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Abstract Cell death is a major determinant of inflamma-

tory disease severity. Whether cells live or die during

inflammation largely depends on the relative success of the

pro-survival process of autophagy versus the pro-death

process of apoptosis. These processes interact and influ-

ence each other during inflammation and there is a

checkpoint at which cells irrevocably commit to either one

pathway or another. This review will discuss the concept of

the autophagy/apoptosis checkpoint and its importance

during inflammation, the mechanisms of inflammation

leading up to the checkpoint, and how the checkpoint is

regulated. Understanding these concepts is important since

manipulation of the autophagy/apoptosis checkpoint rep-

resents a novel opportunity for treatment of inflammatory

diseases caused by too much or too little cell death.
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Abbreviations

PAMPs Pathogen-associated molecular

pattern molecules

LPS Lipopolysaccharide

TNF-a Tumor necrosis factor alpha

IL-1 Interleukin-1

IFN-c Interferon-gamma

DAMPs Damage-associated molecular

pattern molecules

HMGB1 High mobility group box-1

ATP Adenosine triphosphate

FasL/CD95L Fas ligand

TRAIL/Apo2L TNF-related apoptosis-inducing

ligand

TL1A TNF-like ligand 1A

TLR Toll-like receptors

NOD Nucleotide-oligomerization domain

NLR NOD-like receptors

AIM2 Absent in melanoma-2

ALRs AIM2-like receptors

CLR C-type lectin receptors

RIG-1 Retinoic acid-inducible gene-I

RLR RIG-I-like receptors

TIR Toll/interleukin-1 receptor

MyD88 Myeloid differentiation primary-

response protein 88

MAPKs Mitogen-activated protein kinases

NF-jB Nuclear factor-kappa B

TRIF/TICAM1 TIR-domain-containing adaptor

protein inducing IFN-b
MDA5 Melanoma differentiation-

associated gene 5

LGP2 Laboratory of genetics and

physiology 2

DD Death domain

TRADD TNF-receptor-associated death

domain

FADD Fas-associated DD

SOCS1 Suppressor of cytokine signaling-1

ER Endoplasmic reticulum

PDI Protein disulfide isomerase

UPR Unfolded protein response

GRP78/BiP/HSPA5 Glucose-regulated protein 78

PERK PKR-like ER kinase
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IRE1 Inositol requiring enzyme 1

ATF6 Activation transcription factor 6

ERAD ER-associated degradation

ROS Reactive oxygen species

Nrf2 NF-E2-related factor 2

TNFAIP3/A20 Tumor necrosis factor, alpha-

induced protein 3

mTOR Mammalian target of rapamycin

CoA Coenzyme A

S1P Sphingosine-1-phosphate

PE Phosphatidylethanolamine

CaMKK-b Calmodulin-dependent kinase

kinase beta

AMPK AMP kinase

PCD Programmed cell death

TRAF2 TNF-receptor-associated factor 2

cIAP1 or cIAP2 Cellular inhibitors of apoptosis

LUBAC Linear ubiquitin chain assembly

complex

TAK1 TGF-activated kinase 1

TAB TAK1-binding protein

cFLIP Cellular FLICE-like inhibitory

protein

MLKL Mixed lineage kinase domain-like

DISC Death-inducing signaling complex

MOMP Mitochondrial outer membrane

permeabilization

Apaf-1 Apoptosis protease activating

factor-1

BH3 Bcl-2-homology 3

Smac/DIABLO Second mitochondria-derived

activator of caspase/direct IAP-

binding protein with low PI

HtrA2/OMI Serine protease high-temperature

requirement protein A2

IAPs Inhibitor of apoptosis proteins

UVRAG UV irradiation resistance-associated

gene

DAPK Death-associated protein kinase

DRP DAPK-related proteins kinase

Introduction

Inflammation is a cellular response to stress, injury, or

infection. The idea of inflammation dates to at least the first

century AD when Celsus identified redness (rubor), heat

(calor), swelling (tumor), and pain (dolor) as the cardinal

signs of inflammation. However, we are just now beginning

to understand the molecular basis of inflammation and the

role that it plays in disease. In most cases, inflammation is a

beneficial and physiologic process. Self-renewing tissues,

such as the gastrointestinal tract or skin, are exposed to the

external environment and undergo low-level inflammation

constantly. Under these conditions inflammation acts to

make cells resistant to infection through initiation of cel-

lular defense mechanisms and readies tissues for repair by

activating resident or infiltrating stem cells. When tissues

become damaged, inflammation recruits professional

immune cells to areas of damage and increases their

numbers by activating proliferative programs. It also leads

to limited, controlled cell death to remove infected or

damaged cells and allow tissue healing.

The role of cell death in inflammation is particularly

interesting since inappropriate cell death is linked to many

different inflammatory diseases. Too little cell death can

lead to neoplasia or chronic infection while too much can

lead to organ failure or microbial invasion into normally

sterile tissues. These factors mean that cell death during

inflammation is a complicated and highly regulated pro-

cess. Cellular survival and death mechanisms are

simultaneously activated during inflammation and are

extensively interconnected. These interconnections appear

to be regulated leading to the concept that a ‘‘checkpoint’’

exists that commits cells to either survival or death. When

this checkpoint malfunctions it can lead to inflammatory

disease, but it also represents an opportunity to manipulate

cell survival or death for treatment.

The importance of the autophagy/apoptosis
checkpoint during inflammation

Macroautophagy, referred to as autophagy in this review, is

a process in which intracellular contents are targeted,

engulfed by a double membrane, and transported to lyso-

somes for destruction [1]. It is generally considered a pro-

survival and anti-inflammatory process since autophagy

removes damaged cellular components and destroys

microbial invaders. Apoptosis is the most common and best

characterized form of inflammation-induced cell death [2].

