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Abstract Parkinson’s disease (PD) is a progressive neu-

rodegenerative disorder implicitly marked by the substantia

nigra dopaminergic neuron degeneration and explicitly

characterized by the motor and non-motor symptom com-

plexes. Apart from the nigrostriatal dopamine depletion,

the immune and endocrine study findings are also fre-

quently reported, which, in fact, have helped to broaden the

symptom spectrum and better explain the pathogenesis and

progression of PD. Nevertheless, based on the neural,

immune, and endocrine findings presented above, it is still

difficult to fully recapitulate the pathophysiologic process

of PD. Therefore, here, in this review, we have proposed

the neuroimmunoendocrine (NIE) modulatory network in

PD, aiming to achieve a more comprehensive interpretation

of the pathogenesis and progression of this disease. As a

matter of fact, in addition to the classical motor symptoms,

NIE modulatory network can also underlie the non-motor

symptoms such as gastrointestinal, neuropsychiatric, cir-

cadian rhythm, and sleep disorders in PD. Moreover, the

dopamine (DA)–melatonin imbalance in the retino-dien-

cephalic/mesencephalic-pineal axis also provides an

alternative explanation for the motor complications in the

process of DA replacement therapy. In conclusion, the NIE

network can be expected to deepen our understanding and

facilitate the multi-dimensional management and therapy

of PD in future clinical practice.
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Abbreviations

CNS Central nervous system

DA Dopamine

DAT Dopamine transporter

DAMP Danger-associated molecular pattern

DR Dopaminergic receptor

GI Gastrointestinal

GR Glucocorticoid receptor

HPA Hypothalamic–pituitary–adrenal

LB Lewy body

LN Lewy neurite

LPS Lipopolysaccharide

LRRK2 Leucine-rich repeat kinase 2

MHC Major histocompatibility complex

MPTP 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyrindine

NIE Neuroimmunoendocrine

NR Nuclear receptor

NLRP3 Nucleotide binding oligomerization domain,

leucine-rich repeat, and pyrin domain

containing protein 3

NF-jB Nuclear factor-kappa B

NSD Nigrostriatal dopaminergic

PD Parkinson’s disease

PRR Pattern recognition receptor

PAMP Pathogen-associated molecular pattern

RBD Rapid eye movement sleep behavior disorder

RDMP Retino-diencephalic/mesencephalic pineal
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REM Rapid eye movement sleep

ROS Reactive oxygen species

SCN Suprachiasmatic nucleus

SNCA a-Synuclein

SN Substantia nigra

SNpc Substantia nigra pars compacta

SSRIs Selective serotonin re-uptake inhibitors

TLR Toll-like receptor

TIDA Tubero-infundibular dopaminergic axis

Introduction

Parkinson’s disease (PD), the main entity of Parkinsonism,

is symptomatically characterized by bradykinesia, muscu-

lar rigidity, static tremor, and postural disturbance, with the

progressive degeneration of nigrostriatal dopaminergic

(NSD) system and presence of Lewy bodies (LBs) in

remnant neurons as the typical pathological hallmarks [1].

As a result of the confirmative dopamine (DA) depletion

and remarkable symptom relief upon DA replacement

therapy, PD has long been conceptualized as a neurode-

generative disease resulting from the NSD system

degeneration. Nevertheless, in spite of the current diag-

nostic and therapeutic emphases largely on the motor

symptomatology, the gradual understanding of non-motor

symptom complexes [2–9] has increasingly interpreted PD

as a multisystem involved syndrome [7, 10], more than a

simple nigrostriatal DA-deficiency disease. To be specific,

the non-motor symptoms suffered by PD patients mainly

include neuropsychiatric symptoms (depression, anhedo-

nia, hallucination, delusions, and dementia), autonomic

symptoms (orthostatic hypotension, bladder disturbance,

and sexual dysfunction), gastrointestinal (GI) symptoms

(constipation, ptyalism, and dysphagia), sensory symptoms

(paraesthesia and hyposmia), sleep disorders (restless leg

and periodic limb movements, rapid eye movement sleep

behavior disorder (RBD), excessive daytime somnolence,

and insomnia), etc. [3].

Given this broad motor and non-motor symptom spec-

trums, we may then wonder what indeed results in these

multisystemic symptoms in PD. Up to now, multitudinous

cellular and molecular mechanisms have been confirmed to

be involved in the neurodegenerative disorder, including

mitochondrial dysfunction, oxidative stress, neuroinflam-

mation, neuroendocrine dysregulation, circadian rhythm

dysfunction, endoplasmic reticulum stress, protein aggre-

gates toxicity, protein degradation impairment, etc.

[11–18]. However, the pathogenic mechanisms presented

above still fail to sufficiently explain the complex motor

and non-motor symptom matrix. To this end, the neuron-

immunoendocrine (NIE) modulatory network has been

proposed in this review to provide a comprehensive inter-

pretation (Fig. 1).

As mentioned above, multiple systems have been con-

firmed to be involved in the symptom spectrum of PD,

which indeed can be further divided into neural, immune,

and endocrine subcategories. Since the up-regulation of

major histocompatibility complex (MHC) was confirmed in

PD patients by Whitton [19], neuroinflammation has been

increasingly recognized to be capable of compromising

NSD neuron survival and hastening disease progression in

PD patients and models [20–24]. Besides, the sustained

inflammatory responses, massive lymphocyte T infiltration,

and remarkable glial cell activation collectively indicate

that the PD is a neuroinflammation-involved non-

dopaminergic neuron autonomous process [25, 26].

Moreover, the fact that parkinsonian symptoms can be

relieved or even reversed by interventional remedies tar-

geting neuroinflammation also corroborates the supposition

[18]. Apart from that, several neuroendocrine dysregulation

events, such as circadian rhythm disorder [27], hypotha-

lamic–pituitary–adrenal (HPA) axis dyshomeostasis [28],

and retino-diencephalic/mesencephalic-pineal (RDMP)

axis disequilibrium [12], have also been proven to con-

tribute to the motor fluctuation and numerous non-motor

symptoms of PD. Therefore, based on this, it can be

speculated that the neural, endocrine, and immune system

Fig. 1 NIE modulatory network in PD: a confluence of neuroinflam-

mation and neuroendocrine systems. The neuroinflammation and

neuroendocrine systems recapitulate the pathophysiologic processes

of PD. Specifically, the former is a convergent point for pro-

inflammatory genetic factors, environmental toxin-induced inflam-

mation, DA depletion, and SNCA accumulation, which collectively

contribute to the neuroinflammatory events in the pathogenesis of PD.

In contrast, the hypothalamic dopaminergic network dysfunction,

circadian rhythm disorder, and brain–gut axis-mediated pathological

dissemination execute as the neuroendocrine nodes to incorporate the

neural and endocrine systems into a symptomatic entity in PD, with

DA and melatonin as the connectors of the NIE modulatory network
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can act in concert to form an integrated circuit by virtue of

shared signaling molecules and receptors [28, 29], thus

precipitating and propelling the pathogenesis and progres-

sion of PD.

Here, in this review, we overview the implication of

neuroendocrine and neuroinflammatory dysregulation

events in detail in the context of PD. Moreover, from a

perspective of NIE modulatory network, the synergistic

effects of neuroendocrine and neuroinflammation implied

in the pathophysiologic process of PD are illustrated as

well (Figs. 1, 5). We expect that the NIE network proposed

in this review can be used to deepen our understanding of

PD and further facilitate the multi-dimensional manage-

ment and therapy in future clinical practice.

Neuroinflammation: a convergent loop implied
in the pathogenesis of PD

Neuroinflammation, a closely regulated host-defense

mechanism, is mainly committed to remove noxious agents

and neutralize exogenous insults. However, researchers

have been once trapped in a dilemma when interpreting the

role of inflammatory responses in neuronal degeneration,

since many of the responses can either promote or inhibit

the neurodegenerative process [30]. Besides, the PD-re-

lated iconic molecules, a-synuclein (SNCA) and DA, have

been proposed to be able to exert neuromodulatory effects

[31–35] depending on a specific condition. Moreover,

neuroinflammation has also been supposed to be a con-

nector in the complex interaction between gene and

environment, predisposing susceptible people to the

development of PD [36]. As a matter of fact, closely

modulated neuroinflammation can neutralize pathogenic

triggers and deter neurodegenerative process, while mal-

adjusted or persistent inflammation can otherwise

contribute to a cascade of events contributing to neuronal

degeneration including PD. Therefore, maladjusted neu-

roinflammation can be proposed as a convergent loop

implied in the complex of genetic risk factors, environ-

ment, DA, and SNCA, executing as a backstage perpetrator

to propel the pathogenesis and progression of PD (Fig. 2).

Genetic risk factors and neuroinflammation

Specific gene mutations, revealed by several genetic stud-

ies, have been confirmed to be correlated with the

pathogenesis of PD partly via neuroinflammation modula-

tion, which includes mutations in SNCA/PARK1, Parkin/

PARK2, PINK-1/PARK6, DJ-1/PARK7, LRRK2/PARK8,

and so on [16, 37–39]. In fact, among the numerous PD-

related genes, at least half of which have been identified to

be associated with neuroimmune responses [39, 40].

Besides, several nuclear receptors also emerge as neu-

roinflammatory regulators, contributing to the

dopaminergic neuronal degeneration [41]. Therefore, it can

be speculated that neuroinflammation can execute as a

convergent downstream pathway for the multifarious

genetic risk factor-mediated onset and progression of PD.

