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Abstract

Recent advances in cancer immunotherapy have highlighted the potential of neoantigen-based vaccines. However, the design of such
vaccines is hindered by the possibility of weak binding affinity between the peptides and the patient’s specific human leukocyte antigen
(HLA) alleles, which may not elicit a robust adaptive immune response. Triggering cross-immunity by utilizing peptide mutations that
have enhanced binding affinity to target HLA molecules, while preserving their homology with the original one, can be a promising
avenue for neoantigen vaccine design. In this study, we introduced UltraMutate, a novel algorithm that combines Reinforcement
Learning and Monte Carlo Tree Search, which identifies peptide mutations that not only exhibit enhanced binding affinities to target
HLA molecules but also retains a high degree of homology with the original neoantigen. UltraMutate outperformed existing state-
of-the-art methods in identifying affinity-enhancing mutations in an independent test set consisting of 3660 peptide–HLA pairs.
UltraMutate further showed its applicability in the design of peptide vaccines for Human Papillomavirus and Human Cytomegalovirus,
demonstrating its potential as a promising tool in the advancement of personalized immunotherapy.

Keywords: human leukocyte antigen; major histocompatibility complex; Reinforcement Learning; Monte Carlo Tree Search; neoantigen
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Introduction
The major histocompatibility complex (MHC) molecules, com-
monly referred to as human leukocyte antigen (HLA), present
processed peptides on the cell surface for T cell recognition [1].
MHC class I molecules, primarily encoded by HLA-A, B and C
genes, are expressed on the surface of almost all nucleated cells.
These molecules mainly bind intracellular peptides that are 8–10
amino acids in length and present them to CD8+ T cells [2–4]. For

eliciting a robust adaptive immune response, antigenic peptides
must be presented at the surface of cells as peptide–HLA (pHLA)
complexes for T cell recognition [5].

Tumor cells often harbor somatic mutations or virally
introduced genetic sequences that are not present in healthy
cells. A fraction of these aberrant sequences produce non-self-
peptides termed neoantigens [6]. These can be presented by
MHC class I molecules, leading toward CD8+ T cells-mediated
cytotoxic tumor destruction. As neoantigens are unique to
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tumor cells [7], they are promising candidates for therapeutic
cancer vaccines [8]. Recent clinical trials have underscored the
feasibility and safety of personalized neoantigen vaccines in
various cancers [9–11]. Yet, the high polymorphism of MHC
molecules and the variability in binding affinity of neoantigens to
different MHC alleles complicate the process of peptide vaccine
design [12].

In the past few years, numerous in silico screening pipelines
have been developed to identify the optimal peptide for peptide
vaccine design. Among various criteria evaluated, most existing
approaches involve searching for peptides with high binding affin-
ity to specific HLA alleles using in silico binding affinity predic-
tion tools [13–19]. A similar strategy has also been applied in
the context of tumor neoantigen design [9, 10, 20–23]. However,
the process of individually searching through numerous peptides
using these tools is inefficient. Moreover, these methods pre-
dominantly rank neoantigen candidates based on their binding
affinity to specific HLA alleles of patients, potentially overlooking
candidates with lesser binding affinity but higher prevalence.
Only a minor fraction of top-ranked antigens have proven their
immunogenicity in experimental setups [24–26]. Triggering cross-
immunity by utilizing peptide mutations that have enhanced
binding affinity for target HLA molecules, while preserving their
homology with the original antigen, can be a promising avenue
for neoantigen vaccine design.

For an 8-mer antigen peptide, with 20 potential amino acids
for each position, it can, in theory, yield 208 candidate mutations,
posing a significant challenge in identifying potentially effective
mutations. Hence, developing an efficient approach to identifying
affinity-boosting peptide mutations is of paramount importance.
Recent advancements in this field include the automatically opti-
mized mutated peptides (AOMP) program [27], published in 2022,
which was based on TransPHLA [27], a transformer-based model
for predicting pHLA binding affinity. However, AOMP utilizes rank-
based heuristic approach, which interprets the attention matrices
from TransPHLA [27] as an indicator of the significance of pHLA
interactions. This can be misleading [28, 29] and may thus result
in its imperfect performance.