It is a process wherein stressed or damaged cells activate

proteolytic signaling cascades that result in cell death. Both

autophagy and apoptosis are activated by inflammatory

stimuli and compete and interact within cells. The com-

petition is for protein effectors that participate in both

pathways and each pathway generates and destroys com-

ponents that are required for or regulate the opposing

pathway. In the course of this competition and interaction,

the cells reach a tipping point or checkpoint where they

commit to either autophagy or apoptosis with subsequent

survival or death. Regulation of this checkpoint is essential

since both autophagy and cell death have beneficial and

detrimental effects during inflammation.
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Beneficial and detrimental effects of autophagy

Autophagy performs many functions that are essential for

cell survival during inflammation [3]. It preserves energy

availability and removes damaged organelles through

limited cellular catabolism [4]. Removal of damaged

mitochondria is particularly important since they produce

reactive oxygen species and contribute to cell stress and

damage. Autophagy decreases pro-inflammatory signals by

eliminating intracellular organisms, degrading pro-inflam-

matory signaling platforms, and by controlling cytokine

production and release [5]. It also clears or limits the

spread of infection since microorganisms free in the cyto-

sol or encased in phagosomes can be captured and

delivered to lysosomes by autophagy [6, 7]. The net effect

of microbial capture by autophagy is usually anti-inflam-

matory through destruction of pro-inflammatory

components of microbes. However, it also potentially

amplifies inflammation through delivery of cytosolic or

phagocytosed microbially derived components to endo-

somes for innate immune recognition and to endo-

lysosomal compartments for antigen presentation [8–10].

Autophagy-dependent antigen presentation also regulates

adaptive immune cells, which in turn depend on autophagy

for a variety of specialized functions [11].

Though the net effect of autophagy is generally con-

sidered beneficial to cells, it can also have detrimental

effects. For example, autophagy has been implicated in

tumorigenesis and tumor proliferation due to aberrant

survival of transformed cells [12, 13]. In addition, the

autophagic membrane or completed autophagosomes can

be co-opted by intracellular microbes leading to microbial

persistence within infected cells or viral replication utiliz-

ing components of the autophagic machinery [14, 15].

Beneficial and detrimental effects of apoptosis

During infection, cell death can limit the spread of microbes

through direct killing or by depriving them of cellular

resources for survival and replication [16–20]. Microbes

released by dying cells are also exposed to immune detec-

tion by professional immune cells and can be killed through

innate or adaptive immune targeting. This is particularly

important for defense against microbes that have evolved to

evade intracellular killing mechanisms and survive inside

cells [21]. Limited cell death removes damaged cells to

allow healing with restoration of normal tissue or organ

structure and function [22]. This includes programmed

death of activated immune cells that are eliminated to

reduce the numbers of potentially autoreactive cells and

minimize the risk of immune-mediated disease [23].

Inflammation-induced cell death also has the potential to

alert non-affected sites and ready them for assault [24].

While cell death has many beneficial effects during

inflammation, it can also contribute to inflammatory dis-

ease. The death of cells lining epithelial surfaces can lead

to compromised barriers between the organism and the

extracellular environment [25]. This puts the organism at

risk for microbial invasion, exposure to environmental

toxins, or loss of nutrients across the damaged interface.

Death of parenchymal or supporting cell populations

within organs can threaten vital life-sustaining functions

and three-dimensional integrity of those organs [26]. Some

microbes have also found ways to use cell death to their

advantage. Cell death releases intracellular microbes to

infect new cells and death of infected or noninfected cells

can remove barriers to systemic dissemination of

microorganisms [27]. Inflammation-induced death during

infection can also lead to elimination of specific cell pop-

ulations that can potentially kill microbes and

microorganisms can co-opt cellular death mechanisms for

their own purposes [28–30]. Finally, cell death can release

intracellular pro-inflammatory molecules which perpetuate

inflammation and damage beyond the initial threat to lead

to chronic inflammatory disease and pathologic tissue

remodeling [31].

The potential for beneficial and detrimental effects of

both autophagy and cell death means that the mechanisms

that determine whether cells live, or die during inflamma-

tion are highly regulated. Autophagy and apoptosis are two

of the major mechanisms influencing these decisions, so

understanding how these processes are activated, how they

proceed in cells during inflammation, and how they influ-

ence each other, is important in understanding cell death

during inflammation.

Activation of autophagy and apoptosis
during inflammation

Multiple inputs feed into the cell to activate autophagy and

apoptosis during inflammation. The character and kinetics

of each pathway are influenced by the nature of the initial

inflammatory stimulus, the level and duration of inflam-

matory stimulation, and how the cell detects the stimulus.

These factors allow differential cellular outcomes during

the same inflammatory event since different cell popula-

tions may be exposed to different inflammatory stimuli

based on their location within tissues or have different sets

of receptors to sense inflammatory stimuli.

The inflammatory environment

Initial inflammatory stimuli experienced by cells can

originate from invading microbes, the host, or both host

and microbe. Inflammatory stimuli originating from
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microbes primarily consist of pathogen-associated molec-

ular pattern molecules (PAMPs). Microbial PAMPs include

di- and tri-acylated lipoproteins, components of peptido-

glycan, nucleic acids, flagellin, lipopolysaccharide (LPS),

zymosan, b-glycan, a-mannan, glycoinositolphospholipids,

lipoteichoic acid and many others [32].

Upon encountering PAMPs, host cells produce and

release their own pro-inflammatory signals. These include

a huge array of cytokines and chemokines. A discussion of

the role of cytokines in inflammation is beyond the scope

of this review, but a small number of cytokines have been

strongly linked to both autophagy and inflammation-in-

duced cell death. These include tumor necrosis factor alpha

(TNF-a), the interleukin-1 family (IL-1a and IL-1b), and

interferon-gamma (IFN-c) [33–40].

