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Abstract Notwithstanding the enormous reproductive

potential encapsulated within a mature mammalian oocyte,

these cells present only a limited window for fertilization

before defaulting to an apoptotic cascade known as post-

ovulatory oocyte aging. The only cell with the capacity to

rescue this potential is the fertilizing spermatozoon.

Indeed, the union of these cells sets in train a remarkable

series of events that endows the oocyte with the capacity to

divide and differentiate into the trillions of cells that

comprise a new individual. Traditional paradigms hold

that, beyond the initial stimulation of fluctuating calcium

(Ca2?) required for oocyte activation, the fertilizing sper-

matozoon plays limited additional roles in the early

embryo. While this model has now been drawn into

question in view of the recent discovery that spermatozoa

deliver developmentally important classes of small non-

coding RNAs and other epigenetic modulators to oocytes

during fertilization, it is nevertheless apparent that the

primary responsibility for oocyte activation rests with a

modest store of maternally derived proteins and mRNA

accumulated during oogenesis. It is, therefore, not sur-

prising that widespread post-translational modifications, in

particular phosphorylation, hold a central role in endowing

these proteins with sufficient functional diversity to initiate

embryonic development. Indeed, proteins targeted for such

modifications have been linked to oocyte activation,

recruitment of maternal mRNAs, DNA repair and

resumption of the cell cycle. This review, therefore, seeks

to explore the intimate relationship between Ca2? release

and the suite of molecular modifications that sweep

through the oocyte to ensure the successful union of the

parental germlines and ensure embryogenic fidelity.
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Protein kinase � DNA repair � DNA protection

Introduction

A defining feature of the mature, ovulated, metaphase II

(MII) oocyte is the narrow window of opportunity that it

presents to undergo successful fertilization and initiate

embryogenesis [1]. Indeed, without the union of an oocyte

and a functionally mature spermatozoon, the oocyte will

rapidly undergo apoptosis and degradation via a process

known as post-ovulatory oocyte aging [2]. Immediately

following fertilization, however, the fertilizing sperm cell

initiates a series of irreversible biochemical and physio-

logical modifications to the oocyte’s cortex and cytoplasm,

thus rescuing the cell from its otherwise predestined

apoptotic fate and immortalizing its genetic contribution

within the conceptus [3, 4]. Accordingly, the molecular

basis of the sequential interactions between the fertilizing

spermatozoon, the oocyte, and the subsequent events that

they set in train has been the subject of considerable

attention spanning many decades. Such intense research

effort has provided compelling evidence that gamete fusion

is followed by a rapid release of intracellular calcium from

internal stores [5]. This initial elevation generally occurs

within 1–3 min post-fusion [6] and, in turn, stimulates

oscillating Ca2? transients that can persist for a further
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3–4 h [7, 8]. It is during this period of fluctuating Ca2?

transients that oocyte activation is initiated (reviewed in

[9]).

Coinciding with pronuclear formation and syngamy,

these Ca2? oscillations briefly pause, only to transiently

resume during the first phase of mitosis [7]. Recent work

has provided evidence that the pause in calcium ion fluxes

may also occur synchronously with a critical round of

DNA repair and a concomitant upregulation of protective

machinery [10, 11]. Such mechanisms have been postu-

lated to ensure the zygote is in optimal condition to

undergo embryogenesis [12] and appear to be causally

linked to the post-translational modification, and hence

activation, of an impressive suite of reparative and pro-

tective enzymes [10]. Notwithstanding these exciting data,

the identity of a majority of the targets, the complex sig-

naling pathways that underpin their activation, and their

diverse roles in preparing the oocyte for embryogenesis

remain to be fully investigated and, in some instances, are

the subject of considerable controversy [13, 14]. In this

review, we seek to integrate the leading theories and

emerging data to provide a comprehensive appraisal of the

role of fertilization and oocyte activation in extending the

viability of the oocyte with a focus on highlighting the

prominent role of post translation modifications (PTMs), in

particular phosphorylation, in these events.

Post-ovulatory oocyte aging

Immediately following ovulation into the female repro-

ductive tract, the mature oocyte remains viable for a

relatively short period of time (*16 h) before defaulting to

a terminal pathway of post-ovulatory aging [4, 15].

