (21). Thus, the identification of a new class 

of genetic aberrations that can predict ICB benefits in these cancers is an unmet need in 

oncology.

Here, we propose a new class of biomarker, which estimates the number of cryptic 

intragenic rearrangements (IGRs) from the tumor genome. IGRs result in exon duplications 

or deletions through rearrangements of a genomic distance of tens of kilobases 

(Supplementary Fig. S1). While there are sporadic reports of specific IGRs as oncogenic 

events (22–25), there is a paucity of landscape studies of IGRs in cancer. We conducted 

analyses of pan-cancer whole genomes (26), genomic datasets for breast (27), ovarian 

(28), and esophageal cancers (29), as well as densities of tumor-infiltrating lymphocytes 

(TILs) in histological images from 13 tumor types within TCGA. We demonstrate a strong 

association between IGR burden and T-cell inflammation in breast, ovarian, endometrial, 

and esophageal cancers. Furthermore, we analyzed datasets from two clinical trials 

evaluating ICB: MEDI4736 for esophageal cancer (30) and IMvigor210 for urothelial 

carcinoma (31). IGR burden was associated with ICB responses in patients with esophageal 

cancer and in TMB-low urothelial carcinoma patients who received platinum-based therapy.
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Materials and Methods

Data and preprocessing

The data processing workflow and datasets used in this study are described in 

Supplementary Fig. S1A and Supplementary Table S1 respectively. The IGR burden was 

estimated based on the total number of exon deletions or duplications as detailed below 

(Supplementary Fig. S1B). Fusions were estimated based on the total number of exon 

junctions between two different genes. TMB was estimated based on the total number of 

missense mutations. As shown in Supplementary Fig. S1C, the total number of missense 

mutations was almost linearly correlated with the total number of single nucleotide variants 

(Pearson’s R=0.997, p<2.2e-16, Supplementary Fig. S1C). SCNA was assessed based on 

a previous method (8). Square root transformation was performed for all the genetic 

biomarkers discussed in this study to maintain the outlier distribution within a smaller range.

Estimation of IGR burden

IGRs were estimated from the somatic structural variations in the variant calling format 

files from WGS data and chimeric junction files from RNAseq data. For the ICGC WGS 

data (26), the structural variant (SV) calling files from dRanger-snowman and svfix were 

used in our analyses. For RNAseq data, chimeric junction files are generated using STAR 
aligner v1.8.1 (32). SV junctions were mapped to the exon annotation files of genome 

build GRCh37 for WGS data, or GRCh38 for RNAseq data to identify the aberrant exon 

junctions generated by an IGR. The IGR burden was calculated as the square root of the 

total number of IGRs. Among the datasets analyzed, we found that the size factor, the total 

number of reads per library, showed strong correlation to IGR burden in the datasets with 

read length less than 75bp. This may be due to the fact that to detect IGR, reads that span 

the IGR junction are required to identify the precise IGR junctions. When the read length 

is short, the coverage will have a more substantial effect on detecting the junction reads. 

Thus, for the datasets with short read length (less than 75bp), we scaled the IGR burden 

through dividing by the total number of uniquely mapped reads. For stratification of IGR or 

TMB high/low levels, we used the median as the binary cutoff if skewness was below 3 (a 

skewness greater than 3 indicates absolute non-normal distribution). In the ICGC pan-cancer 

dataset, we used median plus median absolute deviation (MAD) as the binary cutoff as the 

distributions of IGR and TMB values become highly right-skewed (the skewness are 9.69 

and 4.99 respectively) when different cancers were pooled together. This method has been 

previously proven effective in highly skewed data (33).

Expression analysis

CIBERSORT was applied on transcript per million (TPM) expression data to estimate 

populations of infiltrating immune cell types (34). For the estimation of T-inflamed 

signature, we first retrieved the expressions of inflammatory genes (Supplementary Table 

S2). We then used R package singscore/1.14.0 to analyze the single sample signature 

score by rank-based statistics. The cell cycle signature was calculated as the mean of the 

cell cycle gene set (Supplementary Table S2), as previously described (8). Differentially 

expressed genes were calculated using R package limma/v3.50.0 with default parameters. 