Cells that die during inflammation or certain immune

cells also contribute pro-inflammatory stimuli through

release of intracellular damage-associated molecular pat-

tern molecules (DAMPs). This terminology covers a wide

range of intracellular components that includes high

mobility group box-1 (HMGB1), heat shock proteins, the

S100 family of proteins, adenosine triphosphate (ATP),

uric acid, and many others [41]. DAMPs provide pro-in-

flammatory stimuli in the absence of microbes or potentiate

microbe-induced inflammation.

Host cells also produce death receptor ligands during

inflammatory responses. The founding member of this

family of pro-inflammatory/pro-death molecules was the

cytokine TNF-a, but it now also includes Fas ligand (FasL/

CD95L), TNF-related apoptosis-inducing ligand (TRAIL/

Apo2L), and TNF-like ligand 1A (TL1A) [42].

The range of pro-inflammatory stimuli present during

immune responses means that cells experience a complex

program of inflammatory stimuli, not just a single pro-

inflammatory factor. The pattern, intensity, and duration of

stimuli imparts a range of information that includes the

presence of invading microbes and the outcome of

inflammation in other cells involved in the response.

Level and duration of inflammatory stimuli

The initial wave of inflammatory stimuli is characterized

not only by the types of stimuli present, but also by the

levels and the length of time that they are present in the

inflammatory milieu. This is true for both microbial and

host elements in the inflammatory environment. As the host

response develops, increasing amounts of microbial

PAMPs may be present in the environment due to micro-

bial replication or increased killing. However, successful

responses should lead to PAMP detection for a relatively

short period of time. The long-term presence of PAMPs

within the inflammatory environment indicates a poten-

tially failed response and can change the nature of the cell

types and host pro-inflammatory mediators present in the

inflammatory environment. The number of host cells in the

inflammatory environment also changes over the course of

an inflammatory response. As the response continues, lar-

ger numbers of host cells are recruited into a response

leading to increased amounts of cytokines, chemokines,

and DAMPs in the environment. This also means that the

proximity of cells to the epicenter of the inflammatory

event can influence their response. This is particularly true

of professional immune cells that migrate along chemo-

tactic gradients to reach sites of inflammation [43].

Sensing extracellular-derived signals

of inflammation

Microbial derived pattern molecules and DAMPs are

sensed through a set of intracellular and cell surface

expressed receptors called pattern recognition receptors.

These receptors are classified into five families based on

protein domain homology: toll-like receptors (TLR),

nucleotide-oligomerization domain (NOD)-like receptors

(NLR), absent in melanoma-2 (AIM2)-like receptors

(ALRs), C-type lectin receptors (CLR), and the retinoic

acid-inducible gene-I (RIG-1)-like receptors (RLR) [44].

Toll-like receptors are type I transmembrane proteins

that contain leucine-rich repeats. They recognize bacterial,

viral, fungal, and protozoal PAMPs at the cell surface

(TLR1, TLR2, TLR4, TLR5, TLR6, and TLR11) or in

endosomes (TLR3, TLR7, TLR8, TLR9, and TLR10) [41].

The array of TLR expressed in a given cell is dependent

upon cell type and activation status [45]. Toll-like recep-

tors are also thought to sense DAMPs, either alone or in

complex with microbial components. After ligand binding,

TLR homo- or hetero-dimerize and recruit intracellular

Toll/interleukin-1 receptor (TIR) adaptor molecules via

TIR–TIR interactions [44]. All of the TLR except TLR3

utilize the myeloid differentiation primary-response protein

88 (MyD88)-dependent pathway, which controls the acti-

vation of mitogen-activated protein kinases (MAPKs) and

the transcription factor nuclear factor-kappa B (NF-jB)

[46]. Toll-like receptor 3 and TLR4 utilize the TIR-do-

main-containing adaptor protein inducing IFN-b (TRIF/

TICAM1)-dependent pathway, which mediates type I IFN

production [47]. Activation of NF-jB and MAPK results in

transcriptional upregulation of pro-inflammatory cytokines,

chemokines, interferons and cell survival factors along

with activation of non-transcriptional responses, such as

phagocytosis, autophagy, cytokine processing, and some-

times death [44].

The NLR family consists of at least 22 members,

including the NOD proteins (NOD1 and NOD2) and the

inflammasome-associated NLR (NLRP1, NLRP3,

NLRC4). These are cytosolic sensors that recognize
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PAMPs and DAMPs. NOD1 and NOD2 detect components

of bacterial peptidoglycan whereas inflammasomes detect

Bacillus anthracis lethal toxin, ATP, uric acid, fungi,

bacteria, viruses, bacterial flagellin or certain bacterial type

III secretion systems [41]. Signaling through the NOD1

and NOD2 receptors recruits the adaptor protein RIPK2/

RICK which activates NF-jB and the MAPK pathway

[48, 49]. This leads to pro- and anti-inflammatory changes

in cells that are similar to TLR signaling. Signaling through

inflammasome-associated NLR triggers the assembly of

inflammasomes, multiprotein cytosolic complexes that

cleave and activate pro-caspase 1 [50]. Active caspase-1

cleaves pro-IL-1b and pro-IL-18 into the active forms of

these cytokines [51]. Production of these mature cytokines

requires the coordinated efforts of multiple innate immune

receptors since pro-IL-b and pro-IL-18 are produced in

response to NF-jB activation. Inflammasome assembly

and caspase-1 activation leads to a specific form of pro-

inflammatory death, pyroptosis, in immune cells.

The ALR represents another type of inflammasome. The

founding member of this family is AIM2, which detects

cytosolic DNA [52]. Upon ligand binding AIM2 interacts

with the adaptor ASC and triggers inflammasome assembly

with caspase-1 activation and subsequent activation of the

cytokines IL-1b and IL-18 [53]. As with other inflamma-

somes, caspase-1 activation through ALR leads to

pyroptosis in immune cells.