Oocytes progressing through this degradative process bear

the well-characterized hallmarks of apoptosis and recent

literature has implicated mitochondrial dysfunction and a

consequential generation of reactive oxygen species (ROS)

as a key mediator of this process [2, 4, 15, 16]. Produced as

an intermediary product of normal cellular metabolism,

ROS are well known to play fundamental roles in physi-

ological signaling [17–20]. However, imbalances created

by elevated levels of ROS that overwhelm the inherent

antioxidant defenses within a cell can lead to the oxidation

and alkylation of cellular components, such as DNA, lipids,

and proteins with dire consequences for cell viability

[21, 22]. Post-ovulatory oocyte aging appears to be

orchestrated, at least in part, by these oxidative processes

that progress through a cascade of events encompassing

elevated ROS and the peroxidation of lipids comprising the

cellular membranes (not excluding the mitochondrial

membrane) [2, 23]. The ensuing production of electrophilic

lipid aldehydes leads to widespread adduction of

vulnerable proteins and DNA causing extensive cellular

damage [21]. Even prior to the final induction of apoptosis,

these profound insults prevent, or severely reduce the

capacity of the oocyte to participate in fertilization and

subsequently support embryonic development

[1, 2, 4, 23, 24]. Significant biochemical abnormalities

result in the reduced activity of critical proteins [e.g.,

maturation-promoting factor (MPF) and mitogen-activating

protein kinase (MAPK)], impaired Ca2? homeostasis,

increased autophagy-related activity, mitochondrial dys-

function and disruptions to cell-cycle and stress response

pathways [2, 15, 16, 24–28].

In this context, recent work in the mouse has shown that

the onset of post-ovulatory oocyte aging is precipitated by

an imbalance in cellular antioxidants and ROS levels [4].

Furthermore, in vitro studies have shown that mouse

oocytes can be induced to display an aging phenotype

following exposure to electrophilic aldehydes such as

acrolein and 4-hydroxynonenal (4HNE) resulting in a

dramatic decline in the fertilizability of these cells [2, 28].

Such consequences are not surprising, considering the

integral contribution electrophilic aldehydes play in a

number of oxidative stress-associated diseases, including:

diabetes, cancer, atherosclerosis, acute lung injury, chronic

alcohol exposure, and in neurodegenerative diseases, such

as Alzheimer’s and Parkinson’s disease (reviewed in

[29–31]). In addition, this model may also account for

reduced pregnancy rates and higher incidences of cytoge-

netic abnormalities in humans associated with the use of

in vitro aged oocytes following ‘rescue ICSI’ strategies

[32, 33]. Although not specifically reviewed here, it is also

important to note that oocytes from individuals of

increasing maternal age also display many of the charac-

teristic hallmarks of oxidative stress and the corresponding

loss in fertility of those which undergo post ovulatory

aging (for review, see [34–38]).

In the search for strategies to prevent oxidative threat to

female fertility, sirtuins [silent information regulator 2

(Sir2) proteins] and antioxidant supplementation have

emerged as candidates to modulate oxidative assault. Sir-

tuins appear to play a role in sensing and modulating

cellular redox status as well as directly deacetylating key

proteins involved in the cellular stress response, thus hav-

ing been shown to provide protective effects in cells and

tissues exposed to oxidative stressors in vitro and in vivo

[39, 40]. Supplementation of antioxidants, such as mela-

tonin or caffeine, also appears to provide a valuable, yet

temporary, solution to oxidative insult in oocytes. How-

ever, while such interventions can delay oocyte aging, they

do not appear to be able to prevent this phenomenon

entirely [2, 4, 23, 27, 41]. While it is clear that ROS can

precipitate a number of negative consequences within

oocytes, other factors, such as in vitro handling techniques
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and oocyte age (as a result of maternal age), have also been

correlated with degradation of oocyte quality. This not only

encompasses the consequences listed previously, but also

manifests in a reduction in abundance of maternal effect

proteins, loss of RNA-binding proteins, critical alterations

of pericentromeric proteins, aneuploidy, and epigenetic

changes inherited by the derivative generation(s) [42–44].

Undeniably, it is only the act of fertilization that can

effectively truncate the post-ovulatory aging phenotype

and the inevitable induction of apoptosis [4, 15]. Thus,

understanding the precise biochemical and physiological

modifications that are initiated upon gamete fusion may

hold the key to our attempts to prolong the viability of

oocytes and the developmental competence of early

embryos.

The role of ions as post-fertilization signaling
molecule

At the moment of fertilization, the spermatozoon is

responsible for activating embryonic development by virtue

of its ability to promote a transient elevation and subsequent

oscillating waves of intracellular Ca2? levels within the

oocyte [5, 6]. Such events release the oocyte from its MII

stage arrest and drive it toward embryogenesis via stimula-

tion of meiotic resumption, cortical granule exocytosis,

decondensation of the sperm nucleus, recruitment of

maternal mRNAs, and pronuclear development [45].