The significant genes (p<0.05) were used for pathway analysis. The gene set enrichment 
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analysis (GSEA) using hallmark database was conducted using R packages msigdbr/v7.4.1 
and fgsea/v1.21.0. Hallmark pathways with significantly adjusted p-value are shown in the 

figures.

Statistical analysis

To perform survival analysis on metastatic urothelial carcinoma data (31), we applied the 

Kaplan-Meier plot in R package survival/v3.2.7. In the survival analysis for both TMB 

and IGR, we used multivariable Cox-proportional hazard models. In the survival analysis 

for TMB alone, log-rank test was employed to compare the survival distributions between 

two groups. For comparing the means between two groups, one-sided Wilcox rank-sum 

test was employed to calculate the p values. Receiver operating characteristic (ROC) curve 

was used to evaluate the performances of biomarkers in predicting binary response. The 

composite marker in the IMVigor210 data analysis represents a linear combination of 

normalized IGR burden and TMB. Pearson’s correlation was used for analyzing biomarker 

associations. Benjamini-Hochberg method was used for false discovery rate adjustment in 

pathway enrichment analysis.

Data availability

The genomic data and clinical data used in this study can be retrieved through the links 

provided in Supplementary Table S1. The IGR burden quantification tool and the scripts 

used in this study are available through Github (https://github.com/wangxlab/intragenic-

rearrangement-burden). The dataset, gene list and IGR burden used in this study are 

provided in Supplementary Tables S1, S2, and S3, respectively. All other data generated 

in this study are available within the article and its Supplementary Data Files or upon request 

from the corresponding author.

Results

High IGR burden defines a group of TMB-low cancers entities.

To quantitate IGR burden, we calculated the total number of IGRs from the structural variant 

calls of the pan-cancer WGS dataset provided by ICGC (n = 1,033). An assessment of 

the distributions of IGR burden across distinct cancer types revealed that Breast Cancer 

(BRCA) and Ovarian Cancer (OV) showed the highest median IGR burden, while Low 

Grade Glioma (LGG) exhibited the lowest median IGR burden (Fig. 1A). Next, we 

examined the associations between TMB and IGR burdens in the pan-cancer dataset (Fig. 

1B). We found that tumors showed either a high TMB or a high IGR burden (R=0.09), 

suggesting the existence of two distinct classes of cancers driven by either point mutations 

or IGRs. We then assessed the correlations of TMB and IGR with other classes of genetic 

aberrations (Supplementary Figs S2 and S3). We observed a moderate correlation between 

TMB and Indels (R=0.59, Supplementary Fig. S2A), but independence between high IGR 

and Indels (R=0.05, Supplementary Fig. S2B). In addition, IGR-high tumors tended to 

have a modest level of SCNA, whereas SCNA-high tumors showed low IGR burden 

(R=0.22, Supplementary Fig. S3B). Furthermore, gene fusions resulting from IGRs showed 

a strong correlation with SCNA (R=0.85), but a weak correlation with IGR burden (R=0.30) 

(Supplementary Figs S3C and S3D).
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We then examined the distribution of TMB and IGR burden in different tumor types 

based on their median levels (Fig. 1C). Using the cutoff of one standard deviation above 

the median, selected cancer entities can be grouped into IGR-dominant cancers, such as 

Breast Cancer (BRCA), Ovarian Cancer (OV), Uterine Corpus Endometrial Carcinoma 

(UCEC), and Esophageal Adenocarcinoma (ESAD) or simple mutation (SM)-dominant 

cancers, such as Skin Cutaneous Melanoma (SKCM), Lung Adenocarcinoma (LUAD), 

Colon Adenocarcinoma (COAD), and Bladder Cancer (BLCA). The distribution of Indels 

versus TMB or IGR in different cancer types is shown in Supplementary Figs S2C and S2D.