C-type lectin receptors sense carbohydrates, such as

high mannose, fucose, b-glucan, and a-mannans [54]. This

group includes DC-SIGN, Langerin, Dectin-1, CLEC1 and

CLEC2, Mincle, Mannose receptor, and DEC205. Ligand

binding to CLR can lead to internalization and degradation

of pathogens or receptor-mediated signaling, depending on

the CLR [55]. C-type lectin receptors with signaling

functions activate NF-jB, MAP kinases, and NFAT [44].

There are three members of the RLR family: RIG-I,

melanoma differentiation-associated gene 5 (MDA5), and

laboratory of genetics and physiology 2 (LGP2) [47].

These are DExH/D box helicases that detect foreign RNA

in the cell cytosol [44]. Signaling through RLR leads to

production of pro-inflammatory cytokines and type I IFN

[41].

Cell death receptor ligands are sensed through receptors

of the TNF-receptor superfamily. Some of these receptors

contain a cytoplasmic death domain (DD) and so are

classified as death receptors. In humans, these are: TNF-

R1, CD95 (Fas/APO-1), TRAIL-R1 (DR4), TRAIL-R2

(APO-2/TRICK/DR5, KILLER), DR3 (TRAMP/APO-3),

and DR6 [42]. These receptors fall into two categories

based on their intracellular adaptor protein usage. TNF-R1

and DR3 bind TNF-receptor-associated death domain

(TRADD) and ligand binding generally results in pro-in-

flammatory effects through activation of NF-jB and

MAPK [56]. CD95, DR4, and DR5 bind Fas-associated DD

(FADD) and activate the cell extrinsic pathway of apop-

tosis [56].

The types of inflammatory receptors present on cells

are not uniform across different cell types. This means

that different cells types can experience the same pattern

of inflammatory stimuli in different ways. For example,

different dendritic cell subsets express different compo-

nents of the TLR repertoire which dictate their responses

to PAMPs [43]. The cellular receptor repertoire may also

be influenced by whether cells have been exposed to

multiple waves of inflammation since cells that survive an

initial exposure to inflammatory stimuli may change their

receptor expression in response to that stimulus. For

example, co-stimulation with TLR7 and TLR9 agonists

decreases expression of both TLRs in endosomes of

macrophages via induction of suppressor of cytokine

signaling-1 (SOCS1); whereas LPS significantly up-regu-

lates expression of TLR2 mRNA and protein in the mouse

lung [57, 58]. The sequence in which cellular receptors

are activated can also influence the character of the

inflammatory response. For example, when cells are

stimulated by IFN-c and then TNFa, they have more

robust NF-jB activation than when TNFa serves as the

initial stimulus [59]. This is particularly true of cells that

receive both extracellular and intracellular inflammatory

stimuli. For instance, the ability of macrophages to clear

infection with mycobacteria through autophagy is highly

dependent on the extracellular cytokine environment.

Autophagosome maturation is inhibited by IL-4 and IL-

13, but IFN-c increases autophagosome maturation and

clearance [39, 60].

Sensing intracellular-derived signals

of inflammation

Cells also sense and respond to intracellular changes

during inflammatory responses. The endoplasmic reticu-

lum (ER) is responsible for protein synthesis, folding,

post-translational modification, and transport of the final

protein product to other locations within the cell. It

contains an array of chaperone systems, including gly-

cosidases, Ca2?-dependent chaperones, and members of

the protein disulfide isomerase (PDI) family [61]. Under

normal physiologic conditions, ER chaperones and fold-

ing enzymes ensure that proteins are folded and exported

correctly. This process requires precise control of lumenal

Ca2? concentration, redox homeostasis, and oxygen sup-

ply. When cells experience stress leading to changes in

the conditions within the ER lumen, such as accumulation

of large amounts of unfolded proteins, the ER initiates a

stress response called the unfolded protein response

(UPR) [62]. During the UPR, the intralumenal ER
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chaperone glucose-regulated protein 78 (GRP78/BiP/

HSPA5) is released from its interaction with the intralu-

minal domains of the transmembrane proteins PKR-like

ER kinase (PERK), inositol requiring enzyme 1 (IRE1),

and activation transcription factor 6 (ATF6). This releases

PERK, IRE1, and ATF6 from the ER membrane into the

cytosol and allows them to initiate responses designed to

alleviate ER stress [63].

Inflammation commonly leads to activation of the UPR

through increased production of cellular defense and sig-

naling proteins, such as cytokines or viral-derived proteins

during infection [64, 65]. Additionally, pro-inflammatory

signaling through TLR pathways can directly activate the

ER UPR and suppresses UPR-induced apoptosis [66–68].

Conversely, the UPR can also activate or modulate intra-

cellular pro-inflammatory signaling pathways [69].

The primary function of the UPR is to promote cell

survival by decreasing overall protein synthesis and acti-

vating transcription factors which regulate expression of

genes coding for chaperones, components of the ER-asso-

ciated degradation (ERAD) system, and components of the

autophagy machinery [70]. ER stress-induced increases in

autophagic flux also promote cell survival [71]. However,

prolonged ER stress responses can lead to activation of

pro-apoptotic pathways and cell death [72].

Inflammation can also lead to oxidative stress through

generation of increased reactive oxygen species (ROS).

ROS are small, short-lived, and highly reactive chemical

species derived from incomplete oxygen reduction. The

major cellular reactive oxygen species are superoxide

(O2
-), hydrogen peroxide (H2O2), hydroxyl anions

(OH-), hydroxyl radicals (OH), and hypochlorous acid

(HOCl) [73]. Mitochondria produce ROS as a by-product

of respiration and the ER produces them as part of the

normal protein folding process [74, 75]. During normal

cellular metabolism, ROS are produced at low levels and

act as cellular signaling molecules that promote prolifer-

ation and survival. Inflammation-induced increases in

metabolic demands in the mitochondria and protein

folding demands in the ER lead to increased production

of ROS. ER stress leading to cytosolic calcium flux can

further increase ROS production in the mitochondria [76].