In mammals, the initial burst of Ca2? is of a longer

duration and amplitude than that of the subsequent tran-

sients [8, 46]. More importantly, while Ca2? has distinctive

short-term effects on the initiation and completion of

oocyte activation events, it has also been implicated in the

downstream events encompassed by peri-implantation

development and gene expression [47–49]. Support for the

central role of Ca2? in stimulating embryonic development

rests with a series of elegant studies incorporating intra-

cellular Ca2? chelating agents [such as 1,2-bis(o-

aminophenoxy) ethane-N,N,N’,N’-tetraacetic acid

(BAPTA-BA)], which prevents cellular depolarization,

metaphase II exit, cortical granule exocytosis, and pronu-

clear formation [50, 51]. Additional supporting evidence

has been secured from experiments involving the judicious

use of chemicals such as strontium chloride (SrCl2) and

ethanol (EtOH) to artificially stimulate an increase in

intracellular Ca2? concentration, and thus drive the

chemical or parthenogenetic activation of an oocyte in the

absence of a fertilizing spermatozoon [15, 52–55]. The

utility of such an approach is recognized by the routine use

of artificial activators, together with a spermatozoon, as a

supplement in ART settings when the male gamete is

unable to activate the oocyte [15, 52–55]. Despite

recognition of the importance of Ca2? in these events, the

specific sperm factor(s) and signal transduction pathways

responsible for triggering its initial release after sperm–

oocyte fusion remain unclear and the subject of consider-

able controversy [13, 14, 56, 57].

What is clear, is that at the moment of fertilization, the

hydrolysis of the phosphatidylinositol 4,5-bisphosphate

(PIP2) phospholipid is initiated resulting in the release of

cleaved inositol trisphosphate (IP3) and diacylglycerol

(DAG), the former of which binds to IP3 receptors

(IP3Rs) located in the endoplasmic reticulum (ER),

thereby stimulating the release of stored Ca2? [58, 59].

Indeed, the injection of native IP3 or IP3 analogs is suf-

ficient to induce Ca2? release in mammalian oocytes

[8, 60]. Conversely, inhibitory antibodies and pharmaco-

logical reagents that prevent IP3 binding to IP3Rs are able

to elicit a potent suppression of fertilization induced Ca2?

oscillations and subsequently arrest fertilization and

downstream embryonic development [58, 61]. The fac-

tor(s) that link these signaling phenomena to upstream

sperm fusion may be expected to take the form of either

oolemmal receptor(s) and/or soluble factor(s) delivered by

the fertilizing spermatozoon [62, 63]. Indeed, numerous

hypotheses have been put forward to account for the

origin of the signal that stimulates the early events of

fertilization [13, 14, 56].

Presently, the most widely accepted model centers on

sperm specific factor(s) (SSF) that rouse the oocyte by

promoting the initial surge in [Ca2?]i. Two purported

sperm borne factors that putatively fulfill this role are

phospholipase C zeta (PLCf) and post-acrosomal WW-

domain binding protein (PAWP) (Fig. 1) [8, 64, 65].

Indeed, experiments in which either purified PLCf or

PAWP has been injected into an MII stage oocyte have

successfully stimulated the production of Ca2? transients

that are akin to those that ensue after sperm fusion [60, 64].

Since their initial identification however, numerous

research groups have independently reported evidence

conferring support for the role of PLCf in oocyte activation
and release of stored Ca2? [8, 66–68]. In this regard, a

considerable evidence base has now been established

supporting a strong correlation between abnormalities in

the structure, expression, and localization pattern of human

PLCf with that of oocyte activation deficiency (OAD) and

total fertilisation failure (TFF) [69]. In contrast, since its

original identification in 2007, independent research groups

have yet to corroborate the ability of PAWP to successfully

activate oocytes and/or induce Ca2? oscillations (reviewed

in [13]). Indeed, with the generation of a PAWP knockout

mouse, it now appears that depletion of PAWP does not

elicit the anticipated quantitative change in Ca2? oscilla-

tions or in the subsequent rates of embryo development

[57].
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Ultimately, the definitive identification of the key sperm