Genetic aberrations in cancer cells can result in altered protein sequences that can be 

recognized as foreign by T cells, leading to T-cell inflammation (35). To determine 

the associations of TMB and IGR burden with T-inflamed signature, we compared the 

T-inflamed signatures of SM-dominant and IGR-dominant cancers stratified into four groups 

according to their IGR and TMB levels (Fig. 1D, E). In SM-dominant cancer types, the 

vast majority of tumors had low IGR burden, among which the T-inflamed signatures of 

tumors with high TMB were significantly higher than those with low TMB (p<0.001, 

Fig. 1D). Conversely, in IGR-dominant cancer types, the vast majority of tumors had low 

TMB, among which tumors with high IGR burden showed significantly elevated T-inflamed 

signature compared to those with low IGR burden (p<0.001, Fig. 1E). Next, we calculated 

the associations of different types of genetic alterations with T-cell inflammation using a 

multivariate linear regression that includes TMB, Indels, SCNA, fusions, and IGR. This 

analysis revealed that TMB was the most significant covariate to T-cell inflammation in 

SM-dominant cancers (p<0.01), while IGR burden was the most influential covariate on 

T-cell inflammation in IGR-dominant cancers (p<0.01) (Fig. 1F–G, left panels). Analysis 

of variance (ANOVA) demonstrated that when adding IGR on top of other biomarkers, the 

explanation of the variance of T-cell inflammation significantly improved in IGR-dominant 

cancers (p<0.01) but not in SM-dominant cancers (Fig. 1F–G, right panels). To test 

removing the effect of tumor types, we regressed out tumor types and observed that TMB 

or IGR remained the most significant covariates of T-cell inflammation in SM-dominant 

or IGR-dominant cancers, respectively (Supplementary Fig. S4). These data suggest IGR 

burden as the most influential covariate of T-cell inflammation in IGR-dominant cancers.

IGR burden correlates with TILs in TNBC.

To verify our findings that IGR was associated with T-cell inflammation in IGR-dominate 

tumors we analyzed data from an independent breast cancer dataset (n=513, Nik-Zainal 

et al. (27)). We found that TNBC tumors showed a much higher overall IGR burden 

than non-TNBC breast cancers (Fig. 2A). Among TNBC subtypes, basal-like 1 (BL1), 

immunomodulatory (IM), and mesenchymal (M) subtypes showed higher IGR burden 

than basal-like 2 (BL2) and luminal androgen receptor (LAR) subtypes (Supplementary 

Fig. S5A). TNBC tumors with high IGR burden showed significantly higher lymphocyte 

infiltration levels (p<0.05) and mitotic grades (p<0.05), based on histopathological 

evaluations from the original study (27) (Fig. 2B). We then examined immune cell 

compositions in the tumor microenvironment deconvoluted from RNAseq data. Compared 

to tumors with low IGR burden, tumors with high IGR burden showed higher levels 

of CD8+ T cells, M1 macrophages, and effector-memory CD4+ T cells, but a lower 
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level of M2 macrophages, indicating a type-1 antitumor immune response (Fig. 2C). In 

addition, IGRhigh tumors also showed a higher T-inflamed signature, histopathological 

mitotic counts, and homologous recombination deficiency (HRD) scores compared to 

IGRlow tumors (Supplementary Fig. S5B). These data suggest that increased mitosis and 

HRD may contribute to the increased IGR burden in TNBC tumors. Although IGR burden 

positively correlated with HRD score (R=0.58), HRD score showed a modest correlation 

with T-inflamed signature (R=0.11, Supplementary Fig. S5C). On the other hand, SCNA 

showed a positive correlation with HRD (R=0.263), but not with T-inflamed signature 

(R=0.037, Supplementary Fig. S5D). Multivariable linear regression including TMB, Indels, 

SCNA, Fusion, and IGR against T-inflamed signature in TNBC showed that IGR burden 

was the only significant association (p = 0.008), when the confounding effects from other 

genetic variables were removed (Fig. 2D, left panel). On the other hand, TMB and SCNA 

showed minimal association with the T-inflamed signature, which is consistent with previous 

reports (15,16). Next, we tested if adding HRD into the multivariate model would diminish 

the predictive effect of IGR burden. Our result showed that IGR burden was still the only 

significant predictive variable in the model (p<0.05, Supplementary Fig. S5E). This suggests 

that while HRD may associate with both increased SCNA and IGR burden, IGR burden 

appears to be the most important covariate of T-inflammation in TNBC. Furthermore, the 

inclusion of the IGR burden in the composite model containing TMB, Indels, SCNA, and 

fusion significantly improved fitting the model to the T-inflamed signature (Fig. 2D, right 

panel).