Genes and neuroinflammation

The SNCA gene, either copy multiplication or missense

point mutation, has been proven to be involved in the

familial and sporadic form of PD [42–49]. In the context of

immune system, SNCA acts as a danger-associated

molecular pattern (DAMP) and is capable of stimulating

Toll-like receptors (TLRs) [40]. In particular, misfolded

and fibrillar forms of SNCA are confirmed to activate

microglia via TLR2 and TLR4 [50, 51]. Moreover, it

should be noted that the SNCA gene is also expressed in a

variety of immune cells such as microglia, lymphocyte, and

NK cell [33–35]. In addition, microglia from SNCA null

mice display a more activated phenotype in terms of

morphology and cytokines secretion other than decreased

phagocytic ability [52]. Collectively, these studies

demonstrate that SNCA gene can instigate and foster a pro-

inflammatory milieu, thereby contributing to the neuronal

loss as corroborated in PD (Table 1).

Leucine-rich repeat kinase 2 (LRRK2), a kinase identi-

fied in both autosomal-dominantly inherited and sporadic

PD cases, has been demonstrated to possess remarkable

capability to modulate inflammation in response to differ-

ent pathological stimuli. Moreover, LRRK2 has sizable

homology to the receptor-interacting protein kinases, a

kinase family with confirmed roles in immunity [53]. In the

context of PD, abnormal LRRK2 activities or mutations

can induce microglial cells to transform into a pro-in-

flammatory phenotype following the pathways as follows:

(1) modulating microglia cell activation or phagocytosis

via hyperphosphorylation and hyperpolymerization of

cytoskeleton components such as actin and b-tublin and (2)

accommodating membrane receptors (CD11b and MHC-II)

delivery and inflammatory cytokines expression through

the regulation of transcription factors such as nuclear fac-

tor-kappa B (NF-jB) and interaction and phosphorylation

of vesicle-associated proteins [54]. Hence, LRRK2 has

been perceived as a main perpetrator to sensitize microglias

into a pro-inflammatory state, thereby resulting in exacer-

bated inflammation and even consequent

neurodegeneration (Table 1). Apart from that, mutation

variants at the LRRK2 locus have been demonstrated to be

capable of conferring increased risk to inflammatory bowel

disease (Crohn’s Disease and Ulcerative Colitis) and

leprosy [55–57], two category of disease with remarkable
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inflammatory reaction, which further strengthens the pro-

inflammatory features of LRRK2.

The Parkin gene, encoding a multi-domain protein that

contains E3 ligase activity, is mainly involved in a role of

preventing protein aggregation and promoting mitophagy.

In addition, the function loss of Parkin gene causes auto-

somal recessive form of juvenile PD [58]. Parkin knockout

mice have been revealed to demonstrate increased vul-

nerability to inflammation-related degeneration. Moreover,

persistent peripheral intraperitoneal injection of low dose

of lipopolysaccharide (LPS) in Parkin knockout mice

induces fine motor deficits and dopaminergic neuron loss in

SN [59, 60]. Furthermore, Parkin and PINK1 (PTEN-in-

duced putative kinase 1), two PD-associated mitochondrial

protein, can regulate adaptive immunity via active inhibi-

tion of mitochondrial-derived vesicle (MDV) formation

and mitochondrial antigen presentation (MitAP) [61], thus

suppressing the immune response pathway-induced

inflammation. In fact, just as dopaminergic neurons

become ‘‘visible’’ to the immune system when expressing

MHC class I molecules on their surface in the presence of

pro-inflammatory stimuli [62], the MitAP activation in

Parkin (-/-) dopaminergic neurons would engage recog-

nition by established mitochondrial antigen specific T cell

so as to trigger a cytotoxic response and lead to neuronal

cell death ultimately. In addition, Parkin has been postu-

lated to function as a transcription factor that regulates p53

expression [63], while specifically modified p53 can exe-

cute as a novel regulator of Parkin-mediated neuronal cell

death in sporadic PD [64]. Therefore, the evidences dis-

played above indicate an involvement of Parkin/PINK1 in

inflammation-induced neurodegeneration (Table 1).

The DJ-1 (PARK7) gene, encoding a putative redox

sensor protein that associates with chaperone HSP70 [65]

and D2 receptor [66], is proposed to function as a survival

factor and anti-oxidant protein [67], as well as a RNA

binding protein involved in multiple PD-related cellular

pathways [68]. DJ-1(-/-) mice have been reported to be

hypersensitive to 1-methyl-4-phenyl-1,2,3,6-tetrahydropy-

rindine (MPTP) [69] and to display dopaminergic neuronal

deficits when exposed to environmental toxins [70]. Besi-

des, DJ-1(-/-) or siRNA-mediated knockdown of DJ-1

mRNA in primary embryonic midbrain dopaminergic

neurons also demonstrates increased sensitivity to oxida-

tive stress and proteasomal inhibition [71]. Moreover, LPS

exposure can cause astrocytes derived from DJ-1(-/-)

mice to generate ten times more nitric oxide than that

derived from wild-type mice [72]. These studies suggest

Fig. 2 Microglial activation and dopaminergic neuron death induced

by LPS and MPTP: different pathways and common outcomes.

Microglial activation can be categorized into two types: (1) direct

microglial phenotypic and functional activation by LPS and (2)

delayed reactive microgliosis secondary to MPTP-induced dopamin-

ergic neuron death. LPS can be specifically recognized by microglial

TLR4 and then proceeds to activate downstream pro-inflammatory

pathways, resulting in neuroinflammation-induced dopaminergic

neuron death and amplified microglial activation. In comparison,

MPTP is primitively metabolized into MPP? by astrocytes and then

taken up into dopaminergic neurons via DAT, ultimately leading to

mitochondrial damage, reactive microgliosis, and neuronal death
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Table 1 Neuroinflammation relevant genes in PD

Gene Locus Location Inheritance Phenotype Gene function Neuropathology Reference

SNCA PARK1/

4

4q22.1 AD

Sporadic

Early-onset PD 1. Presynaptic vesicular

neurotransmission

2. Neuroinflammation

modulation

1. Facilitating pro-inflammatory

milieu formation

2. Neurodegeneration in SN

3. Widespread LBs formation

[33–35, 40, 50–52]

LRRK2 PARK8 12q12 AD

Sporadic

Classical PD 1. Neuroinflammation

modulation

2. Dynamic cytoskeletal

regulation

3. Autophagy

accommodation

1. Microglial phenotype switch

(M2–M1)

2. Inflammation exacerbation

3. LBs formation and nigral

neurons loss

[54–57]

Parkin PARK2 6q25.2-

7

AR

Sporadic

Juvenile and early

onset PD

1. Encoding protein

containing E3 ligase

activity

2. Involved in UPS

3. Preventing protein

aggregation and

promoting mitophagy

4. Adaptive immunity

regulation

1. Increase susceptibility to

inflammation-induced

neurodegeneration

2. Absence of LBs

3. Dopaminergic neuronal loss in

SN

[58–61]

PINK1 PARK6 1p36.12 AR Early-onset PD 1. Encoding PTEN-induced

putative kinase 1

(mitochondrial kinase)

2. Stabilize mitochondrial

function during episodes

of cellular stress

3. Adaptive immunity

regulation

1. Increase vulnerability to

neuroinflammation

2. Dopaminergic neuron loss in

SN

3. Far-ranging LBs formation

[61, 62]

DJ-1 PARK7 1p36.23 AR Early-onset PD 1. Encoding the redox

sensor DJ-1

2. Protecting cell from

oxidative stress response

3. Associate with HSP70 to

mediate PTM or repair

misfolded protein

4. Involved in PD-related

cellular pathway as a

RNA binding protein

1. Increase susceptibility to PD-

related environmental toxins

2. Enable dopaminergic neurons

sensitive to oxidative stress and

proteasomal inhibition

[65–72]

ATP13A2 PARK9 1p36 AR Early-onset

levodopa

responsive

parkinsonism

(KRS)

1. Encoding

transmembrane

lysosomal P5 type

ATPase

2. Involved in ALP

3. Facilitating lysosome

function and preventing

protein aggregation

4. Mediating

neuroinflammation via

NLRP3 inflammasome

1. Dopaminergic neurons loss in

SN

2. Enable lysosome dysfunction

and protein aggregates

accumulation

3. Inducing NLRP3

inflammasome-mediated

dopaminergic

neurodegeneration

[73, 74, 78]

AD autosomal dominant, AR autosomal recessive, PTM post-transcriptional modification, UPS ubiquitin–proteasome system, ALP autophagy lysosome

pathway, KRS Kulfor–Rakeb syndrome
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that loss-of-function mutations in DJ-1 can affect both

neuronal and non-neuronal cells and result in enhanced

microglial activation upon neuroinflammatory insults

(Table 1).

The transmembrane lysosomal P5-type ATPase

(ATP13A2), encoded by Atp13a2 gene, is highly expressed

in SN, a region that displays progressive dopaminergic

neuronal degeneration in PD [73, 74]. In addition, the

missense and truncation mutations in Atp13a2 gene is

associated with lysosomal dysfunction and aggregates

accumulation as well [73], resulting in an autosomal

recessive levodopa responsive early-onset Parkinsonism,

also known as Kulfor–Rakeb syndrome (KRS). As is

known to all, neuroinflammation is involved in the patho-

genesis of PD [11, 21, 75], while the lysosomal dysfunction

and consequent protein aggregate accumulation further

aggravates the already terrible status. In addition, the

NLRP3 (nucleotide binding oligomerization domain, leu-

cine-rich repeat, and pyrin domain containing protein 3)

inflammasome-mediated neuroinflammation is proven to

participate in PD as well [31, 76, 77]. Most recently, a

novel role of ATP13A2 has been revealed to modulate

astrocyte-mediated neuroinflammation via NLRP3 inflam-

masome activation following MPP? treatment, thus

indicating Atp13a2 gene as a potential mediator in neu-

roinflammation-induced dopaminergic neuron

degeneration in PD (Table 1) [78].