Reinforcement Learning (RL) trains agents to optimize long-
term rewards through their interactions with intricate environ-
ments, and it has found applications in various fields, including
robotics [30], game playing [31], finance [32], mathematics
[33] and beyond. Monte Carlo Tree Search (MCTS) [34, 35] is
a heuristic search algorithm used for decision-making. Their
combination has propelled several achievements, including in
game playing like AlphaGo [36], AlphaGo Zero [37] and Muzero [38]
and in protein engineering [39], highlighting their effectiveness
in navigating complex scenarios. In this study, leveraging the
synergies of RL and MCTS, we developed an algorithm that
identifies peptide mutations with enhanced binding affinity to
target HLA molecules while retaining high homology. Unlike
available approaches such as AOMP, which utilizes the attention
matrices for rank-based heuristic methods, we postulate that
the inherent pattern within the attention matrices holds vital
information for mutation selection. By integrating supervised
training based on AOMP’s mutation strategies with unsupervised
RL and MCTS, we evaluated mutation results in an independent
test set comprising 3660 pHLA pairs. By applying UltraMutate
to two candidate peptides derived from human papillomavirus
(HPV) and human cytomegalovirus (HCMV), we demonstrated
the versatile applicability of our methodology in peptide vaccine
design.

Methods
We proposed a novel method called UltraMutate, which consists
of supervised learning of the SL policy network, reinforcement
learning of the RL policy network and MCTS to identify promising
affinity-enhancing peptide mutations for a given non-binding
pHLA pair.

Supervised learning using the AOMP dataset
To identify affinity-enhancing peptide mutations for a given pHLA
pair, we could theoretically utilize RL algorithms from scratch,
without relying on prior expert knowledge. However, this would
require extensive exploration within the entire mutation action
space. Thus, our initial step involved using a supervised learning
(SL) policy network to learn the mutation strategy of AOMP [27].
We employed the AOMP algorithm to mutate peptides that did not
bind to their corresponding HLA molecules within TransPHLA’s
pHLA dataset [27]. This yielded a dataset of approximately 1.8
million pHLA pairs with around 2.7 million AOMP mutations (the
AOMP dataset). The AOMP dataset was subsequently divided into
training, validation and test sets in an 8:1:1 ratio.

Specifically, three distinct attention matrices for a given pHLA
pair were extracted through TransPHLA’s forward pass (Fig. 1A):
(1) the pHLA attention score matrix, obtained from the forward
pass of TransPHLA with the specific pHLA pair as input; (2)
the accumulative attention score matrix, representing the HLA
molecule’s aggregate scores for all peptides matching the length
of the target peptide; and (3) the contribution ratio matrix, rep-
resenting the relative contribution of each amino acid site com-
pared to all possible peptide amino acid sites. Instead of ranking
segments in these attention matrices as was done in AOMP, we
use neural networks to extract useful information from these
attention matrices, along with the embedded matrix of sequences
for peptide and HLA (Fig. 1A).

The SL policy network parameterized by σ (denoted as pσ ) con-
sists of four heads, each processing one of four types of observed
contents, collectively referred to as state s. A softmax layer at the
end provides a conditional probability distribution for all potential
mutation actions, which is a 300-dimensional vector designed to
represent the mutation probabilities for 20 amino acids across a
15-mer peptide.

We employed stochastic gradient ascent to maximize the like-
lihood of the mutation actions a that AOMP selected in state s.

�σ ∝ ∂ log pσ (a|s)
∂σ

Reinforcement learning of the policy network
The second step in the process is aimed to improve the policy
network by policy gradient RL. This process yields the RL policy
network, which has the same architecture and initial parameters
as the SL policy network. In each iteration, the RL policy network
selects mutation actions for randomly sampled pHLA pairs. Each
mutation action is assessed using a reward function. The design
of reward function takes two factors into account: (1) the extent
of change in binding probability brought by a mutation (obtained
through TransPHLA [27]) and (2) the degree to which the mutation
alters the peptide’s homology (Fig. 1). Based on these, the reward
function (r) was formulated as:

r = −rf + ln A + S

S =
{

10 if A ≥ 0.5
0 if A < 0.5
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Figure 1. Overview of UltraMutate’s architecture and workflow. (A) For a given pHLA pair, the SL policy network takes embedded sequences and flattened
vectors from three distinct attention matrices as input. It uses a linear layer to combine features from four input heads to generate a conditional
probability distribution P (s| a) for all possible mutation actions. (B) The interactive environment for the agent, where rewards are given based on the
binding probability of the mutated peptide with the HLA molecule and the homology between the mutated and original peptides. (C) UltraMutate’s
overall workflow includes: (1) supervised learning with the AOMP dataset; (2) fine-tuning the policy network using RL with PPO; and (3) integrating with
an MCTS algorithm to determine the final mutation action.