Next, we selected important genes for tumor immune responses and examined their 

differential expression in IGR high and low TNBC tumors (Supplementary Fig. S5F). 

The resulting heatmap was stratified by IGR levels and TIL groups. Overall, IGRhigh 

TNBC tumors showed higher expression of these immunologically relevant genes compared 

to IGRlow TNBC tumors. Finally, GSEA comparing IGR high and low tumors showed 

upregulation of pro-inflammatory pathways, such as inflammatory response, IFNγ and 

IFNα responses, and TNFα signaling via NFκB pathways (Fig. 2E, Supplementary Fig. 

S5G).

IGR burden correlates with immune infiltration and durvalumab response in esophageal 
adenocarcinoma.

To confirm these results in another IGR-dominant tumor type, we examined the association 

of IGR burden with the immune microenvironment in an ESAD dataset from the ICGC 

ESAD-UK project (n=100) (29). As in the ICGC analysis, we categorized patients’ tumors 

into four groups based on their TMB and IGR burden values. A trend of increased T-

inflamed signature was observed in IGRhigh tumors compared to IGRlow tumors irrespective 

of TMB levels (Fig. 3A). In addition, IGRhigh tumors had a higher cell cycle signature 

and higher M1 Macrophage and CD8+ T-Cell signatures in selected TMB groups (Fig. 

3A–B). Furthermore, the markers of TILs and key immune checkpoints were significantly 

upregulated in tumors with high IGR burdens in both TMB levels, and this trend was 

more evident in the TMBlow group (Supplementary Fig. S6). Moreover, GSEA revealed 

upregulation of proliferation pathways such as mTORC1 and KRAS signaling, MYC targets, 

G2M checkpoint, and immune response pathways, such as IL2 signaling, inflammatory 
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response, and IFNγ response in IGRhigh tumors (Fig. 3C). Together, these results suggest 

that increased IGR burden is associated with type 1 immune response in ESAD.

To investigate if IGR burden correlated with ICB response in ESAD, we examined data 

from the phase II MEDI4736 trial in which durvalumab, a PD-L1 inhibitor, was evaluated 

in ESAD patients who received prior chemoradiation therapy (30). Our results indicate 

that IGR burden was significantly lower in patients who relapsed, which suggests that IGR 

burden could predict ICB benefits in ESAD (Fig. 3D).

IGR burden is an important correlate of the abundance of TILs in IGR-dominant cancer 
types.

To examine the correlation of IGR burden with abundance of TILs, we gathered spatially 

determined TIL count data for 13 TCGA tumor types, which were quantitated using 

convolutional neural network based on histological images (28). Within the TCGA tumors 

for which both WGS data and spatial TIL counts were available, there were 90 breast 

cancers and 51 endometrial carcinomas, but few or no esophageal and ovarian tumors. 

Multivariate linear regression using all genetic markers against spatial TIL counts revealed 

that IGR burden was one of the most influential predictors of TIL abundance among all 

genetic markers in breast and endometrial cancers. The inclusion of IGR burden in the 

composite model containing TMB, Indels, SCNA, and fusions significantly increased the 

predictive value of the model (Fig. 3E, left and middle panels).

Next, we sought to examine the association of IGR burden with spatial TIL counts in ovarian 

cancer based on a WGS dataset for high-grade serous carcinoma (HGSC) matched with 

spatially determined TIL counts from the MSK-IMPACT cohort (n = 33) (28). Similar to the 

above results, IGR burden was the most significant predictor of TIL abundance among all 

genetic markers and the inclusion of IGR burden to the composite model containing TMB, 

Indels, SCNA, and fusions significantly increased the predictive value of the model (Fig. 3E, 

right panel).