Nuclear receptors and neuroinflammation

Apart from the pro-inflammatory PD-related genes, nuclear

receptor (NR) superfamily also provokes a broad interest in

a range of inflammation-associated neurodegenerative

disorders. NRs are ligand-activated transcription factors

that regulate genes, involved in physiological, metabolic,

and developmental process, via their association with

sequence specific elements within the promoter region of

target genes [41, 79]. At present, certain NRs such as

nuclear receptor-related receptor 1 (Nurr1), peroxisome

proliferator-activated receptors (PPARs), glucocorticoid

receptor (GR), and retinoic acid receptors (RARs) have

been confirmed to function in several modulatory aspects

of neurodegeneration, including the dopaminergic neuronal

degeneration in PD (Table 2) [41].

Nurr1, a member of the nuclear receptor family of

intracellular transcription factors, has been confirmed to

express in microglia [80, 81] and astrocytes [81], and it

indicates that Nurr1 can inhibit the pro-inflammatory

mediator expression, thus potentially protecting from

inflammation-mediated dopaminergic neuronal death.

Similarly, nerve growth factor IB (Nur77) has been shown

to compromise dopaminergic neuron survival via

mitochondrial impairment and potential neuroinflammation

[82, 83].

The PPAR (also NR1C) subfamily compromises three

isoforms, PPARa (NR1C1), PPARb/d (NR1C2), and

PPARc (NR1C3), all of which are shown to exert anti-

inflammatory effects by trans-repressing NF-jB or by

modulating the oxidative stress pathway [84–86]. PPARc
is the most widely studied isoform, and the effects of

PPARc agonists have been assessed in PD animal models.

Pioglitazone and rosiglitazone, two common synthetic

PPARc agonists administrated for type 2 diabetes, have

also been revealed to possess neuroprotective effects on

dopaminergic neurons by preventing inflammation, oxida-

tive damage, and apoptosis [86–89]. In the context of PD,

PPARa/b/d agonist have been described to beneficially

modulate neuroinflammation as well [90–93], thus pro-

tecting against dopaminergic neuronal loss and microglial

activation upon environmental toxin insult.

GR, glucocorticoid receptor (also called NR3C1),

belongs to the steroid hormone receptor family and is

activated by a class of steroid hormones called glucocor-

ticoid. Apart from ubiquitous expression in the periphery

tissues, GR is also widely expressed in several brain

regions including SN [94]. In the context of PD patients,

the expression of GR has been reported to be decreased in

post-mortem SN compared with healthy controls, but with

significantly higher level of cortisol [95]. In fact, when

exposed to inflammatory reaction or to stress, the HPA axis

is stimulated to increase the systemic level of glucocorti-

coids, resulting in a consequent repression of inflammation

involving NF-jB [96, 97]. Besides, in LPS- and MPTP-

induced rodent models, the administration of dexametha-

sone can prevent environmental toxin-induced

neurotoxicity and microglial activation [98, 99]. Moreover,

pharmacological antagonism of GR has been proven to

aggravate LPS-induced inflammatory reaction and exacer-

bate consequent neurodegeneration as well, thus suggesting

that glucocorticoids exert a neuroprotective effect during

inflammatory responses [100]. Collectively, it can be

concluded that the glucocorticoid/GR pathway dysregula-

tion could be responsible for the sustained inflammatory

processes-mediated dopaminergic neuronal death in PD

[96, 101].

RA, a derivative of vitamin A (retinol), is involved in

regulating numerous physiological functions such as

vision, vertebrate development, cell proliferation, nutrient

metabolism, and immunity [102]. RA has been demon-

strated to be involved in the development and maintenance

of nigrostriatal pathway [103], primarily by promoting

axon outgrowth, nerve regeneration, and neural patterning.

In addition, the anti-inflammatory effects of RA are cor-

related with the enhanced expression of retinoic acid

receptor (RAR) and transforming growth factor beta 1
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(TGFb-1) as well as the inhibition of NF-jB nuclear

translocation [104]. Therefore, these data described above

suggest that the RA/RAR pathway can be developed as an

alternative therapeutic target in PD.

Environmental toxins and neuroinflammation

Apart from genetic risk factors, environmental toxins are

also closely implicated in the process of PD onset and

progression, to a great extent initiated and exacerbated by

neuroinflammation. Microglia, the resident innate immune

cells in central nervous system, has been perceived as the

main executor of neuroinflammation, providing the first

defense line whenever injury or disease occurs [105]. In

physiological state, microglia density varies between dif-

ferent brain regions, with relatively higher concentration

being confined to SN, hippocampus, basal ganglion, and

olfactory telencephalon [106, 107]. Thus, in the context of

PD, dopaminergic neurons in the SN may be particularly

vulnerable to inflammatory insults compared to other brain

tissue as a result of regionally concentrated microglia.

Upon acute or persistent stress insult, neuroinflammation

can be initiated or even extended when reaching specific

threshold, demonstrated by the microglial phenotype

switch and synthesis of a range of pro-inflammatory

cytokines and mediators. More specifically, a wide range of

stimuli including endogenous proteins (SNCA, damaged

cell debris, cytosolic components, etc.) and a variety of

exogenous environmental toxins (LPS, MPTP, paraquat,

rotenone, etc.) have been proven to amplify ongoing

microglial activation and even induce neuronal death. In

particular, as for environmental toxin-induced neuroin-

flammation, microglial activation can be classified into two

categories depending on the toxin types: (1) direct micro-

glial phenotypic and functional activation upon toxin insult

and (2) delayed reactive microgliosis secondary to neu-

ronal injury or death, both of which eventually converges

to induce common deleterious downstream effectors,

including NADPH oxidase, ROS, superoxide, and multiple

pro-inflammatory cytokines (Fig. 2) [11, 108–110].

LPS: direct stimulant of microglia

Microglia has evolved to express multiple membrane

receptors, also termed pattern recognition receptors

(PRRs), which are generally constitutively expressed to

identify and bind pathogen-associated molecular patterns

(PAMPs) in relation to microbial pathogens, as well as

damage-associated molecular patterns (DAMPs) correlated

with cellular components released from damaged neurons

[111]. Contrary to the DAMPs, PAMPs are usually small

molecular motifs existed within a class of microbes that

mainly activate innate immune system and protect host

from external infection. Bacterial LPS, the polysaccharide

component derived from Gram-negative bacterial wall, are

considered to be the prototypical class of PAMPs. In the

context of PD, several LPS [112–116] as well as paraquat

[117–119] regimens have been implemented to model

inflammatory signaling and microglia-induced dopaminer-

gic neuron loss in rodents. Microglial activation and

neuroinflammation have been proven to be involved in the

pathology of PD as well. In particular, several studies have

demonstrated that LPS is neurotoxic to neurons only in the

presence of microglia and microglia-induced neuronal

cytotoxicity is only feasible via a proximity-dependent

mechanism [120, 121]. Moreover, the inhibition of

microglial activation is shown to alleviate microglia-me-

diated dopaminergic neuron injury [122–125]. In fact, LPS

can be specifically recognized by TLR4 expressed on

microglia and then proceeds to activate the downstream

Table 2 Neuroinflammation-related nuclear receptors in PD

Nuclear receptor Superfamily Ligand Anti-inflammatory effects References

Nurr1 NR4A N/A Inhibiting pro-inflammatory factors expression

Alleviating neuroinflammation-mediated dopaminergic neuron death

[80, 81]

PPARs NR1C Pioglitazone

Rosiglitazone

Modulating Pro-inflammatory pathway (e.g., NF-jB pathway)

Repressing excessive oxidative stress response

Prevent dopaminergic neuron loss and DA depletion in SN

[84–93]

GR NR3C Dexamethasone Repressing systemic inflammation upon toxin insult

Preventing toxin-induced neurotoxicity and microgliosis

[96–100]

RA/RAR NR1B N/A Promoting axon outgrowth, nerve regeneration and neural patterning

Suppressing neuroinflammation via inhibition of NF-jB nuclear translocation

Prevent dopaminergic neuron death and DA depletion in SN

[102–104]

N/A not available
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NF-jB signaling pathway, thus fostering a pro-inflamma-

tory milieu to induce neuronal death and amplify ongoing

microglial activation (Fig. 2).

MPTP and rotenone: the reactive microgliosis secondary

to neuronal lesions

The microglial response secondary to direct neuronal

lesions, also termed reactive microgliosis, is a process

involving increased proliferation, recruitment, and activa-

tion of microglia [126, 127]. In physiological condition,

moderately activated microglia exert neuroprotective

influence in the CNS by phagocytizing excess neurotoxins,

scavenging dying cells and cellular debris [128], and pro-

moting the post-traumatic repairment process [129].