Here, the term −rf is a fixed negative value of −1 to encourage
the model to identify the desired mutated peptide with minimal
mutation actions. The variable A is the binding probability for the
current pHLA pair as predicted by TransPHLA. The variable S is
a reward that takes the constant value of 10 when the mutated
peptide’s binding probability predicted by TransPHLA meets a
predefined threshold of 0.5, in line with TransPHLA’s default
demarcation between peptides that bind and those that don’t.

We implemented Proximal Policy Optimization (PPO) [40] as
the RL algorithm to train the RL policy network (denoted aspθ ),
tuned from the trained SL policy network. The RL policy network’s
parameter, θ , is updated using stochastic gradient descent to
maximize the objective L.

L (s, a, θk, θ) = min
(

pθ (a|s)
pθk (a|s) Apθk (s, a) , g

(
ε, Apθk (s, a)

))
,
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where

g (ε, A) =
{

(1 + ε) A A ≥ 0
(1 − ε) A A ≤ 0

The advantage Apθ (a| s) is the difference between the Q-value
Qpθ (s, a), the expected return of selection action a in state s and
the value Vϕk (s), the predicted return of state s by the critic
network parameterized by ϕ in the k-th iteration. ε is a hyperpa-
rameter that we set at 0.2, as used in the previous paper [40].

MCTS
After fine-tuning the RL policy network through 15 000 mini-
batches of training, we combine it with a modified MCTS
[34, 35] algorithm to select a mutation by lookahead search.
Starting from the root state, which represents the original non-
binding peptide–HLA pair, the search tree is expanded through
successive mutation actions selected from a given state. In this
search tree, each node representing state s contains edges (s, a)

for all legal mutation actions a. Each edge stores a set of statistics,

{P (s, a) , N (s, a) , R (s, a) , U (s, a) , u (s, a)}

where P (s, a) is the prior probability given by the forward pass of
the RL policy network and N (s, a)is the total number of visits to the
edge (s, a). The rollout value, R (s, a), is defined by R (s, a) = k ln(H)+
β, where H is the homology score of the mutated peptide in the
terminal state sT given a sequence of actions at...T sampled from
the RL policy network pθ at time steps from t to T (the terminal
time step). We set constants k and β at 5 and 2, respectively.
The discounted rollout value for an edge is denoted as U (s, a),
calculated by U (s, a) = 1

N(s,a)
R (s, a). The term u (s, a) is defined as

the following using a variant of the PUCT algorithm [41]:

u (s, a) = cpuctP (s, a)

√∑
N (s, ·)

1 + N (s, a)

At each of these time steps t, an action at is selected to maxi-
mize the sum of U (st, a) and u (st, a), formalized as:

at = argmax
a

(U (st, a) + u (st, a))

The remaining stages of the searching process, specifically
expansion, evaluation and backpropagation, conform to the
established MCTS method [34, 35]. Deploying this variant of MCTS
on each pHLA pair, with a search depth of 10 and 60 simulation
iterations, produces the findings detailed in the Results section.

The overall workflow of the mutation algorithm integrating the
above policy networks and MCTS is illustrated in Fig. 1C.

Structure prediction and molecular docking
AlphaFold2 [42] was utilized to predict the three-dimensional
structures of the peptide and HLA molecule based on their
sequence information. Following the prediction, molecular
docking was performed using the ClusPro server [43–46], which
enabled us to analyze the bonding interactions within the pHLA
complex under consideration. The docking results generated by
ClusPro were then visualized using PyMOL [47], allowing for a
detailed analysis of the interactions between the amino acids of
the peptide and HLA molecule.