factor(s) and their mode of action may be crucial for the

development of therapeutic intervention strategies to

extend the viability of the oocyte, and may also hold value

as a prognostic biomarker for the diagnosis of male factor

infertility [56, 68, 70, 71]. In this context, strong correla-

tions have been drawn between PLCf and PAWP protein

levels and the success of assisted reproductive cycles, with

many instances of infertile human spermatozoa having

been found to be deficient in their ability to stimulate the

Ca2? oscillations necessary for successful fertilization

[72–75]. This work would also benefit from further anal-

ysis of the putative synergistic roles that have recently been

assigned to dynamic fluxes in alternative ions such as zinc

(Zn2?) [76–78]. While still in their relative infancy, the

study of the newly coined ‘zinc-sparks’ has revealed a

striking redistribution of Zn2? loaded vesicles immediately

at fertilization and demonstrated an inverse relationship

between declining Zn2? levels and the all-important

increase in Ca2? that is required for successful fertilization,

oocyte activation and egg–embryo transition [76–78].

Indeed, during the final hours of meiotic maturation, the

mouse oocyte accumulates an impressive twenty billion

Zn2? ions (representing an approximate 50 % increase in

total Zn2? content) [79, 80], via the two maternally derived

and cortically distributed zinc transporters, ZIP6 and ZIP10

[77, 80–82]. Despite this, it is now widely accepted that

release from MII arrest requires a dramatic decrease in

intracellular Zn2? content. Thus, the act of fertilization

must trigger the coordinated release of billions of Zn2?

ions, and appears to do so via a novel exocytotic event

referred to as a ‘zinc-spark.’ This process is necessary to

re-establish cell cycle progression, oocyte activation and

induce the egg-to-embryo transition [76–78, 81]. Accord-

ingly, zinc-sparks appear to be evolutionarily conserved in

all mammalian species studied to date, including humans,

rodents, and nonhuman primates [77, 79]. The importance

of Zn2? homeostasis for oocyte biology is further empha-

sized by recent studies in which the sequestration of zinc

using the heavy metal chelator N,N,N’,N’-tetrakis-(2-

pyridylmethyl)-ethylenediamine (TPEN) [83], or the tar-

geted disruption of Zn2? transporters (ZIP6 and ZIP10),

both led to immature telophase I-like cell cycle arrest; a

response that could be reversed by Zn2? supplementation

[77]. Similarly, oocyte zinc-spark profiles have been pos-

itively correlated with mouse embryonic development and

embryo quality. Thus, those oocytes that released higher

concentrations of Zn2? immediately following fertilization

displayed the greatest embryonic development potential

[84]. In view of such information, zinc-spark profiles hold

considerable promise as a novel extracellular physico-

chemical biomarker of embryonic developmental potential

[84].

Despite the clear biological and clinical importance of

Ca2?, and now Zn2?, a rapid induction of transient fluxes

in the intracellular concentration of either ion, would not in

themselves be sufficient to support conception. Rather, it is

likely that these ion(s) act in either an indirect and/or direct

manner to promote widespread post-translational modifi-

cations (PTMs) across a suite of key enzymes (e.g., protein

kinases (PK), phosphatases, and acetyltransferases) that

themselves are responsible for promoting the changes in

Fig. 1 Fertilization from fusion to activation. The signaling phe-

nomena necessary for oocyte activation and embryonic development

encompasses the hydrolysis of the phosphatidylinositol 4,5-bisphos-

phate (PIP2) phospholipid anchored in the plasma membrane of the

oocyte triggering the subsequent release of cleaved inositol trispho-

sphate (IP3) and diacylglycerol (DAG). The released IP3 is then able

to bind IP3 receptors (IP3Rs) embedded within the endoplasmic

reticulum (ER) and stimulate the release of stored Ca2? to initiate the

cellular responses required for oocyte activation. Among the putative

sperm-specific factor(s) (SSF) that link sperm fusion to PIP2
hydrolysis, phospholipase C zeta (PLCf) and/or post-acrosomal

WW-domain binding protein (PAWP) have emerged as key con-

tenders (Adapted from [13])
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cellular physiology necessary for oocyte activation and

embryonic development [85].

Phosphorylation and fertilization

Protein post-translational modifications (PTMs) increase

the functional diversity of the cellular proteome via the

covalent addition of functional groups, proteolytic cleavage

of regulatory subunits or degradation of entire proteins.

These chemical modifications influence almost all aspects

of normal cell biology and pathogenesis [86], and their

requirement during fertilization is driven at least in part, by

the unique dependence of the early embryo on a modest

store of maternally derived proteins and mRNA to support

all of the early events during embryogenesis [87, 88].