Cells have nonenzymatic and enzymatic antioxidizing

agents to counteract ROS, such as glutathione, thiore-

doxin, superoxide dismutase, catalase and peroxidases

[77]. The transcription factor NF-E2-related factor 2

(Nrf2) is also stabilized under these conditions and

translocates to the nucleus where it leads to up regulation

of a network of cytoprotective and antioxidant genes [73].

When the production of ROS outpaces cellular antioxi-

dant defenses, cells experience oxidative stress which

leads to cellular damage and activates autophagic and

apoptotic pathways [78].

Modulating immune activation

The inflammatory stimuli in the environment and the

receptors present on or in a cell are the main determinants

of inflammatory activation. However, homeostatic states

within cells can also contribute to inflammatory activation

through modulation of these responses. Previous exposure

to low-level inflammatory stimuli, nutrient status, and

oxidative stress all influence outcomes during inflamma-

tory responses [52, 79–82]. These types of factors

determine the intracellular availability of proteins involved

in pro- and counter-inflammatory programs, the availability

of energy necessary to execute these programs, and the

activation state of the programs at the time that the cell

encounters inflammatory stimuli.

When cells are exposed to inflammatory stimuli and

activate NF-jB, one of the products of this pro-inflam-

matory pathway is the anti-inflammatory protein tumor

necrosis factor, alpha-induced protein 3 (TNFAIP3/A20)

[83–85]. Production of TNFAIP3 then restricts responses to

subsequent NF-jB activating stimuli. Since NF-jB sig-

naling influences both autophagy and apoptosis this

influences how these two pathways proceed upon subse-

quent inflammatory stimulation.

Nutrient status can affect immune activation with

respect to autophagy and apoptosis in several ways.

Autophagy was originally described as a cell survival

process activated during starvation. During starvation it can

direct limited cell catabolism to maintain energy avail-

ability. This is regulated by the upstream deactivation of

mammalian target of rapamycin (mTOR) [86]. Therefore,

low energy states are more likely to favor higher autophagy

activity at the time that cells encounter inflammatory

stimuli with the potential to influence the outcome of the

inflammatory response. This is exemplified by studies

showing that mycobacterial clearance through autophagy is

improved when cells are concurrently starved [39].

Starvation-induced autophagy also requires sphin-

golipids and is regulated by the cellular complement of

sphingolipid metabolites present in the cell [87]. Sphin-

golipids are structural membrane lipids that are found in all

eukaryotic cells [88]. They are synthesized de novo in the

ER from condensation of serine and palmitoyl coenzyme A

(CoA) by serine palmitoyl transferase. They can be

degraded in lysosomes by glycosidases or acid sphin-

gomyelinases to form ceramides, which can then be

deacylated to generate sphingosine. Sphingosine can sub-

sequently be recycled back to ceramide or phosphorylated

to form sphingosine-1-phosphate (S1P). Interconversion of

sphingolipid metabolites as well as their rapid turnover

allows them to also act as signaling molecules during

inflammation [89]. Pathogens, oxidative stress, and

cytokines lead to increased levels of ceramide within cells,
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which promotes both autophagy and apoptosis. However,

conversion of ceramide to S1P appears to favor autophagy

over apoptosis [90].

Execution of autophagy and apoptosis
during inflammation

Autophagy and apoptosis are both complex cascades of

protein interactions that alter the cell, sometimes in ways

that influence the function of the opposing pathway. Dif-

ferences in activation can impart an advantage to either

autophagy or apoptosis during inflammation, but the way

these programs are executed is also important to determine

the outcome at the autophagy/apoptosis checkpoint.

Autophagy

The process of autophagy requires the coordinated interac-

tions of over 30 different proteins and is regulated by an even

larger number of additional proteins [91]. It is initiated

through release of Beclin-1 from its association with Bcl-2

and translocation of the ULK1-Atg13-FIP200-Atg101

complex to a source of lipid membrane [4]. The Beclin-1-

Atg14-Ambra1-Vps15-Vps34 (PI3 K) complex then

assembles on this membrane, leading to formation of an

isolation membrane [3]. WIPI proteins are added and then

the Atg5-Atg12-Atg16L1 complex acts to transform it into

phagophore by conjugating LC3 to phos-

phatidylethanolamine (PE) in the membrane [4]. The LC3

lipidation reaction is a key event in autophagy that results

from the concerted actions of a large number of autophagy-

related (Atg) proteins in two ubiquitin-like conjugation

pathways [92]. In the first of these pathways, Atg12 is

activated by Atg7, an E1-like enzyme. The activated Atg12

is then transferred to Atg10, an E2-like enzyme, and finally it

is covalently conjugated to Atg5 [93]. The Atg5-Atg12

conjugate then forms a complex with Atg16L1, which leads

to formation of Atg5-Atg12-Atg16L1 multimers [94].

In the second ubiquitin-like reaction, LC3 is cleaved at

its C-terminal glycine by Atg4 shortly after synthesis

[95, 96]. It is then activated by Atg7, transferred to Atg3,

and finally its exposed glycine forms an amide bond with

PE via interaction with the Atg5-Atg12-Atg16L1 complex

[97].

LC3 bound to the double membrane phagophore loads

targeted cargo into the forming vesicle through interactions

with autophagy adaptor proteins [98]. Then the double

membrane elongates, is sealed to enclose the cargo, and the

completed autophagosome is transported along micro-

tubules to fuse with lysosomes [99]. In classical,

degradative autophagy, this results in digestion of the inner

membrane of the autophagosome and its contents which

are released back into the cytosol as amino acids [92].