Association of IGR burden with ICB benefit in platinum-exposed metastatic urothelial 
carcinoma.

To further examine whether IGR burden is associated with patient response to ICB 

treatment, we accessed a large clinical trial dataset in which patients with metastatic 

urothelial carcinoma received atezolizumab, mostly following platinum induction (31). 

While urothelial carcinoma is classified as a TMBhigh cancer (Fig. 1C), previous research 

has demonstrated that platinum induction leads to extensive DNA damage and activation 

of the DNA damage repair, which may induce IGRs. We thus compared the distributions 

of IGR burden and TMB in tumor samples collected before or after platinum treatment 

(platinum-naïve or exposed). IGR burden after platinum exposure was indeed higher 

than before treatment, whereas no difference in TMB was observed before and after 

treatment (Fig. 4A). We then correlated IGR burden with PD-L1 expression as measured 

by immunohistochemistry (IHC) in the original study (31). IGR burden was significantly 

increased in the PD-L1 IC2+ group in platinum-exposed tumors but not in platinum-naïve 

tumors (Fig. 4B).
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We next categorized the patients with progressive disease under ICB treatment as non-

responders, and the rest as responders. For platinum-exposed tumors, responders showed a 

significantly higher IGR burden compared to non-responders in TMBlow tumors (Fig. 4C). 

Survival analysis suggested that TMB was predictive of overall survival for platinum-naïve 

tumors but not for platinum-exposed tumors (Supplementary Fig. S7), whereas IGR was 

predictive in platinum-exposed TMBlow tumors (Fig. 4D). No correlation was observed 

between IGR burden and TMB in either the platinum-naïve or exposed tumors (R=0.057 

and −0.109, respectively). Receiver operating characteristic (ROC) curves revealed that IGR 

burden has a higher predictive value (AUROC = 0.736) than TMB (AUROC = 0.582) 

in the platinum-exposed, TMBlow patients. Linear combination of IGR burden with TMB 

resulted in a small increase of predictive value compared to IGR burden alone (AUROC = 

0.757) (Fig. 4E). Furthermore, we also analyzed a clinical dataset for patients with advanced 

melanoma treated with nivolumab (n = 49) (36) and our result showed that IGR burden was 

not predictive of ICB benefit in melanoma, which that had the highest TMB level among 

all cancer entities (Supplementary Fig. S8, Fig. 1C). These data suggest that IGR burden 

is a potential new biomarker for ICB response in certain cancer types when other genetic 

biomarkers such as TMB are not applicable.

Discussion

In this study, we have identified a biomarker of ICB response called IGR burden, designed 

to estimate a category of poorly studied cryptic rearrangements that alter the exon structure 

within a gene. To our knowledge, the association of IGRs with immunotherapy response has 

not been reported in cancer. In fact, large WGS studies cataloging genomic rearrangements 

in cancer have not examined the importance of IGRs rigorously (27,37–39). The key 

difference between IGR and SCNA is that IGR detects cryptic intragenic rearrangements 

that affect exons, which are both balanced and unbalanced. In contrast, SCNA only detects 

unbalanced rearrangements. In addition, the limited coverage of the genomic array is 

deemed insufficient to comprehensively detect IGRs. Thus, SCNA burden based on genomic 

arrays mostly reflects larger-sized unbalanced rearrangements.

Based on our analyses of pan-cancer whole genomes, we identified two groups of cancer 

types that are dominated by either simple mutations or IGRs. We demonstrated that IGR 

burden was a key predictor of T-inflamed signature in IGR-dominant cancers, whereas 

TMB was a pivotal correlate of the T-inflamed signature in SM-dominant cancers. Further 

analyses of breast cancer (Nik-Zainal et al (27)) and esophageal adenocarcinoma (ESAD-

UK (29)) datasets revealed that a high IGR burden correlated with increased T-inflamed 

signature and a type-I immune cellular contexture, including increased CD8+ T cells 

and M1 macrophage. Moreover, through analyses of spatial TIL count data based on 

histopathological images, we showed that IGR burden was a pivotal correlate of TIL 

abundance in breast, endometrial, and ovarian cancers.