Hyperactivated microglia, however, exert cytotoxic effects

which, in turn, facilitate neuronal death by synthesizing

and releasing a plethora of neurotoxic mediators that

include reactive oxygen species (ROS), free radicals, and

pro-inflammatory cytokines [130, 131]. Indeed, reactive

microgliosis has been demonstrated to be involved in a

variety of neurodegenerative diseases including PD

[131–134]. The MPTP-induced PD model, in particular,

best characterizes the involvement of reactive microgliosis

in the onset and progression of neurodegenerative pro-

cesses. In fact, unlike the direct microglial stimulation by

LPS, MPTP is primitively metabolized to 1-methyl-4-

phenylpyridinium (MPP?) by glial cells once exposed to

CNS, which is then taken up by dopaminergic neurons via

the dopamine transporter, ultimately leading to mitochon-

drial damage, neuronal death, and reactive microgliosis

(Fig. 2) [135, 136]. The activation of microglia has been

observed to facilitate dopaminergic neuronal degeneration

in the SNpc [137], suggesting that reactive microgliosis

may contribute to the dopaminergic neuronal loss [131]. In

addition, persistent microglial activation can be detected in

the SNpc of human [138] and nonhuman primate [139]

even years after the initial MPTP exposure. Moreover,

blockade of microglial activation with minocycline pre-

vents nigrostriatal dopaminergic neurodegeneration

induced by MPTP in PD mouse model [140–142]. Apart

from MPTP, rotenone [143–145] is also implicated in the

same scenario. Hence, a vicious cycle may develop among

environmental toxins exposure, reactive microgliosis, and

neuronal degeneration, thus resulting in the progressive

dopaminergic neurodegeneration in PD (Fig. 2).

DA and neuroinflammation: a cross talk

between neural and immune system

Except for the conventional roles of neurotransmitters in

neural communication, multifarious evidence indicates that

neurotransmitters can also mediate cross talk between the

neural and immune system [146]. Among neurotransmit-

ters of this kind, DA is a typical representative. Apart from

regulating behavior, movement, endocrine, cardiovascular,

renal, and gastrointestinal functions [147, 148], DA can

also function as an important molecule bridging the neural

and immune system (Fig. 3) [32, 148]. The DA receptors,

further classified into D1 and D2 classes, are present in

almost all immune cell subpopulations [148], including

microglia, lymphocytes, dendritic cells, and so on

[149–151]. By acting on the corresponding receptors, DA

and the dopaminergic agonists are proven to modulate the

activation, proliferation, and cytokines secretion in

immune cells [148, 152]. Moreover, dopaminergic inner-

vation of lymphoid tissue through sympathetic nerve also

suggests the immunomodulatory role of DA [153]. Hence,

DA can execute as an intermediary between neural and

immune systems, implying the cross talk between neural

and immune systems in PD.

DA–dopaminergic receptor (DR) signaling complex:

a neuroinflammation modulatory pathway

DA exerts its effects by binding to the activating receptors

located on the cell surface. The D1 and D2 classes of DRs

can be further categorized into five subtypes: DRD1–

DRD5. The D1 class includes the DRD1 and DRD5 sub-

types, which on activation mediates the downstream cyclic

adenosine monophosphate (cAMP) increase [148, 150]. In

contrast, the D2 class encompasses DRD2–DRD4 sub-

types, which inhibits intracellular cAMP on stimulation

[148, 150]. Inflammasomes are involved in diverse

inflammatory diseases such as type 2 diabetes,

atherosclerosis, gout, and PD, so the activation of inflam-

masome needs to be tightly controlled to prevent excessive

inflammation [77, 154]. It has been demonstrated that DA

inhibits NLRP3 inflammasome activation via DRD1, while

DRD1 signaling negatively regulates NLRP3 inflamma-

some via a second messenger cAMP which binds to

NLRP3 and promotes its ubiquitination and degradation

[31]. Moreover, this study demonstrates DA and DRD1

signaling prevents NLRP3 inflammasome-dependent

inflammation such as neurotoxin-induced neuroinflamma-

tion, LPS-induced systemic inflammation, and

monosodium urate crystal-induced peritoneal inflammation

as well [31]. In addition, DRD2 knockout mice display a

remarkable neuroinflammatory response in multiple CNS

regions and increase the vulnerability of nigral dopamin-

ergic neurons to MPTP-induced neurotoxicity, suggesting

that DA–DRD2 signaling possesses an anti-inflammatory

function partly via aB-crystallin [155]. Moreover, deficient

DRD2 receptor function increases renal expression of pro-

inflammatory and profibrotic factors [156, 157], which can

be ameliorated by retrograde renal infusion of adeno-

3748 Y. Shen et al.

123



associated virus (AAV) vector with DRD2 [156]. In con-

trast, DRD3 expressed on CD4? T cells is crucial for the

dopaminergic neurons destruction in SN and DRD3-defi-

cient mice are proven to be protective against

dopaminergic neuron loss and microglial activation upon

MPTP insult [158]. Furthermore, the DRD3 expression

alteration is demonstrated to be correlated with disease

severity in PD patients [158]. Therefore, these study find-

ings above indicate that DA and DA receptor signaling

complex may represent a neuroinflammation modulatory

pathway, while the disruption of this pathway can con-

tribute to the pathogenesis of PD (Fig. 3).

Peripherally retained DA: a neuroinflammation moderator

Large quantities of inflammatory mediators are released

upon endotoxin insult, which can in turn stimulate the

sympathetic nervous system to synthesize and release cat-

echolamines, ultimately modulating inflammation-induced

impairment. Among the released catecholamine, DA

receives much more attention. Apart from the common

hemodynamic effects, DA itself can modulate the neu-

roinflammatory network and thereby regulate both

suppressive and stimulatory effects on immune responses

[32, 159], which leads to the inhibition of cytokine and

chemokine production, interruption of lymphocyte activa-

tion, and attenuation of inflammation intensity (Fig. 3).

Furthermore, sciatic nerve activation via electroacupunc-

ture has been reported to control systemic inflammation

and rescue mice from polymicrobial peritonitis [152]. In

fact, the electroacupuncture can induce the activation of

DOPA decarboxylase to produce more DA in the adrenal

medulla, thus leading to the confinement of inflammation

scope [152]. Similarly, a recent study has proven that

acupuncture stimulation can transmit signals into the vagus

nerve and mediate anti-inflammatory effects in internal

organs as well [160]. Neuroinflammation has been proven

to be involved in the pathogenesis of PD, and the impli-

cation of peripheral inflammation in PD gradually comes

into researchers’ sight. Epidemiological studies have

shown that incidence of idiopathic PD is about 50% lower

in regular users of non-steroid anti-inflammatory drugs

(NSAIDs) or cyclooxygenase (COX) inhibitors than in age-

matched nonusers [161–163]. Moreover, peripheral

inflammation has also been demonstrated to enhance the

degeneration of nigrostriatal dopaminergic system,

Fig. 3 Involvement of DA and SNCA in neuroinflammation: a

crosstalk between neural and immune system. Peripheral DA can

modulate the immune network via DR (DRD1–DRD5), leading to the

inhibition of cytokine and chemokine production, interruption of

lymphocyte activation, and attenuation of inflammation intensity.

While the anti-inflammatory effect of DA in CNS is mediated by the

DRD2–CRYAB pathway and DRD1–cAMP–NLRP3/autophagy–

lysosome pathway. Extracellular SNCA aggregates can be endocy-

tosed or internalized via receptor independent and receptor-mediated

patterns, respectively. In particular, the endocytosed SNCA aggre-

gates can directly and indirectly induce NLRP3 inflammasome

activation and subsequent pro-inflammatory IL-1b gene expression.

Moreover, the SNCA aggregates can act on specific TLR-mediated

pro-inflammatory signaling pathways (e.g., TLR2–Akt–

mTOR&TLR4–NF-jB), thus resulting in pervasive SNCA accumu-

lation, persistent neuroinflammation, and ultimate dopaminergic

neuron death in PD
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possibly by the recruitment of peripheral monocytes into

the CNS via defective blood brain barrier (BBB), thus

synergizing with other insults to exacerbate the progression

of PD [164–166]. Therefore, given the immunomodulatory

effect of DA, it can be proposed that the therapeutic effect

of DA replacement therapy in PD may be partially attrib-

uted to the modulation of peripheral inflammation (Fig. 3),

more than just replenishing the nigrostriatal DA depletion.

SNCA: neuroinflammatory initiator implied in PD

PD has been proven to be a chronic inflammatory disease,

characterized by widespread inflammation and extensive

microgliosis which contributes to the nigral DA depletion

and consequent dopaminergic neuron loss. SNCA, a

presynaptic protein with a propensity to aggregate into

oligomers of multifarious morphology, is central to the

pathogenesis and progression of PD. The aggregation form

of SNCA—LB or Lewy neurite (LN)—is a neuropatho-

logical feature that defines a spectrum of disorders

collectively termed synucleinopathies, among which PD is

undoubtedly the best characterized. Moreover, LBs and

LNs are the major component implied in the microglial

activation, thus bestowing neuroinflammatory capabilities

on the SNCA aggregates to initiate and promote the

pathogenesis of PD. During this process, microglia is

generally regarded as the executor and its activation largely

contributes to the inflammation-induced neurodegenera-

tion. In this section, the interaction between SNCA

aggregates and microglia and downstream inflammatory

cascades will be illustrated.

Internalization patterns between SNCA aggregates

and microglia

SNCA is indeed an intraneuronal protein, while the SNCA

aggregates—LBs or LNs—can be released into the extra-

neuronal milieu upon dopaminergic neuron death. Then,

the released SNCA can be internalized by microglia to

initiate the neuroinflammatory process [167–171]. Among

which the internalization of SNCA aggregates by microglia

is a premise for microglial activation and subsequent

neuroinflammation process. As for the internalization pat-

tern between SNCA aggregates and microglia, several

modes have been proposed which can be further divided

into receptor independent (exosome transmission, passive

transmembrane diffusion, classical endocytosis, etc.) and

receptor-mediated styles (Fig. 3).