Under homeostatic conditions, autophagy is active at

low or basal levels to perform housekeeping functions

[100]. During inflammation, it is induced or upregulated by

a large number of signals related to nutritional status and

inflammation. Toll-like receptor signaling through TLR1,

2, 3, 4, 5, 6, 7, or 9 increases autophagy [101–106]. In this

pathway, autophagy is initiated when the adaptor proteins

MyD88 and TRIF bind to Beclin-1 and decrease its inter-

action with Bcl-2 [103]. In addition, TRAF6, an E3

ubiquitin ligase downstream of TLR4 signaling, can

ubiquitinate Beclin-1 to release it from Bcl-2 [107]. NLR-

related signaling through NOD1 and NOD2 or the

inflammasomes NRLX1 and AIM2 also increases autop-

hagy [108–111]. Finally, the cytokines associated with

inflammation-induced death, TNFa, IL-1a, IL-1b, and

IFN-c, increase autophagy [35, 39, 112, 113].

Intracellular stress also promotes autophagy during

inflammation. Endoplasmic reticulum stress and the UPR

support autophagy through upregulation of genes coding

for autophagy proteins, mTOR inactivation, ULK1/2

complex activation, and PI3K complex activation [114].

Likewise, stress-induced release of Ca2? from the

endoplasmic reticulum activates autophagy via a signaling

pathway involving calmodulin-dependent kinase kinase

beta (CaMKK-b), AMP kinase (AMPK), and mTOR

[115, 116].

Apoptosis

Apoptosis was the first type of programmed cell death

(PCD) described and is still the best characterized. Mor-

phologically, it is distinguished by cell rounding and

shrinkage, chromatin condensation, nuclear fragmentation,

and membrane blebbing [117]. Apoptotic cells also

undergo DNA fragmentation and externalize phos-

phatidylserine on their plasma membrane, although both

the plasma membrane and lysosomal membranes remain

essentially intact. After death, apoptotic cells are rapidly

cleared by phagocytic cells in a process that is generally

considered to be anti-inflammatory. However, if apoptotic

cells are not cleared quickly, they can undergo secondary

necrosis with cytoplasmic swelling, lysosomal membrane

permeabilization, cytoplasmic membrane permeabilization,

and release of active caspase-3 [118]. Secondary necrosis is

then a pro-inflammatory form of cell death [119].

Apoptosis is initiated through the extrinsic or intrinsic

apoptotic signaling pathways [120]. Binding of TNFa,

FasL, or TRAIL to their cognate death domain receptors on

the cell surface activates the extrinsic pathway. TNFa
binding to TNFR1 initially leads to assembly of a pro-
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survival signaling complex called complex I. In complex I,

TRADD, RIPK1, and the E3 ubiquitin ligases TNF-re-

ceptor-associated factor 2 (TRAF2), the cellular inhibitors

of apoptosis (cIAP1 or cIAP2), and the linear ubiquitin

chain assembly complex (LUBAC) assemble. This leads to

ubiquitination of RIPK1 with recruitment of the TGF-ac-

tivated kinase 1 (TAK1)-TAK1-binding protein (TAB)

complex and activation of NF-jB and MAPK [121]. In

sensitized or stressed cells, RIPK1 is deubiqutinated and

complex I is destabilized and replaced with complex IIa

[122]. Complex IIa consists of TRADD, RIPK1, FADD,

cellular FLICE-like inhibitory protein (cFLIP), and an

initiator caspase (pro-caspase-8 or -10). If cFLIP levels are

low, the caspase undergoes activation and directs the cell

toward apoptosis through cleavage of RIP1 and activation

of effector caspases (caspase-3, -6, and -7). These caspases

go on to cleave a number of structural and metabolic

proteins leading to apoptosis. If caspase-8 or 10 activation

is blocked or fails to activate in complex IIa then RIP3 and

mixed lineage kinase domain-like (MLKL) are recruited

into the complex to form complex IIb, which is also called

the necrosome [123]. This complex directs the cell to

undergo programmed cell death with features of necrosis in

what is sometimes referred to as the extrinsic necroptosis

pathway.

Activation of the Fas receptor by FasL or TRAIL-R1 or

TRAIL-R2 by TRAIL leads to assembly of the membrane-

associated death-inducing signaling complex (DISC)

through the adaptor FADD. FADD recruits initiator cas-

pases and cFLIP into the DISC. Initiator caspase activation

then leads to activation of effector caspases and apoptosis.

Downstream of Fas receptor activation, caspase-8 also

cleaves BID and this truncated form (tBID) localizes to the

mitochondria where it triggers mitochondrial outer mem-

brane permeabilization (MOMP) and releases cytochrome

c [124]. Cytochrome c interacts with apoptosis protease

activating factor-1 (Apaf-1) to form the apoptosome and

activate caspase-9 with subsequent cleavage and activation

of executioner caspases [125].

The intrinsic apoptotic pathway is initiated by intracel-

lular stress such as DNA damage, or growth factor

withdrawal. This stress leads to activation of Bcl-2-ho-

mology 3 (BH3) only proteins that antagonize anti-

apoptotic Bcl-2 family members. Bax and/or Bak are

activated which causes them to oligomerize and form a

channel in the mitochondrial outer membrane. Cytochrome

c, second mitochondria-derived activator of caspase/direct

IAP-binding protein with low PI (Smac/DIABLO) and the

serine protease high-temperature requirement protein A2

(HtrA2/OMI) are released into the cytosol through this pore

[126]. The cytochrome c associates with Apaf-1 and cas-

pase-9 to form the apoptosome while Smac/DIABLO and

HrtA2/OMI antagonize the inhibitor of apoptosis proteins

(IAPs). The interaction between Smac/DIABLO and XIAP

relieves its inhibition of caspase-3, -7, and -9 activation

contributing to activation of the effector caspases and

apoptosis [127].

Calpains are calcium-sensitive cysteine proteases that

modify target protein functions through cleavage [128].

They participate in apoptosis through activation of the

initiator caspase, caspase-8, and of the effector caspases,

caspase-7 and -12 [129–133]. Activated calpain-1 also

cleaves Bid and Bax to induce mitochondrial cytochrome c

release and apoptosis [134–137]. Finally, calpain-1 acti-

vates caspase-3 and PARP during TNF-induced apoptosis,

and cleaves Apaf after Ca2? overload in cardiomyocytes

[138].