Finally, we tested the association of IGR burden with ICB response in two clinical 

trial datasets. We found that IGR burden correlated with patient benefits in the phase 

II MEDI4736 trial for durvalumab in esophageal adenocarcinoma. IGR also predicted 

ICB response and overall survival in TMBlow, platinum-exposed bladder cancer patients, 
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which might be attributed to the increased IGR burden from platinum-induced de novo 
rearrangements. Consistent with this hypothesis, data from some clinical trials suggest that 

ICB following platinum improved patient survival (40). Future experimental studies will be 

required to elucidate the DNA repair defects leading to increased IGR burden.

Taken together, our data showed that IGR burden is a pivotal correlate of T-cell 

inflammation in IGR-dominant cancers. The correlation of IGR burden with ICB response 

provided substantial evidence that IGRs might be immunogenic. It is feasible that de 
novo exon junctions generated by IGRs give rise to neoantigen epitopes, which could 

be recognized by the host immune system. It is notable that current HLA affinity–based 

neoantigen prediction models based on simple mutations have a low accuracy. A recent 

consortium study suggested that only 6% of predicted peptides were found to be recognized 

by patient-matched T cells (41). In addition, another study suggested that the inclusion 

of HLA neoepitope prediction in the TMB model minimally improved the estimates of 

neoantigen burden (42). Thus, we did not include HLA subtyping and HLA neoepitope 

prediction in our IGR burden model. Future experimental studies will be required to identify 

the TILs that react to the neoantigen peptides generated by IGRs in order to establish the 

immunogenicity of IGRs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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SYNOPSIS

IGRs are an ill-studied class of cryptic genomic rearrangements. The authors suggest 

that IGR burden is a pivotal contributor to immune infiltration and a new genetic 

biomarker for immunotherapy response in TMB-low, IGR-dominant tumors, and in 

platinum-exposed tumors.
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Figure 1. The distribution of IGR burden and its association with T-inflamed signature in 
pan-cancer analysis.
(A) The landscape of IGR burden across all ICGC cancer types are shown in violin plots 

based on ascending order of the median of IGR burden in each cancer type. The median 

for each type is indicated as the solid line in the violin plot. (B) Scatter plot of IGR burden 

(x-axis) and tumor mutation burden (y-axis) for all ICGC samples (n=1,033). Tumors were 

colored according to their T-inflamed signatures. (C) Median of IGR burden and TMB in 

each cancer type. Cancer types with their median IGR burden or TMB levels above the 
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cutoffs shown as dotted lines (mean + one standard deviation of all cancer types) on the X or 

Y axis are considered IGR-dominant (red area) or simple mutation-dominant (SM-dominant, 

blue area). (D, E) T-inflamed signatures of four subgroups stratified based on IGR and TMB 

levels in SM-dominant cancers (D) and IGR-dominant cancers (E) The median and whisker 

interval of 10%−90% of each group are shown in the boxplot. P-values were calculated 

using one-sided Wilcox rank-sum test. (F-G) Contributions of different classes of genetic 

markers to T-inflamed signature in SM-dominant cancers (F) and IGR-dominant cancers 

(G). Left panels of F-G, the p-value for each genetic marker in the multivariate model 

containing all genetic markers, when the confounding effects from other genetic variables 

are removed. Right panels of F-G, comparing the composite models containing different 

genetic markers: Y-axis refers to the transformed p-value of the F-test of each composite 

model and different multivariable models are compared using ANOVA. **p<0.01; ‘ns’ 

denotes p>=0.05.
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Figure 2. IGR burden correlates with T-inflamed signature in TNBC.
(A) Violin plot showing the distribution of IGR burden in TNBC and non-TNBC breast 

tumors. The dashed line refers to the median and dotted line indicates first and third 

quantile. (B) Barplots illustrating fractions of TNBC patients with different TIL levels 