Receptor independent internalization pattern In general,

the receptor independent internalization pattern between

SNCA aggregates and microglia includes exosome trans-

mission, passive transmembrane diffusion, direct

transmembrane pore formation, and classical endocytosis

(Fig. 3). Several studies have reported that SNCA aggre-

gates can be released by exosome in a calcium-dependent

manner [172–174], which is further exacerbated by lyso-

somal dysfunction [175]. Conceivably, the SNCA

aggregate-loaded exosome can be internalized by the

microglia, triggering microglial activation, and down-

stream pro-inflammatory reaction. SNCA has been proven

to associate with membranous compartments in vivo and

in vitro as well [176]. The transmembrane permeability of

SNCA aggregates is partly dependent on the specific

assembly state of this protein [177, 178], thus suggesting a

conformation-dependent internalization style. In contrast,

monomeric SNCA can passively diffuse across the plasma

membrane. In addition, SNCA is proven to interact with

lipid layers via conformational inversion to alpha helical

structure [179], which, to some extent, mediates the

internalization between SNCA aggregates and microglia as

well. Moreover, it has been shown that A53T mutation-

induced SNCA aggregates can mediate faster internaliza-

tion process than the wild-type counterparts with direct

transmembrane pore formation [180]. Apart from that,

endocytosis, a classical protein transferring method

between cells, is involved in the receptor independent

internalization process as well [171, 178, 181, 182].

Receptor-mediated internalization pattern Apart from

the receptor independent endocytosis, it has been proven

that aggregated forms of SNCA, both fibrils and oligomers,

can penetrate into microglia via specific receptor-mediated

internalization patterns. Moreover, the fact that the con-

served SNCA N-terminal sequence can regulate membrane

translocation efficiency, but not significantly affected by

endocytosis inhibitors and indirectly corroborates that

SNCA aggregates can be internalized by specific receptors

[183] (Fig. 3). Here, we present evidence that TLRs (e.g.,

TLR2 and TLR4) and NLRP3 inflammasome are involved

in the internalization process.

TLRs belong to the family of pattern recognition

receptors (PRR) and are crucial players in the innate

immune response. TLRs are expressed on innate immune

system cells, including microglial and astroglial cells,

which can recognize PAMP and endogenous molecules

such as misfolded proteins [51, 184, 185]. As for the

receptor-mediated SNCA internalization and downstream

neuroinflammation, there exist conflicting results in the

context of TLRs. Neuron-released extracellular SNCA

oligomers are shown to be able to execute as endogenous

agonist for microglial TLR2, triggering downstream

inflammatory response in microglia [50]. However, only

specific-type SNCA oligomers are involved in this para-

crine interaction with microglial TLR2 [50]. In

comparison, extracellular SNCA can induce neuroinflam-

mation via pro-inflammatory TLR4 pathway as well,

whereas the SNCA internalization is independent of TLR4
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[186–188]. In spite of the controversies above, TLRs are

still typical mediator for SNCA internalization and subse-

quent neuroinflammation.

The NLRP3 inflammasome, a fully characterized

inflammasome consisting of NLRP3 scaffold, the ASC

(PYCARD) adaptor, and caspase-1, can be activated upon

exposure to whole pathogens, as well as a number of

structurally diverse PAMPs, DAMPs, and environmental

irritants [189]. As for the NLRP3 inflammasome activa-

tion pattern, there have been proposed three models to

illustrate it [189]: (1) extracellular ATP stimulates the

purogenic P2X7 ATP-gated ion channel [190], triggering

K? efflux and inducing the pannexin-1-mediated trans-

membrane pore formation which then allows extracellular

agnoists such as DAMPs and PAMPs to enter the cytosol

and engage NLRP3 (Fig. 3) [191]. (2) Particular NLRP3

agnoists (e.g., amyloid-b and silica) are engulfed, wherein

the engulfment results in rupture and release of lysosomal

contents that are somehow sensed by the NLRP3 inflam-

masome [192, 193]. (3) Specific types of PAMPs and

DAMPs induce the generation of reactive oxygen species

(ROS), and then, an ROS-dependent common pathway

triggers the NLRP3 inflammasome activation [194, 195]. In

the context of PD, SNCA aggregates are a typical represent

of DAMPs which hold great potential to be internalized

and induce NLRP3 inflammasome activation via the pro-

posed pathways above. Moreover, it has been demonstrated

that insoluble SNCA fibrils can induce monocytes to

release IL-1b following the NLRP3 inflammasome acti-

vation, which is a strong and convincing evidence for the

involvement of NLRP3 inflammasome in prion-associated

inflammation [196] (Fig. 3).

SNCA-mediated downstream pro-inflammatory pathways

in microglia

Apart from the morphological changes and cell surface

expression alterations, microglial activation induced by

SNCA aggregates is likely to evoke multiple pro-inflam-

matory events, ranging from the nuclear translocation of

inflammation regulating elements, up-regulation of pro-

inflammatory genes expression, and release of inflamma-

tory cytokines. Indeed, all the cellular pro-inflammatory

events above corroborate the activation of multiple pro-

inflammatory pathways as well.

NF-jB transcription factor acts as a pleiotropic regulator

of target genes in the CNS controlling physiological

function [197] as well as pathological processes associated

with neurodegeneration [198, 199]. NF-jB signaling cas-

cade has been proven by several studies to be involved in

monomeric, oligomeric, aggregated, and nitrated SNCA-

induced microglial activation, highlighting its role in the

regulation of pro-inflammatory mediators [34]. It has

recently been proven that TLR4 plays a modulatory role on

glial pro-inflammatory responses and ROS production

induced by SNCA [51], thus demonstrating a pro-inflam-

matory SNCA–TLR4–NF-jB pathway (Fig. 3). In

addition, SNCA is demonstrated to induce the expression

of matrix metalloproteinases (MMPs), while the latter can

lead to the activation of protease-activated receptor-1,

MAPK, and NF-jB which mediate the downstream

inflammation [200]. Beyond the signaling pathways above,

the p38–ERK1/2/MAPK–NF-jB pathway [201], TLR4–

MyD88 pathway [51], and TLR2–Akt–mTOR pathway

[202] are also associated with SNCA-induced neuroin-

flammation (Fig. 3). In fact, studies on the multiple pro-

inflammatory pathways not only improve our understand-

ing of pathogenesis of PD, but also provide candidates for

therapeutic intervention in patients with PD [203].

Neuroendocrine: a missing link bridging
the systemic gap and expanding the symptomatic
spectrum in PD

PD, as is known to all, is pathologically marked by DA

deficiency in the nigrostriatal system and, therefore,

symptomatically characterized by bradykinesia, rigidity,

static tremor, and postural disturbance. Apart from the

classical role in motor coordination, in fact, DA is also a

neurotransmitter distributed in hypothalamus and other

tissues, peripheral and CNS, participating in the modula-

tion of neuropsychiatric activity, reward, cognition, sleep,

and so on [3, 204, 205]. In particular, the hypothalamic–

hypophysial network, a pivotal constituent of classical

endocrine system, has been proven to be also implicated in

the pathophysiology of several neurodegenerative diseases

[206–209]. Moreover, DA can exert auto-receptor regula-

tory effect on the hypothalamic dopaminergic network

[204]. In addition, circadian rhythm desynchronization is

also involved in sleep disorders of PD, including excessive

daytime sleep and insomnia, which has been recognized as

a non-negligible part of the symptom complex of PD [12].

Therefore, the neuroendocrine dysregulation events, in the

context of PD, potentiate to bridge the systemic gap and

expand the symptomatic spectrum as well (Fig. 4).

Neuroendocrine dysregulation of hypothalamic

dopaminergic network

Hypothalamus, a confluent pivot linking the nervous and

endocrine system by virtue of hypophysis, is an advanced

nervous center modulating body temperature, feeding,

mood, sleep, isohydria, circadian rhythm, and so on. What

is interesting is that several experimental and post-mortem

studies have demonstrated the involvement of
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hypothalamus in PD. Initially, Javoy-Agid et al. [210]

reported that hypothalamic DA concentrations were

reduced in PD, indicating that the deficient hypothalamic

DA transmission may partly contribute to the autonomic

and endocrine abnormalities of this disorder. Then, Shan-

nak et al. [211] revealed that a mild-to-moderate reduction

of DA levels is identified in the hypothalamus of idiopathic

PD patients. Later, an 18F-dopa positron emission tomog-

raphy (PET) study has shown a significant presynaptic DA

storage reduction and postsynaptic dopaminergic dysfunc-

tion [212] in the hypothalamus. In addition, a most recent

study reveals that DA modulates the tubero-infundibular

dopaminergic axis (TIDA) via an auto-receptor regulation

pattern [204]. In addition, the TIDA impairment has been

found to be precisely correlated with the progression of

motor dysfunction in PD [213]. Moreover, the main

pathological hallmark of PD, LB formation, is also found

in the hypothalamic nuclei along with SN and other

brainstem nuclei as well [214]. Therefore, it can be con-

cluded that the primary DA deficiency and LB, in the

context of PD, can result in hypothalamic dopaminergic

network dysregulation via an auto-receptor modulatory

pattern (Fig. 4). Given the widespread hypothalamic neu-

roendocrine connection, it is, therefore, reasonable to

propose that neuroendocrine network bridges the system-

atic gap and expands the symptomatic spectrum in PD.

Neuroendocrine pathways implied in brain–gut axis

The term ‘‘brain–gut axis’’ refers to the bidirectional com-

munication between the brain and gut. In addition, the gut

microbiota can communicate with the brain via neuroim-

mune or neuroendocrine pathways, which comprise the

brain–gut axis. While in the context of PD, the brain–gut axis

dysregulation may be associated with GI manifestations

frequently preceding motor symptoms, as well as with the

pathogenesis of PD itself [215], supporting the Braak staging

hypothesis that the pathological process is spread from the

gut to the brain along this axis. In general, there exist four

communication pathways—afferent sensory neurons, gut

hormones, immune mediators, and microbial signaling

molecules—from the gut to the brain, where they can modify

cerebral function and behavior (Fig. 4). Similarly, there are

two pathways—autonomic and neuroendocrine output sig-

nals—from the brain to the gut [216]. In fact, among the

microbial, immune, endocrine, and neural signaling path-

ways implied in brain–gut axis, the neuroendocrine pathway,

denoted by numerous biologically active peptides, may

occupy the pivotal status [216].