Peptide competitive binding assay for HLA-A
molecules
The competitive peptide binding assay was performed as previ-
ously described [48] with minor modifications. Briefly, HMy2.CIR
cell lines expressing HLA-A∗11:01 [49] were collected and then
washed with ice-cold elution buffer (0.131-M citric acid, 0.061-
M Na2HPO4, pH 3.3 and filtered through a 0.22-μm filter) for
1 min, which was followed by immediate neutralization with ice-
cold IMDM-2 medium supplemented with 0.5% bovine serum
albumin (BSA). After centrifugation, the cells were resuspended to
a density of 1 × 106 cells/ml in IMDM-2 medium with 1 μg/ml β2M.
Subsequently, 25 μl of either an unlabeled competitor original
or a mutated peptide (5 or 15 μM) were added to the wells of
a 96-well U-bottom plate, together with 25 μl of an fluorescein
isothiocyanate (FITC)-labeled reference peptide (KVFPKALINK) at
300 nM. The plate was then incubated for 24 h at 4◦C in dark-
ness. Control wells lacking competitor test peptides (the negative
control) and those with an unlabeled positive control peptide
(QVPLRPMTYK) were both included.

After incubation, cells were centrifuged at 600 rpm for 5 min at
room temperature and then washed twice with 100 μl of ice-cold
PBS containing 0.5% BSA. The cell pellets were then resuspended
in 150 μl of PBS for flow cytometry analysis. The competitive
inhibition percentage at 5 μM (5-μM inhibition %) or 15 μM (15-
μM inhibition %) was calculated using the following formula: [1
− (sample % − background %)/(max % − background %)] × 100%
[49]. The term sample % refers to the percentage of FITC-positive
cells in the experimental well; the term background % is the
percentage of FITC-positive cells in the no-peptide control well
and the term max % is the percentage of FITC-positive cells in
wells without competitor test peptides. The IC50 value indicates
the concentration of unlabeled competitor peptide needed to
inhibit 50% of the FITC-labeled reference peptide’s binding, with
an IC50 < 5 μM (5-μM inhibition >50%) indicating a high binding
affinity, an IC50 between 5 and 15 μM (5-μM inhibition <50%
and 15-μM inhibition >50%) indicating an intermediate binding
affinity and an IC50 > 15 μM indicating low or no binding affinity
(5-μM inhibition of 20–50% or 15-μM inhibition of 30–50% means a
low binding affinity; 5-μM inhibition of <20% or 15-μM inhibition
of <30% means no binding affinity).

Results
Evaluation of UltraMutate with other
state-of-the-art methods
To assess UltraMutate’s efficacy in identifying peptide muta-
tions with enhanced binding affinity while minimizing the loss
of homology with the original one, we conducted a comparative
analysis with the AOMP algorithm and the RL-based approach,
PepPPO [50]. We evaluated an independent dataset of 3660 neg-
ative pHLA pairs, covering all 366 different HLA–peptide length
combinations (peptide lengths varying from 8 to 14) available in
TransPHLA’s independent test set [27]. We employed this peptide
selection process to ensure a thorough examination of both meth-
ods across a spectrum of various pHLA combinations, which was
originally introduced in the evaluation of AOMP [27]. UltraMutate,
AOMP and PepPPO were utilized in parallel to identify potential
mutations capable of increasing the peptide’s binding affinity to
the target HLA molecules. The binding affinity of the original
and mutated peptides was assessed using TransPHLA. Mutations
were deemed successful if they resulted in a binding probability
surpassing TransPHLA’s default threshold of 0.5 in less than
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Table 1. Comparison of UltraMutate, AOMP and PepPPO using 3660 test samples

UltraMutate AOMP PepPPO

Successful samples 3640 (99.45%) 3627 (99.10%) 2671 (72.98%)
Samples w. 1 mutation site 1855 (50.68%) 1664 (45.46%) 174 (4.75%)
Samples w. 2 mutation sites 1572 (42.95%) 1563 (42.70%) 771 (21.07%)
Samples w. 3 mutation sites 198 (5.41%) 336 (9.18%) 964 (26.32%)
Samples w. 4 mutation sites 15 (0.41%) 64 (1.75%) 762 (20.82%)
Failed samples 20 (0.55%) 33 (0.90%) 989 (27.02%)

four mutation actions. Among all tested pHLA pairs, UltraMutate
achieved a success rate of 99.45%, surpassing AOMP’s 99.10% and
PepPPO’s 72.98% (Table 1).