(left) and mitotic grades (right). The p-values are calculated using Chi-squared test. (C) 

Jitter plots, with the medians shown in dotted horizontal lines, demonstrate the distributions 

of immune cell fractions deconvoluted using CIBERSORT in IGRhigh (n=45) and IGRlow 

(n=28) TNBC tumors. P-values were calculated using one-sided Wilcox rank-sum test. 
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(D) Correlations of different types of genetic markers with T-inflamed signature in the 

TNBC tumors that have matched WGS and RNAseq data (n=73). Left panel, the p-values 

for each genetic marker in the multivariate model containing all genetic markers. Right 

panel, comparing the composite models containing different genetic markers. **p<0.01. 

(E) Pathway enrichment results from GSEA. The pathways are sorted by the direction and 

logarithm of adjusted p-values from GSEA.
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Figure 3. IGR burden correlates with T-inflamed signature in esophageal adenocarcinoma and 
with spatial TIL abundance in breast, endometrial, and ovarian cancers.
(A) Boxplots showing the distribution of T-inflamed signature and cell cycle signature in 

IGRhigh and IGRlow groups. The median and whisker interval of 10%−90% of each group 

are shown. (B) Dot-plots with the medians shown in dotted horizontal lines, demonstrating 

the distributions of CD8+ T Cell and Macrophage M1 deconvoluted using CIBERSORT 

in IGRhigh and IGRlow tumors. P-values were calculated using one-sided Wilcox rank-sum 

test. (C) Pathway enrichment results from GSEA comparing IGRhigh vs IGRlow tumors. 

The pathways are sorted by the direction and logarithm of adjusted p-values from GSEA. 

(D) Boxplot with 10%−90% interval comparing IGR burdens in the ESAD patients with 
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or without cancer relapse in the MEDI4736 trial testing durvalumab. P-value of one-sided 

Wilcox sum-rank test is shown. (E) The correlations of genetic markers with spatial TIL 

counts in TCGA breast cancer (BRCA) (left), TCGA uterine corpus endometrial carcinoma 

(UCEC) (middle), or high-grade serous carcinomas (HGSC) of the MSK dataset (right). 

Tumors with matched WGS and spatial TIL count data are shown in the figure. Left panels, 

the p-value for each genetic marker in the multivariate model containing all genetic markers. 

Right panels, comparisons of the composite models containing different genetic markers. 

*p<0.05.
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Figure 4. IGR burden predicts ICB responses in metastatic urothelial carcinoma patients with 
low TMB, who received prior platinum therapy.
(A) Dot-plots, with the medians shown in dotted horizontal lines, showing the distribution 

of IGR burden and TMB in tumor samples collected before platinum treatment (platinum-

naïve) or after platinum treatment (platinum-exposed). (B) Boxplots with 10%−90% interval 

showing IGR burden and TMB in platinum naïve and exposed tumors with different PD-L1 

immunohistochemistry levels of immune cells (IC levels). The IC classes were provided 

by the IMVigor210 publication(31).: IC0 (<1%), IC1 (≥1% and <5%) and IC2+ (≥5%). 

(C) Pairwise boxplots comparing the IGR burden in responders (n=16 and 7 for TMBhigh 

and TMBlow, respectively) and non-responders (n=19 and 20 for TMBhigh and TMBlow, 

respectively), stratified by TMB levels. (D) Kaplan-Meier curves of TMBlow patients who 

received prior platinum stratified by median IGR levels of all patients in the IMVigor210 

dataset. Tumor samples were either platinum-naïve (left) or platinum-exposed (right). P-
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values of each biomarker based on multivariate Cox-proportional hazard regression are 

shown in the bottom left for each panel. (E) ROC curves of TMB, IGR and composite 

biomarker scores in platinum-exposed tumors for determining patient response to immune 

checkpoint inhibition. **p<0.01; *p<0.05; ‘ns’ denotes p>=0.05.
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