Bioactive peptides, particularly neuropeptides, play

crucial roles in the bidirectional communication between

the gut and the brain. Neuropeptides comprise a class of

evolutionarily well-conserved molecules that, by definition,

operate as transmitters in the enteric, peripheral, and cen-

tral nervous systems and share transduction mechanisms

with other bioactive peptides such as gut hormones

[216–221]. As a result of the simultaneous existence and

effect in brain and gut, the neuropeptides are also called

brain–gut peptide and is frequently difficult to distinguish

between their function as neuropeptides or gut hormones.

In fact, neurons as well as endocrine, immune, interstitial,

muscle, epithelial, and microbial cells can respond to these

signaling molecules by expressing specific peptide recep-

tors. Ghrelin, a gut hormone synthesized in the stomach to

modulate appetite and energy balance, has been demon-

strated to mediate a neuroprotective effect upon MPTP

insult in PD mouse models through downstream AMPK

signaling pathway [217] (Fig. 4). In addition, it has been

proven that acylated, but not des-acyl ghrelin, is neuro-

protective in MPTP mouse models by attenuating

dopaminergic neuron loss and glial activation [218].

Besides, neuropeptide Y (NPY), a neurotransmitter in CNS

(especially hypothalamus) and a gut hormone in autonomic

nervous system, has been confirmed as a neuroprotective

agent, as a neural stem cell proliferative agent, as an agent

that increases trophic support, as a stimulator of autophagy,

and as an inhibitor of excitotoxicity and neuroinflamma-

tion, thus enabling it as a therapeutic target in

neurodegenerative disease [219, 220]. Moreover, NPY can

mediate the stimulatory effect of ghrelin to form a syner-

gistic effect on autophagy activation [221]. In addition,

LPS and other bacterial factors can promote the generation

and release of pro-inflammatory cytokines by stimulating

TLR4 which is distributed in several levels of brain–gut

axis, thus to some extent advancing the progression of

neurodegeneration [222]. In conclusion, the studies above

show that the brain–gut peptides can modulate the brain

and gut activity simultaneously by virtue of neuroen-

docrine pathways, implying its involvement in brain–gut

axis modulation in PD.

Neuroendocrine concept of weight loss in PD

Several studies have conformably demonstrated that PD

patients have lower body weights when compared with

age-matched control groups [223–225]. For example, Chen

et al. have proven a remarkable weight loss until shortly

before the diagnosis and then continue to decline following

that in 468 PD patients [224]. Besides, a meta-analysis

including 871 patients revealed an overall weight reduction

of 1.73 kg/m2 in PD patients, with a positive association

with disease severity but not disease duration [225]. Up to

now, a variety of factors are proven to contribute to the

weight loss phenomenon in PD, involving chewing diffi-

culty, dysphagia, intestinal hypomotility, decreased

rewarding in dopaminergic mesolimbic regions, etc.
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However, while viewing from a neuroendocrine perspec-

tive, hypothalamus indeed regulates the homeostasis

between orexia and anorexia (Fig. 4). Specifically, the

infundibular neurons produce two different kinds of hor-

mones to, respectively, modulate the orexigenic and

anorexigenic activities [226]. Nevertheless, it had been

reported that there existed hypocretin (orexin) cell loss in

PD [227]; moreover, decreased orexin level in cere-

brospinal fluid was revealed in advanced PD as well [228].

Therefore, based on the evidences above, it can be specu-

lated that neuroendocrine factors are implicated in the

weight loss context of PD (Fig. 4).

Neuroendocrine disorder implicit in circadian

system

Circadian rhythms are physiological and behavioral cycles

generated by an endogenous biological clock, the

suprachiasmatic nucleus (SCN). The circadian system

exerts an effect on majority physiological processes,

including sleep–wake homeostasis, cognitive performance,

motor control, mental health, and metabolism [229]. A

growing body of evidences has demonstrated that circadian

dysfunction is a common symptom of neurodegenerative

disease such as PD, which might in turn exacerbate the

disease process as well [12, 230, 231]. Moreover, it has

been proven that DA is a neurotransmitter of great

importance at several levels of the circadian system, and its

metabolism and signaling activity are also strongly influ-

enced by the circadian rhythm [232] (Fig. 4). In fact, the

functional effectuation of circadian system is largely

implemented by neuroendocrine pathway. As a result of the

pervasiveness of neuroendocrine modulation, the disrup-

tion of the circadian system is expected to have extensive

effects throughout the body and may in turn to exacerbate

the deteriorative situation. In the context of PD, circadian

dysfunction is implicated not only in the dysregulation of

sleep–wake cycle, but also in cognitive, neuropsychiatric,

motor, and non-motor manifestations of this disease via an

involvement of neuroendocrine pathway.

Fig. 4 Brain–gut axis,

dopaminergic system, and

circadian system in the

neuroendocrine context of PD.

There exist bidirectional

communications between brain

and gut, which enable these two

entities to be an integrated

complex. In particular, there are

four ascending pathways from

the gut to brain: afferent sensory

neurons, microbial factors,

intestinal hormones, and

cytokines. While there are two

avenues from the brain to gut:

autonomic dominance and

neuroendocrine factors. Besides,

a cross talk is identified between

the circadian (SCN) and

dopaminergic (NSD) systems,

specifically manifesting as the

DA and melatonin yoking in the

RDMP axis. Moreover, the

infundibular orexin–anorexin

equilibrium and dopaminergic

auto-receptor regulation of

TIDA is illustrated as well
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Involvement of DA in the circadian system

Dopaminergic neurotransmission has been implied at sev-

eral levels of the circadian system, stemming from retina to

the circadian center. As a matter of fact, there exists a

crosstalk between the circadian clock components and

dopaminergic signaling pathway at several aspects (Fig. 4).

Apart from the light adaption role in the retina [233], DA

also participates in the rhythmic expression of melanopsin,

a photopigment expressed intrinsically at retinal ganglion

cells, which is implied in circadian entrainment [234].

Moreover, the retinal dopaminergic cells can express cir-

cadian clock genes and core components of the molecular

clock such as Per, Cry, Clock, and Bmall, which might help

to sense the environmental illumination changes and

accommodate to achieve optimal photic response [235]. In

contrast, circadian clock genes can modulate the biosyn-

thesis, transmission, and turnover of DA [236–239].

Moreover, the circadian nuclear receptor REV–ERBa has

been proven to repress tyrosine hydroxylase (TH) gene

transcription via competition with Nurr1, another nuclear

receptor crucial for dopaminergic neuronal function, thus

driving subsequent circadian TH expression through a

target-dependent antagonistic mechanism [239]. In addi-

tion, DA and dopaminergic drugs, prescribed to alleviate

the motor and non-motor symptoms of PD, have been

demonstrated to exert circadian modulatory effects as well

[240–243], more than simply replacing deficient DA.

Therefore, this raise the presumption that circadian dys-

function suffered by PD patients may not merely be a

subsidiary of the motor symptom, but an integral part of the

disease which can further hasten the pathological process

implied in PD.

Participation of melatonin in the circadian system

Melatonin, an organic substance with indole structure (N-

acetyl-5-methoxytryptamine) synthesized predominantly in

the pineal gland, has been proven to possess circadian,

hypnotic, free-radical scavenging, SNCA aggregation

inhibitory, and anti-inflammatory properties [244–247].

Melatonin secretion is closely modulated by the retino-

diencephalic/mesencephalic-pineal (RDMP) axis integrat-

ing the NSD system and retinal hypothalamic tract (RHT),

whereby photic information conducted by the RHT to the

SCN and then from there to the pineal gland and other

brain regions [12, 244]. As a widespread endogenous

synchronous hormone, melatonin can stabilize and coor-

dinate secondary internal circadian rhythms and hence

modulate many biological processes, including sleep–wake

cycle, hormone secretion, core body temperature, cognitive

performance, and mood as well [244, 248]. In addition,

exogenous melatonin has circadian resetting and

restoration effects, thus enabling it applicable to various

biorhythm disorders implicit in neurodegenerative disor-

ders. Moreover, the distribution of melatonin ranges along

the RDMP axis from the retina to the pineal gland, bridging

the NSD system and RHT to form a neuroendocrine net-

work [12] (Fig. 4). In the context of PD, melatonin has

been demonstrated to execute as a neuroprotective agent to

attenuate MPTP-induced neurotoxicity via preventing

CDK5-mediated autophagy and SNCA aggregation

[249, 250]. Besides, chronic low-dose melatonin treatment

can also alleviate the dopaminergic neurons loss and

improve the sleep disorders, especially combined with DA

replacement, in PD models [251–253]. Furthermore, the

melatonin administration in PD patients is proven to help to

improve motor and non-motor manifestation, cognitive

impairment, and mood disorder as well [247, 254, 255].

The extensive effects of melatonin on PD symptom matrix,

in fact, can be largely attributed to the RDMP axis, which

links the neural and endocrine system (Fig. 4). In conclu-

sion, it can be speculated that melatonin holds great

promise to be included in the anti-parkinsonian regimens,

in particular, combined with levodopa preparations, more

than just a circadian resetting agent.