In 93.6% of pHLA pairs, UltraMutate identified peptide mutants
with no more than two mutation sites, maintaining a homology
score that exceeded 0.8. This performance surpasses AOMP’s
performance of 88.2%. In contrast, PepPPO identified only 25.8%
of the pHLAs with two or fewer mutation sites. This discrepancy
can be attributed to PepPPO’s training method, which focuses
on optimizing peptide–HLA binding affinity while not considering
the preservation of homology. Therefore, UltraMutate provides a
more effective mutation strategy for conserving the homology
of the original peptide. UltraMutate does take longer compu-
tational time than AOMP and PepPPO in optimizing peptides
(Supplementary Table 1), primarily due to its implementation
of MCTS, which entails running searches using trained neural
networks. In real-world applications, it remains efficient and
practical, especially when deployed in parallel.

UltraMutate’s strategic advantage over attention
weights–based heuristics
We delved deeper into the factors contributing to UltraMutate’s
better performance compared to the rank-based heuristic
approach of AOMP. Unlike UltraMutate, AOMP relies on attention
weights to focus on specific input segments during mutation
processes. However, interpreting these attention weights as
direct contributions can lead to inaccuracies or potential
misinterpretations [28, 29]. Hence, a heuristic algorithm derived
from such interpretations may not always yield the best results.
To evaluate UltraMutate’s effectiveness over such heuristic
strategies, we examined three pHLA pairs as case studies.

For the pairing of the HLA allele HLA-C∗07:01 with the pep-
tide RYEDPDAPL, derived from Human gammaherpesvirus 4, the
heuristic AOMP method prioritized the mutation sites of leucine at
position 9 (9L), tyrosine at position 2 (2Y) and arginine at position
1 (1R) as the first mutation sites, guided by the high accumu-
lative attention scores and contribution ratios corresponding to
these peptide positions with the HLA molecule (Fig. 2). AOMP’s
selection on mutation sites was influenced by two main factors:
the accumulative attention score from all peptides with a length
of nine amino acids and the contribution ratio from the specific
attention matrix for the pHLA pair under study. After the first step
of mutation, AOMP identified some more mutation sites in order
to reach the required binding affinity level, resulting in the final
peptide that met the requirements within two mutation sites in
total.

UltraMutate, however, identified the optimal mutation action,
E3Y, on an alternative mutation site (3E) that did not rank
highest in either accumulative attention score or contribution
ratio (Fig. 2). This strategic selection by UltraMutate highlights its
capability to surpass heuristic methods like AOMP in pinpointing

optimal mutation sites, thus optimizing the peptide’s binding
affinity without the need for extra mutations. This instance is
not unique but is one of many where UltraMutate consistently
outperformed the attention weights–based strategy of AOMP
(Supplementary Figures 1 and 2). These examples provide
evidence of UltraMutate’s superior ability in identifying optimal
mutation actions by leveraging the inherent pattern within the
attention matrices.

Application of UltraMutate in HPV and HCMV
peptide vaccines
UltraMutate’s efficacy was further evaluated in the context of
potential peptide vaccine design. Human papillomavirus (HPV) is
the most prevalent viral infection of the reproductive tract, with
99.7% of cervical cancers attributable to the virus [51]. Extensive
clinical trials have provided compelling evidence that HPV vac-
cination can significantly reduce the incidence of cervical cancer
[52]. In particular, HPV type 52 has a notable incidence in East Asia,
accounting for 6.5% of invasive cervical cancers in China and 8.7%
in Japan [53]. The high prevalence of this HPV type underscores an
urgent need for its effective therapeutic vaccines.

A peptide sequence, ELQRREVYK, originating from the E6
oncoprotein of HPV type 52, has been recognized as an HLA-
A∗11:01-restricted peptide through an in vitro peptide-binding
assay [54]. However, the binding affinity predicted by NetMHCpan
[55] for this pHLA pair is classified as weak, suggesting its
suboptimal efficacy. Consistently, this pHLA pair does not elicit
positive T-cell responses, as evidenced by its underperformance
in the interferon-gamma enzyme-linked immunospot (IFN-γ
ELISPOT) assay [54]. Considering the high prevalence of HLA-
A∗11:01 allele (21.143%) in the Chinese population [56], identifying
mutations of the ELQRREVYK peptide with enhanced binding
affinity to HLA-A∗11:01 that elicit a robust cross-immune
response could have significant clinical implications.