Endoplasmic reticulum stress also plays a role in

apoptosis. Activation of the UPR is generally considered a

pro-survival response, but in cases where normal ER

function cannot be restored the response is switched from

survival to apoptosis. This involves calcium release from

the ER with subsequent calpain and effector caspase acti-

vation, downregulation of Bcl-2, and increased generation

and release of ROS into the cytoplasm [139].

Autophagic cell death

Autophagic cell death has also been identified as a mech-

anism of programmed cell death. However, whether this is

death due to autophagy or death coincident with autophagy

remains controversial [140]. Many of the original studies

describing autophagy-induced death relied on the obser-

vation of autophagy in dying cells and did not examine

autophagic flux. In autophagic flux studies, the kinetics of

autophagy are examined, which allows distinctions

between fully competent autophagy and accumulation of

autophagosomes due to a failure of autophagy to go to

completion. Many of these studies also relied on chemical

inhibitors of various steps of the autophagic pathway,

which are now known to have additional functions outside

of autophagy [1]. Doubt that this type of death exists was

also increased by a recent study that tested 1400 death-

inducing compounds and found that none killed through

autophagy [141]. Further studies into the relationship

between autophagy and apoptosis may help to clarify

whether this is an independent cause of death due to

excessive autophagy or part of a continuum of cell death in

cells undergoing autophagy.

Interactions between autophagy and apoptosis

While autophagy and apoptosis are often discussed as if

they are two separate pathways, in reality they are exten-

sively interconnected. Both are activated by inflammatory
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stimuli, though differences in the type, duration, or sensing

of inflammation can lead to differences in the kinetics of

the two pathways. Differences in the homeostatic state of

the cells can also favor one pathway over another during

the intracellular execution of inflammation. In the end, the

competition between the two pathways determines whether

a cell survives or undergoes programmed cell death.

Regulation of apoptosis by the process of autophagy

The process of autophagy acts to both increase and

decrease apoptosis. Autophagy limits apoptosis through

degradation of pro-apoptotic stimuli such as damaged

mitochondria or cytotoxic protein aggregates [142–144]. It

limits pyroptosis through destruction of components of the

NF-jB signaling machinery, assembled inflammasomes, or

pro-IL-1b [36, 38, 145–147]. It also degrades activated

caspase-8 to limit TRAIL-induced apoptosis and prevents

accumulation of the BH3-only protein NBK/Bik on ER

membranes to prevent initiation of apoptosis [148, 149].

Alternately, autophagy promotes apoptosis by functioning

as a platform for caspase-8 activation [150–152]. This may

be a mechanism to activate cell death when autophagy is

stalled and cannot go to completion.

Regulation of apoptosis by autophagic proteins

Autophagic proteins also act outside of the autophagic

process to influence apoptosis. Atg12 is involved in the

formation of autophagic membranes through interactions

with Atg5 and Atg16L1. However, it also interacts with

Bcl-2 and Mcl-1 to inhibit their anti-apoptotic activity and

allow caspase activation [153]. Atg7 and Beclin-1 are also

required for caspase-8-induced death, although the mech-

anism has not been elucidated [154]. Conversely, the

autophagic protein UVRAG (UV irradiation resistance-

associated gene) limits MOMP by preventing translocation

of Bax to mitochondria [155].

Regulation of autophagy by apoptotic proteases

Cellular proteases involved in apoptosis are required for

autophagy. Caspase-9 and Atg7 interact, and mutually

influence each other. Atg7 inhibits the pro-apoptotic

activity of caspase-9, whereas caspase-9 facilitates Atg7-

dependent activation of LC3 for conjugation to

autophagosomes [156, 157]. Calpain activity is also

required for initiation of autophagy [158].

Pro-apoptotic proteases can cleave autophagy proteins.

These cleavage events can lead to degradation and loss of

cytoprotective autophagy or they can modify the proteins

to change their function. Beclin-1, Atg3, Atg4, Atg5, Atg7,

Atg9, p62, and AMBRA1 all undergo proteolytic cleavage

[134, 159–169]. Cleavage of Beclin-1 and Atg5 is partic-

ularly interesting since these cleavage events switch both

from pro-autophagic to pro-apoptotic proteins [160, 161].

After cleavage, the pro-apoptotic fragments of Beclin-1

and Atg5 translocate to the mitochondria where they par-

ticipate in cytochrome c release and activation of the

intrinsic pathway of apoptosis.

Apoptosis regulating proteins in autophagy

The autophagic functions of Beclin-1 are inhibited by

interaction with the anti-apoptotic Bcl-2 family members

Bcl-2, Bcl-xL, and Mcl-1 [170, 171]. Likewise, cFLIP

inhibits autophagy by interfering with Atg3 and LC3

interactions [172]. Kinases involved in apoptotic pathways

also play a role in autophagy. Death-associated protein

kinase (DAPK) and DAPK-related proteins kinase (DRP)-1

promotes autophagy through phosphorylation of Beclin-1

to release it from its inhibitor Bcl-2 [173–175].

Autophagy and apoptosis are co-dependent

Although autophagy and apoptosis are antagonistic in

terms of cell survival, the two processes are intertwined

and dependent upon each other. Autophagy and apoptosis

utilize an overlapping set of proteins. This means that

availability of these proteins can affect both pathways

simultaneously. Activation of both pathways, or at least

a subset of proteins in each pathway, is necessary for

either pathway to function. This is in part due to the fact

that proteins modified in one pathway are often required

to modify proteins for function in the opposing pathway.

Transient or permanent protein modifications can also

make proteins in this overlapping set function exclu-

sively in one pathway. These factors suggest that

autophagy and apoptosis promote and limit each other

and that regulatory factors that control the cellular

commitment to either autophagy or apoptosis are likely

to exist.