DA–melatonin imbalance implied in the circadian

disorders: viewing from a neuroendocrine

perspective

Apart from the classical role of DA and melatonin in

neural, endocrine, and immune systems described above,

the relationship between DA and melatonin implicit in the

NSD system also needs to be further explored. Generally

speaking, DA and melatonin sit in functional opposition to

each other in the RDMP axis, executing respective neu-

roendocrine roles simultaneously [12] (Fig. 4). To be

specific, melatonin performs a contra-regulatory role with

DA amid the day–night cycle. During the day, melatonin is

reduced and DA is up; conversely, during the night,

melatonin is increased, while DA is reduced [12]. Besides,

circadian-related heteromerization of adrenergic and

dopamine D4 receptors has been proven to modulate the

synthesis and release of melatonin in pineal gland [256].

Based on this, it can be concluded that these two systems

appear to be functionally yoked in healthy condition

(Fig. 4), while the imbalance, more than DA deficiency,

can send the system into disarray. Currently, DA replace-

ment still occupies the first-class therapeutic regimen, but

the wearing-off phenomenon and levodopa-induced dysk-

inesia have driven it into a dilemma. The attempt to replace

deficient DA, in fact, is often a matter of hit or miss,

because the DA–melatonin imbalance is implicit in a

dynamic RDMP axis which is not easily rectified by simply

replenishing deficient DA. Moreover, this has also been
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confirmed by the phenomenon that the patient inevitably

experiences wearing-off phenomenon with long-term DA

replacement therapy. Coincidental with this, the patients

with wearing-off phenomenon also present elevated plasma

melatonin [257]. Equally interesting is the occurrence of

dyskinesia with prolonged exposure to high-dose DA and

the ratio of DA to melatonin is severely imbalanced as

well. By contrast, melatonin administration has been found

to reduce dyskinesia in experimental PD models [258],

which further highlight the importance of obtaining DA–

melatonin balance rather than merely replacing deficient

DA. Therefore, it can be concluded that the DA–melatonin

imbalance is distributed concomitantly across the RDMP

axis in PD (Fig. 4), which precisely interprets the extensive

symptom spectrum stretching across the neuroendocrine

system.

NIE modulatory network: confluence
of neuroinflammation and neuroendocrine
in motor and non-motor symptom complexes of PD

As demonstrated above, neuroinflammatory and neuroen-

docrine dysregulations, to a large extent, interpret the

pathophysiologic processes of PD. To be specific, neu-

roinflammation can be regarded as a convergent point for

genetic factors, environmental toxins, DA, and SNCA,

while hypothalamic dopaminergic network, brain–gut axis,

and circadian rhythm regulatory system can execute as

neuroendocrine nodes to link the neural and endocrine

systems and expand the PD symptomatic spectrum as well

(Figs. 1, 5). Moreover, DA and melatonin can serve as the

connector to incorporate the neuroinflammatory and neu-

roendocrine processes in PD. Therefore, NIE modulatory

network, deriving from the confluence of neural, immune,

and endocrine systems, sufficiently recapitulates the motor

and non-motor symptom complexes of PD (Fig. 5).

DA and melatonin: coupler

of the neuroinflammatory and neuroendocrine

systems

Corresponding to the multisystemic symptom spectrum of

PD, DA functions as an iconic molecule stretching across

neural, immune, and endocrine systems. Apart from the

conventional motor control, rewarding, and vasoactive

effects, DA has also been proven to be involved in the

processes of neuroinflammation and neuroendocrine mod-

ulation [32, 148, 204, 259].

DA and DRs are expressed in numerous immune cells

such as T cells, B cells, neutrophils, eosinophils, and

monocytes [260]. The proliferation, differentiation, and

function of immune cells can be regulated by DA in an

autocrine or paracrine pattern [148, 152, 261]. The DA–DR

signaling complex has also been shown to modulate neu-

roinflammation via DA–DRD1, DA–DRD2, and DA–

DRD3 pathways in PD [31, 155–158]. In particular, the

pro-inflammatory environment enables active immune

cells to adhere to blood vessel and infiltrate into brain,

which can subsequently induce neuroinflammation and

finally contribute to the neurodegenerative processes

[108, 262]. Besides, peripheral inflammation has also been

proven to aggravate the NSD degeneration, which may

result from the recruitment of activated immune cells into

CNS [164–166]. Moreover, epidemiological studies have

shown that the incidence of idiopathic PD is about 50%

lower in populations with regular use of NSAIDs or COX

inhibitors than in age-matched nonusers [161–163]. In light

of the neuroinflammation evidence in PD and the

immunomodulatory properties of DA, it can be, therefore,

speculated that the therapeutic effect of DA may partly

result from neuroinflammation modulation other than

replenishing the deficient DA in NSD system.

The neuroendocrine modulation of DA mainly embodies

at the hypothalamic dopaminergic network and circadian

system. Previously, several studies have demonstrated a

mild-to-moderate DA reduction in hypothalamus

[210–212]. Given the pivotal role of hypothalamus in

endocrine system, it can be presumed that the hypothala-

mic DA deficiency may partly contribute to the autonomic

and endocrine abnormalities in PD. Beyond that, though,

DA is also implied at several levels of the circadian system:

from retina to the pineal gland [235]. For example, the

retinal dopaminergic cells can express circadian clock

genes to help precisely sense the illumination changes and

thus better adjust to photic stimulation [235]. Besides, DA

and the dopaminergic agents are also proven to exert cir-

cadian modulatory effects as well [240, 243]. Moreover,

DA and iron metabolism can underlie the symptomatic

circadian fluctuation of restless leg syndrome, a non-neg-

ligible non-motor complication of PD [263].

Melatonin (N-acetyl-5-methoxytryptamine) and its

metabolites can easily permeate blood brain barrier, which

have been previously reported to possess anti-inflamma-

tion, anti-oxidant, anti-SNCA aggregation, anti-apoptotic,

free-radical scavenging, and sleep-adjusting properties

[244–247]. Under normal circumstances, melatonin has no

pineal storage and is readily released into blood, so the

circulating melatonin concentrations can indirectly mirror

the integral functional status of circadian system [264]. The

secretion pattern of melatonin in the previous studies also

reflected the disease stage of PD and therapeutic response

to DA [257, 265]. Besides, the diminished amplitude of

serum melatonin secretion revealed in PD patients receiv-

ing dopaminergic therapies has also been demonstrated to

be correlated with excessive daytime sleeping [248] and
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sleep structure disorders [266]. Nevertheless, exogenous

melatonin administration was also shown to improve sleep

disorders [267] and ameliorate motor symptoms [258, 268]

in PD patients and models. In particular, a cross-over trial

indicated that melatonin (50 mg/d) could significantly

improve subjective sleep disturbance, sleep quantity, and

daytime sleepiness when compared with daily 5 mg or

placebo regimen [269]. Moreover, systemic administrated

melatonin could remarkably improve catecholaminergic

neurotoxin 6-OHDA-induced hemi-parkinsonian symp-

toms via a restoration of the mitochondrial complex I

dysfunction upon 6-OHDA insult [268].

Apart from the modification of circadian system and

Parkinsonian symptoms, melatonin has also been shown to

modulate neuroinflammation and immune response [270].

The immunomodulatory effect of melatonin varies at dif-

ferent inflammatory stages: a pro-inflammatory role at

early phase and an antagonist role at later phase [271]. At

early phase of inflammation, melatonin can facilitate the

immune response via activation of pro-inflammatory

mediators such as phospholipase A2 (PLA2), 5-lipoxyge-

nase (LOX), IL-1, and TNF-a. In contrast, when it comes

to the chronic and later phase, melatonin can suppress the

inflammation by virtue of down-regulating the pro-in-

flammatory mediators, inhibiting ROS production,

scavenging free radicals, and inducing pro-survival sig-

naling pathways [271, 272]. In addition, melatonin can

prevent the nuclear translocation of NF-jB and its subse-

quent binding to DNA, thus reducing the production of pro-

inflammatory cytokines [273, 274]. Moreover, melatonin

can also inhibit the expression of adhesion molecules,

reduce the leukocyte–endothelial interaction, and thereby

attenuate the transendothelial cell migration and secondary

inflammatory responses [275].

Therefore, based on the study findings above, it can be

concluded that DA and melatonin can integrate the neu-

roinflammatory and neuroendocrine systems to participate

in the NIE modulatory network, which fully recapitulates

the neural, immune, and circadian symptoms of PD

(Figs. 1, 5).

Fig. 5 Implication of NIE modulatory network in the motor and non-

motor symptom complexes of PD. Parkinsonian symptom complex

encompasses a broad array of motor and non-motor symptoms, with

neuroimmune and neuroendocrine networks converging to form an

NIE modulatory network. In particular, the neuroinflammation begins

at the peripheral olfactory bulb and enteric plexus, and proceeding

into the CNS in a Braak disseminating style. While in the RDMP axis,

the dysfunctional SCN, hypothalamus, pineal gland, and resultant

DA–melatonin imbalance help to interpret the Parkinsonian neuroen-

docrine abnormities. Based on the neuroendocrine and neuroimmune

networks, the four dopaminergic projection pathways (nigrostriatal,

mesolimbic, mesocortical, and TIDA pathways) underlie the motor

and non-motor symptom complexes in PD
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Involvement of NIE modulatory network in motor

symptom complex of PD

Motor symptoms, externally marked by bradykinesia,

muscle rigidity, and static tremor and internally charac-

terized by nigrostriatal dopaminergic degeneration, occupy

prominent and salient status in the symptom complex of

PD. Accumulating evidences suggest that dysregulated

NIE modulatory network may contribute to the compro-

mise of the nigrostriatal dopaminergic system, resulting in

typical Parkinsonian motor symptoms. As previously dis-

cussed, circadian disruption, in large part mediated by

melatonin secretion rhythm alteration, is a common feature

in PD, implicating not only in sleep disorders but also in

cognitive, neuropsychiatric, and other non-motor symp-

toms of this disease. In fact, circadian disruption can also

contribute to motor deficits and motor skills learning

inability by virtue of triggering robust neuroinflammatory

reactions [17]. For example, circadian rhythm disruption

(20/4 h light and dark cycles for 60 days) can produce

more severe neurotoxic effects in MPTP exposed mice

models, which finally translates into motor deficit exacer-

bation, severe dopaminergic cell loss, and intense

astrocytes activation [17]. Moreover, the neuroinflamma-

tory reactions revealed in neurodegenerative disease

models have been proven to be attenuated by melatonin

receptor [276, 277] or specific RAGE/NF-jB/JNK signal-

ing pathway [278]. In addition, given the pivotal role of

hypothalamus in neuroendocrine system [279], the

hypothalamic volume loss and reduced melatonin output

revealed in PD [280] also indicate the implication of neu-

roendocrine dysfunction in PD.