We employed UltraMutate to this task, which successfully
identified a single mutation, substituting the first amino acid
from E to A (E1A). This mutation yielded the peptide ALQR-
REVYK, which was subsequently predicted as a strong binder to
HLA-A∗11:01 by both NetMHCpan and TransPHLA (Table 2). The
mutated peptide retained substantial similarity to the original
peptide, with a homology score of 0.89. Molecular docking studies
of the original (ELQRREVYK) and mutated (ALQRREVYK) peptides
with HLA-A∗11:01 were conducted using the ClusPro online server
[43–46]. The statistics of contact residues and the structure of
the binding complex visualized with PyMOL [47] further revealed
enhanced binding affinity of the mutated peptide (Fig. 3A). In
contrast, AOMP was unable to generate a mutation within a single
site and required at least two mutation sites to produce a mutated
peptide with a diminished homology score of 0.78.

To further confirm the binding affinity enhancement, we per-
formed a competitive binding assay [48, 49] by introducing the

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae247#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae247#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae247#supplementary-data
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Figure 2. Comparative analysis of UltraMutate and AOMP for the pairing of HLA-C∗07:01 with the peptide RYEDPDAPL. (A) The summary table showing
a ranking of amino acid positions determined by AOMP based on the accumulative attention score and contribution ratio for the original peptide,
where UltraMutate identified another mutation site (3E) that does not have the highest accumulative attention score or contribution ratio. (B) Graphical
representations of amino acid positions in three attention matrices for the pHLA pair extracted through TransPHLA’s forward pass. Mutation sites
selected by AOMP were marked by the corresponding circles.

original or mutated peptides to HMy2.CIR cells expressing HLA-
A∗11:01 [49]. Flow cytometry analysis revealed a leftward shift in
the fluorescence peak for the mutated peptide (Fig. 3B), indicating
its efficient binding to the HLA-A∗11:01 allele. In contrast, the
original peptide showed no discernible shift (Fig. 3B). The bind-
ing affinities and IC50 values are summarized in Fig. 3C, with
the mutated peptide displaying an intermediate binding affinity
within the 5–15-μM range.

We applied UltraMutate to another candidate peptide,
KEVNSQLSL from the IE1 protein of HCMV [57, 58], targeting the

HLA-B∗15:10 allele. The proposed single-site mutation of the first
amino acid K to F (K1F) led to a substantial increase in binding
as predicted by both NetMHCpan and TransPHLA (Table 2). The
mutated peptide, FEVNSQLSL, exhibited an impressive homology
score of 0.89. However, AOMP suggested a peptide with two
mutation sites, resulting in a lower homology score of 0.78. The
structural representations and statistics of contact residues of
the binding complexes for this pHLA pair are also depicted in
Supplementary Figure 3. Collectively, these findings underscore
UltraMutate’s efficacy in scenarios of peptide vaccine design.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae247#supplementary-data
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Table 2. Evaluation of binding potential for peptides derived from HPV and HCMV

Peptide sequence HLA allele NetMHCpan evaluation TransPHLA evaluation

%Rank Bind level Binding probability Binding result

Original peptide (HPV) ELQRREVYK HLA-A∗11:01 1.864 Weak binder 0.003 Non-binding
Mutated peptide (HPV) ALQRREVYK HLA-A∗11:01 0.408 Strong binder 0.995 Binding
Original peptide (HCMV) KEVNSQLSL HLA-B∗15:10 1.002 Weak binder 0.000 Non-binding
Mutated peptide (HCMV) FEVNSQLSL HLA-B∗15:10 0.269 Strong binder 0.993 Binding

%Rank: rank of the predicted binding score compared to a set of random natural peptides introduced by NetMHCpan. Peptides will be identified as weak
binder if the %Rank is above the threshold of the strong binders (by default, 0.5%) but below the threshold of the weak binders (by default, 2%). Binding
probability: the binding probability predicted by TransPHLA. Peptides will be identified as non-binding to the HLA allele if the binding probability is below the
default threshold 0.5.