Regulation of the autophagy/apoptosis checkpoint

Beclin-1 and Atg5 are core autophagy proteins that are also

involved in apoptosis (Fig. 1). Beclin-1 is part of one of

two protein kinase complexes involved in autophagy ini-

tiation, while Atg5 is involved in autophagosome

membrane elongation. Beclin-1 is released from its com-

plex with Bcl-2 to participate in autophagy by JNK

phosphorylation of Bcl-2, DAPK-mediated phosphoryla-

tion of Beclin-1, translocation of the nuclear protein

HMGB1 to the cell cytosol, or competition from other

BH3-only proteins for Bcl-2 binding [176–183]. Atg5 must
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be complexed to Atg12 and Atg16L1 to participate in

autophagy. Sequential reactions with Atg7 and Atg10

covalently conjugate Atg12 to Atg5 and this conjugate

forms a complex with Atg16L1 [97]. If there are high

levels of free Atg5 in the cell, Atg5 can interact with

FADD to promote apoptosis [184].

Beclin-1 and Atg5 can also be cleaved by apoptotic

proteases. Caspases-3 and -6 and calpain-1 cleave Beclin-1
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Fig. 1 Autophagy/apoptosis checkpoint regulation. The presence of

cytosolic HMGB1 pushes cells toward autophagy at the autophagy/

apoptosis checkpoint. It blocks calpain-mediated cleavage of Beclin-1

and Atg5, which preserves their pro-autophagic functions and

prevents their transformation into pro-apoptotic effectors. Under

these conditions, Beclin-1 is released from Bcl-2 and forms a complex

that initiates autophagosome membrane formation. Atg5 is conju-

gated to Atg12 and then this conjugate forms a complex with

Atg16L1. The Atg5-Atg12-Atg16L1 complex participates in elonga-

tion of the autophagic membrane which surrounds targeted cargo,

such as damaged mitochondria. After the autophagic membrane

encloses the cargo, the completed vesicle fuses with lysosomes to

destroy the contents of the autophagosome. This removes pro-

apoptotic stimuli from the cell and allows it to survive inflammation.

In the absence of cytosolic HMGB1, cells are directed toward

apoptosis. Beclin-1 and Atg5 are cleaved and translocate to

mitochondria where they participate in the intrinsic pathway of cell

death. Bax/Bak opens pores in the mitochondrial outer membrane

which releases cytochrome c into the cell cytosol. Cytochrome c

localizes to the apoptosome where it interacts with Apaf-1 and pro-

caspase-9, leading to activation of caspase-9. Active caspase-9 then

activates the effector caspases, caspase-3 and caspase-7. The effector

caspases cleave a number of structural and metabolic targets within

the cell, leading to apoptotic death
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and calpain-1 cleaves Atg5 [159–161]. Cleavage renders

Beclin-1 and Atg5 unable to participate in autophagy and

they are converted to active pro-apoptotic proteins. This

constitutes passage of the autophagy/apoptosis checkpoint

since this change shifts the cells to apoptosis without the

opposition of autophagy. At this point, the cells are com-

mitted to death. Not surprisingly, this cleavage event is

regulated. The nuclear, non-histone DNA-binding protein

HMGB1 is translocated to the cell cytosol by the same

stimuli that activate autophagy and apoptosis [185]. Once

in the cytosol this protein is able to interact with both

Beclin-1 and Atg5 and protect them from calpain-mediated

cleavage conversion into pro-apoptotic proteins [186]. This

prevents activation of apoptosis and preserves autophagy to

favor selection of autophagy at the autophagy/apoptosis

checkpoint.

Conclusions/perspectives

The presence of regulators that switch cells between

autophagy and apoptosis explains how both processes

can be activated, but one gains advantage over the

other during inflammation. HMGB1-mediated protec-

tion of Beclin-1 and Atg5 from calpain cleavage likely

represents only one checkpoint regulator in the decision

making process between autophagy and apoptosis. The

presence of regulators suggests that cells do not com-

mit to autophagy or apoptosis when sensing

inflammation, but rather during the execution of the

inflammatory program. This allows the intracellular

environment and the progress of cell survival efforts to

influence whether cells undergo autophagy or apopto-

sis. It is also advantageous because pathogens

attempting to circumvent cellular defenses are likely to

‘trip alarms’ and the cell can use this information

while calculating whether to live or die.

The idea of an autophagy/apoptosis checkpoint is well-

established and new data suggests that this checkpoint is

directly regulated during inflammation. Additional research

is now needed to identify new checkpoint regulators and

the steps that they influence. One challenge with these

future studies will be distinguishing autophagic and apop-

totic functions for proteins that participate in both

pathways. Genetic knockout of these proteins affects both

autophagy and apoptosis. Studies using Beclin-1 and Atg5

deficient systems have illustrated this conundrum and

suggest that studying specific targeted mutations affecting

either autophagic or apoptotic functions of these proteins

may be necessary to fully understand how they participate

in these processes [173, 187–189].

Another goal of investigations into autophagy/apoptosis

regulators is identification of small molecules or other

treatments that could manipulate the checkpoint to favor

cell survival or death. This could open up exciting new

therapeutic options for a number of chronic diseases. For

example, in diseases with massive inflammation and cell

death, but low risk of intracellular infection, shifting the

checkpoint to favor autophagy over apoptosis could be

beneficial. Diseases in this category would potentially

include inflammatory bowel disease and rheumatoid

arthritis. Conversely, situations wherein disease was related

to inappropriate cell survival or failure of PCD might

benefit from shifting the checkpoint to favor apoptosis over

autophagy. Diseases in this category might include chronic

intracellular infections or neoplasia. Targeting a single

regulator presents an opportunity for shifting the cells

toward or away from death, depending on the desired

outcome. Therefore, identifying proteins that regulate the

autophagy/apoptosis checkpoint and therapies that affect

their functions would be expected to lead to more effective

and precise treatments for a number of chronic inflamma-

tory diseases.
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