As is known to all, DA replacement therapy has been the

first-class therapeutic alternative for PD by virtue of direct

replenishment of nigrostriatal DA deficiency and consid-

erable alleviation of Parkinsonian motor symptoms.

However, beyond that, DA receptors and dopaminergic

innervation are identified in lymphocytes and lymphoid

tissues [148, 152, 153], and several DA–DRs (e.g., DRD1

and DRD2) signaling pathways have also been proven to

alleviate neuroinflammation-induced neurotoxicity,

dopaminergic neuron loss, and motor deficits upon MPTP

insult [31, 155], which collectively suggest the

immunomodulatory role of DA. Besides, a meta-analysis

research has found that several peripheral inflammatory

cytokines are significantly higher in PD patients than that

of healthy controls [281], which further strengthens the

hypothesis that PD is an inflammatory response-related

neurodegenerative disease. Moreover, the incidence of PD

is lower in populations regularly taking NSAIDs or COX

inhibitors [161–163] also corroborate the hypothesis. In

addition, as we all know, hypothalamus occupies the piv-

otal position of neuroendocrine system, but researches have

demonstrated that the overall DA level, presynaptic DA

storage, and postsynaptic transmission present considerable

reduction in the hypothalamus of PD patients [211, 212]. In

addition, numerous previous studies have indicated that

neuroinflammatory reaction and neuroendocrine disorders

can directly and indirectly aggravate the symptoms of PD,

including motor deficits [17, 282, 283]. Therefore, the DA

replacement therapy may implicate the neuroinflammatory

and neuroendocrine modulatory network in the process of

motor symptom alleviation, more than solely replenishing

deficient DA.

In conclusion, based on the study finding centering on

DA, melatonin, circadian rhythm disruption, and Parkin-

sonian motor deficits, it can be concluded that

neuroinflammatory and neuroendocrine dysregulation, i.e.,

NIE modulatory network, are involved in the pathophysi-

ological processes of PD motor phenotypes (Fig. 5).

Implication of NIE modulatory network in non-

motor symptom complex of PD

Non-motor symptoms of PD, presenting across all the

stages of this disease are non-negligible part of the symp-

tom complex and are key determinants of patients’ life

quality. As a matter of fact, the occurrence and progression

of non-motor symptoms conform to the Braak staging

strategy and correlate closely with LB pathology in PD

[170]. For example, it has been postulated that the

Parkinsonian pathology begins at periphery such as enteric

plexus, olfactory bulb, and vermiform appendix [284, 285],

then proceeds upward into the midbrain nigrostriatal sys-

tem, and finally diffusely encroaches the functional

cortexes [7, 170]. Correspondingly, rapid eye movement

(REM) sleep behavior disorder (RBD), constipation, and

hyposmia can precede the onset of motor symptoms with

several years, while apathy, psychotic symptoms, and

dementia can emerge sequentially with the progression of

PD from early to late stages [286]. Here, in this part, we

will discuss the implication of neural, immune, and endo-

crine networks in the non-motor symptom complex of PD.

Dopaminergic neurons loss and dopaminergic pathway

dysfunction are typical pathological features identified in

PD, and, in turn, DA replacement therapy has been the

first-class treatment approach. On the whole, the key

dopaminergic area is mainly located at SNpc, ventral

tegmental area, and hypothalamus, from which the output

fibers project extensively to form four main pathways:

nigrostriatal, mesolimbic, mesocortical, and TIDA path-

ways [5]. In the context of NIE modulatory network, these

four pathways serve to mediate the symptom complex of

PD, especially non-motor symptoms such as gastrointesti-

nal dysfunction (constipation), sleep disorders,

neuropsychosis, etc. (Fig. 5).
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Here, we take depression of PD, for example. Depres-

sion in PD is a neuropsychosis characterized by specific

core symptoms such as pessimism, interest absence, and

anhedonia. Currently, it has been proven that the sero-

toninergic, norepinephrinergic, and dopaminergic pathway

dysfunctions in SN, locus coeruleus, and limbic system are

implicated [287]. Based on this, the selective serotonin re-

uptake inhibitors (SSRIs) are routinely introduced to treat

depression in PD. Nevertheless, pramipexole and ropinir-

ole, two dopaminergic receptor agonists administrated to

alleviate motor deficits, have also been demonstrated to

possess anti-depressant effect in several clinical studies

[288–290], and the possible therapeutic effect is attributed

to mesolimbic DRD3 agonism [288]. As previously dis-

cussed, DA and dopaminergic receptor complex can

mediate neuroinflammation modulatory pathway, and dis-

ruption of this pathway can partly contribute to the

pathogenesis of PD. In addition, several evidences suggest

that inflammatory–immune responses are closely correlated

with non-motor symptoms of PD such as depression

[291, 292]. In addition, SSRIs are also proven to prevent

dopaminergic neuron loss via inhibition of neuroinflam-

mation in PD models [293]. Moreover, as the pivot of

neuroendocrine and circadian regulatory systems in the

RDMP axis, hypothalamus-pituitary–target gland axis and

melatonin dysfunctions sufficiently underlie the Parkinso-

nian non-motor symptoms including depression from a

neuroendocrine perspective [226, 294]. Therefore, on the

basis of the evidences above, it can be speculated that NIE

modulatory network is involved in the pathogenesis of

depression of PD (Fig. 5).

Similarly, dopaminergic and neuroimmune dysfunction

are also relevant to PD-related sleep disorders such as

RBD. Studies in human have revealed that the degeneration

of the direct and indirect sublaterodorsal projections to the

spinal interneurons has been associated with the patho-

physiologic processes of RBD [295]. SN is also involved in

the REM and non-REM sleep circuits [5], and pramipexole

is proven to decrease the muscle atonia time of RBD [296].

Besides, abnormal iron metabolic and neuroinflammatory

biomarkers identified in cerebrospinal fluid and serum can

predict the occurrence of RBD as well [297]. Moreover,

hypothalamus is closely correlated with hypocretin effect

in the RDMP axis, while the latter modulates RBD via

activation of locus coeruleus neurons [298]. Therefore, as

one previous study proposed, dysfunctional neural,

immune, and endocrine network can execute as precipi-

tating factor to induce the occurrence of non-motor

symptoms in PD [7]. In fact, apart from depression and

RBD, GI dysfunction, cognitive impairments, and other

non-motor symptoms also implicate NIE modulatory net-

work in its pathophysiologic processes, respectively

[7, 226].

Based on the evidences listed above, it can be concluded

that the non-motor symptoms, spanning from prodromal to

late-stage PD, are implicated in neural, immune, and

endocrine (NIE) modulatory networks (Fig. 5), sharing

specific common pathophysiologic features. Hence, in the

near future, the treatment of non-motor symptoms of PD

should convert to multi-dimensional strategy, more than

solely anti-parkinsonism or symptomatic therapy.

Conclusions

Parkinson’s disease (PD) has long been described as a

clinical syndrome with a broad array of motor and non-

motor symptom spectrum, implicitly marked by progres-

sive substantia nigra dopaminergic neuron degeneration

and explicitly characterized by bradykinesia, static tremor,

muscle rigidity, hyposmia, constipation, neuropsychosis,

sleep disorders, etc. Apart from the nigrostriatal dopamine

depletion, neuroimmune and neuroendocrine dysfunctions

are also frequently reported, which have helped to broaden

the symptom spectrum. Therefore, here, in this review, we

have briefly overviewed the neuroendocrine and neuroin-

flammatory study findings in relation to PD, thereby

proposing that NIE network is involved in the pathogenesis

and progression of PD.

As a matter of fact, the proposed NIE network has

transcended conventional view of nigrostriatal DA defi-

ciency and further incorporated the neuroendocrine and

neuroinflammation perspectives into the pathophysiologi-

cal process of PD (Figs. 1, 5). Besides, DA and melatonin

are presumed to execute as connectors of the NIE modu-

latory network, and the DA–melatonin imbalance theory in

the RDMP axis also provides an alternative explanation for

the wearing-off phenomenon in the process of DA

replacement therapy. Moreover, the preliminary researches

targeting neuroinflammation and neuroendocrine dysfunc-

tion lead to considerable therapeutic effects, though further

studies in humans are mandatory. Therefore, the future

anti-Parkinsonism therapy should transform from simple

DA replacement, dopaminergic activation, and symp-

tomatic therapy to multi-dimensional therapeutic strategies,

allowing for neural, immune, and endocrine participation

in PD. Given the evidences presented above, it can be

predicted that NIE network holds great promise to deepen

our understanding of PD and further facilitate the multi-

dimensional management and therapy of PD in future

clinical practice.
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