Discussion
In recent years, several in silico screening pipelines have emerged
to predict the binding affinity between the pHLA pair, which
greatly facilitates the design of peptide vaccines. Notable
tools, including NetMHCPan and NetMHCIIPan, [55] have been
employed in the peptide selection processes for developing
vaccines against pathogens such as Staphylococcus saprophyticus
[19], MERS-CoV [14] and SARS-CoV-2 [13, 16, 17]. Additionally,
HLAPred was utilized in the design of a peptide vaccine against
Dermatophagoides pteronyssinus [18]. While these existing methods
employ in silico binding affinity prediction tools to screen
through numerous candidate antigens, the process of individually
screening for peptides with a high binding affinity for specific HLA
alleles remains inefficient. Moreover, the ranking of candidate
peptides is predominantly based on their binding affinity, which
may neglect candidate pHLA pairs with a higher prevalence
of HLA molecules. Exploring the potential of triggering cross-
immunity by screening peptide mutations with enhanced binding
affinity to target HLA molecules, while preserving homology
with the original one, offers another option, which can be
easily achieved with UltraMutate. Through the integration of
UltraMutate into the existing pipeline of vaccine development,
we envision that it can not only enhance the efficiency of vaccine
candidate selection but also streamline the path toward clinical
translation by prioritizing peptides with greater therapeutic
potential.

By comparing with the rank-based heuristic approach of AOMP,
we revealed potential reasons leading to the better performance
of UltraMutate. AOMP relies on attention weights to identify input
segments for mutation actions. In the optimization of a specific
pHLA pair, AOMP analyzed various attention matrices to prioritize
mutation actions based on their attention weights. This approach
was based on the belief that the values of attention weights
represent the rankings of mutation actions. However, simply
interpreting these attention weights as direct contributions can
be misleading [28, 29]. Hence, a heuristic algorithm derived
from such interpretations may not always achieve optimal
results.

Another recently published work PepPPO shares similarities
with UltraMutate in utilizing RL to identify mutation actions that
enhance peptide binding affinity for a given pHLA pair. However,
we’ve demonstrated that UltraMutate significantly outperformed
PepPPO in the independent test set. The difference in performance
can be attributed to several factors. First, UltraMutate leverages
valuable information from TransPHLA’s attention matrices. In
contrast, PepPPO is trained from scratch without prior knowledge.
Second, the reward function in PepPPO lacks the consideration
for maintaining the homology of mutated peptides, which greatly
impacts its ability in identifying peptide mutations with high

homology scores. Finally, unlike UltraMutate, PepPPO does not uti-
lize MCTS to enhance its mutation action policy, which may limit
its effectiveness in exploring and exploiting the vast mutation
landscape.

One important aspect to consider is the ability of UltraMutate
to generalize across a wide range of HLA alleles. The training
dataset of UltraMutate, derived from TransPHLA, is meticulously
curated from prominent databases including IEDB [59], EPIMHC
[60], MHCBN [61] and SYFPEITHI [62]. This dataset comprehen-
sively encompasses 112 common HLA class I (40 HLA-A, 56 HLA-
B and 16 HLA-C) allele types, effectively covering a substantial
portion of the HLA diversity in population. In practical application,
an individual typically possesses a total of six alleles across the
HLA-A, HLA-B and HLA-C genes. Given the prevalence of these 112
HLA alleles within the population, it is highly probable that an
individual will possess at least one of these alleles included in
the dataset. Thus, we believe that UltraMutate can be generally
used to identify mutated peptides capable of binding to a patient’s
specific HLA alleles.

The strategy of integrating RL with MCTS within the UltraMu-
tate algorithmic framework shows significant potential, likely
beyond the demonstrated scenario of peptide–HLA binding
enhancement. The algorithm’s adeptness at deciphering complex
patterns makes it a versatile tool for tasks requiring a careful
balance between biological function and molecular diversity. The
efficacy of this algorithmic framework has been demonstrated
in other works, notably a recent one that utilized integrated RL
and MCTS for protein engineering [39]. By modulating the protein
structure properties obtained from AlphaFold2, Wang et al. [39]
illustrated the application of such strategy to the generation of
proteins with desired properties. We envision that the strategic
algorithmic foundation of UltraMutate will lead to advancements
in a variety of fields, including drug discovery, genetic research
and beyond.

UltraMutate’s capabilities, while advanced, also come with
certain limitations that offer avenues for future improvement.
The first limitation is the absence of structural information in
UltraMutate’s input. It relies on sequences of peptides and HLA
molecules without considering the three-dimensional configu-
rations that are critical in determining the pHLA interactions.
While prevailing binding prediction models predominantly
focus on sequence information due to the inherent brevity
of peptides binding to MHC, there exists potential benefit in
incorporating structural data into the model. Several algorithms
[63–65] have successfully incorporated structural information for
protein design purposes. To address this, incorporating molecular
dynamics simulations or structural modeling into UltraMutate
could provide a more nuanced understanding of how mutations
may affect the physical interactions between peptides and
HLA molecules. Given that UltraMutate employs TransPHLA
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Figure 3. Binding evaluation of the pHLA complexes for HPV peptides. (A) Visualization of the pHLA complexes for the original (ELQRREVYK) and mutated
(ALQRREVYK) peptides using PyMOL, with the statistics of the bonding interactions at the bottom. (B) Flow cytometry results show a leftward shift in
the fluorescence intensity for the mutated peptide (ALQRREVYK), indicating its enhanced binding affinity to the HLA-A∗11:01 allele in contrast to the
original peptide (ELQRREVYK), which does not exhibit a discernible shift. The negative control is the experiment without competitor peptides, and the
positive control is the one with an unlabeled positive control peptide. (C) Summarized binding affinity and competitive inhibition percentages of peptides
with the HLA-A∗11:01 allele.

to evaluate the binding affinity of pHLA pairs, and TransPHLA
performs well without structural data, the lack of this information
may have a minimal impact on UltraMutate’s capabilities.
Nonetheless, such integrative approaches may further refine the

predictions, making them more robust and applicable to real-
world scenarios.

Another limitation pertains to UltraMutate’s assessment of
peptide homology solely based on sequence similarity, which
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may not always translate to biological equivalence. Furthermore,
UltraMutate focuses on HLA binding affinity without direct con-
sideration of whether the resultant pHLA pair will activate T
cells and elicit a cross-immune response. To bridge this gap,
future iterations of UltraMutate could integrate sequence anal-
ysis with structural epitope mapping, potentially employing algo-
rithms that consider the interactions between peptide–HLA pairs
and T cell receptors to predict the immunogenicity of peptides.
Integration of T cell receptor modeling and epitope prediction
tools into the UltraMutate framework could provide a more com-
prehensive assessment of the peptide’s ability to initiate an adap-
tive immune response, moving closer to a biologically relevant
measure of peptide vaccines.

Conclusion
In this work, we present UltraMutate, an algorithm that leverages
the power of RL and MCTS to identify peptide mutations.
UltraMutate not only enhances peptide’s binding affinity to
target HLA molecules but also maintains a high degree of
homology with the original peptide. Our results demonstrate
that UltraMutate outperforms existing heuristic approaches like
AOMP and RL-based approaches such as PepPPO in identifying
mutations that may enhance the immunogenic potential of
neoantigens. Using HPV and HCMV peptides as examples, Ultra-
Mutate demonstrated its efficacy in the development of peptide
vaccines.

The integration of RL with MCTS equips UltraMutate with a
robust mechanism for navigating the vast mutation landscape
more effectively than other state-of-art competitors. The current
version can be seamlessly integrated with the existing pipelines
for peptide vaccine development and is a stepping stone toward
a comprehensive peptide vaccine design tool that is designed to
potentially elicit an immune response. This could represent a
significant advancement in the field of neoantigen-based vac-
cine design and a promising step toward personalized cancer
immunotherapy.

Key Points

• In the pursuit of effective neoantigen-based vaccines,
we introduced UltraMutate, an innovative algorithm
that leverages Reinforcement Learning (RL) and Monte
Carlo Tree Search (MCTS), aiming to identify peptide
mutations that not only demonstrate improved binding
affinities to target HLA molecules but also maintain a
significant degree of homology with the original peptide.

• UltraMutate utilized the attention information gener-
ated by TransPHLA to identify affinity-enhancing pep-
tide mutations. Instead of the existing rank-based
heuristic method like AOMP, UltraMutate uses a neural
network to output the probability distribution of muta-
tion actions and combines the policy networks with a
modified MCTS to ensure its performance.

• Demonstrating superior performance on a held-out
test set, UltraMutate validates its efficacy compared
to existing methods such as AOMP and another RL
approach, PepPPO, which lacks consideration for main-
taining homology and does not involve a searching
mechanism.

• UltraMutate showed its applicability in the design
of peptide vaccines for Human Papillomavirus and

Human Cytomegalovirus, demonstrating its potential as
a promising tool in the advancement of personalized
immunotherapy.

Supplementary data
Supplementary data is available at Briefings in Bioinformatics
online.
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