Indeed, until recently, the leading paradigms have held that

beyond the initial stimulation of oocyte activation, the

fertilizing spermatozoon plays limited additional roles in

the cleavage stage embryo [88]. Instead, this role is

believed to rest predominantly with maternal factors that

accumulate during oogenesis and are responsible for

directing zygotic genome activation, the cleavage stages of

embryogenesis, as well as the establishment of the initial

cell lineages [87, 88]. In keeping with this notion, an

autonomous transcription program is not established until

the 2 (mouse) or 4 cell stages of embryonic development

(bovine, ovine, and human) [89–91].

Among a complement of some 300 forms of PTMs, those

involving the selective activation and inactivation of sub-

strates via phosphorylation appear to hold a central position

in coordinating the regulation of early embryo development

(reviewed in [85]). Protein phosphorylation is a dynamic

PTM that is mediated by kinases and phosphatases, which

selectively phosphorylate and dephosphorylate substrates,

respectively. Principally targeting serine, threonine or tyr-

osine residues, phosphorylation is one of the most important

and well-studied PTMs with estimates suggesting that as

many as one-third of the proteins in the human proteome are

substrates for phosphorylation [92]. Such substrates extend

to the fertilized oocyte, where they have been implicated in a

diverse suite of physiological responses that encompass: a

rapid block to polyspermy, cortical granule exocytosis, polar

body extrusion, pronuclear development, plasma membrane

reorganization, recruitment of maternal mRNAs, DNA

repair, and resumption of the cell cycle (Fig. 2, Table 1).

The vital role of protein kinases in oocyte activation has

been eloquently described in Drosophila melanogaster,

where 311 proteins were shown to exhibit a change in

phosphorylation status between mature and activated

oocytes [93], suggesting that phosphorylation might

simultaneously and rapidly modulate the activity of many

proteins. Chief among these protein targets were those

integral to Ca2? binding, proteolysis, and protein transla-

tion, as well as those required for general oocyte activation

and post-fertilization developmental stages. A number of

kinases and their regulatory subunits were also identified

amongst the candidates, including extracellular signal-

regulated kinases (ERK) [also known as MAPK (mitogen-

activated protein kinases)] and A-kinase anchor protein

200 (a regulatory subunit required for PKA localization)

[93].

Like that of D. melanogaster, the mouse oocyte experi-

ences a swift and dramatic alteration to its global

phosphorylation status following both in vivo and in vitro

activation [94]. Of particular interest, protein kinase C

(PKC) activity has been linked to fertilization-induced Ca2?

oscillations (Table 1) using fluorescent C-kinase activity

reporter (CKAR) probes in tandem with the selective PKC

inhibitor, Gö6976. Interestingly, in vitro manipulation of

PKC has revealed an additional role for this enzyme in the

stimulation and maintenance of the Ca2? oscillations that

drive its activation, suggesting that it forms part of an

important regulatory feedback loop [95]. As an extension of

this model, Gonzalez-Garcia et al. [96] also showed that

PKC-induced phosphorylation outlasts each Ca2? transient,

thus raising the possibility that it has a prolonged influence

over such downstream events as pronuclear formation,

spindle dynamics, cytoskeletal reorganization, cell cycle

resumption, and DNA repair [97, 98]. In addition to PKC,

oscillating Ca2? has also been implicated in stimulation of

calmodulin-dependent protein kinase II (CAMII), a response

that triggers the phosphorylation and systematic degradation

of non-essential proteins through ubiquitination [85, 99],

resumption of meiosis and cortical granule exocytosis [100]

(Table 1). Accordingly, CAMII activity was also found to

spike almost immediately prior to, and remain elevated

following, the extrusion of the second polar body (1.5 h

after insemination of oocytes with spermatozoa) [100]. In a

similar manner, additional kinases, such as myosin light

chain kinases (MLCK), zipper-interacting protein kinase

(ZIP), and Rho-kinase (ROCK), have each been implicated

as playing integral roles in cytoskeletal arrangement during

the fertilization cascade (Table 1). Such activity appears to

be mediated, at least in part, via a conserved mechanism

involving the phosphorylation of serine 19 (Ser19) on

myosin regulatory light chains [101]. This phosphorylation

event stimulates actin-mediated ATPase activity and the

assembly of myosin II into filaments, thereby promoting

cytoskeletal remodeling, cortical granule exocytosis,

cytokinesis, polar body extrusion, and cleavage [85, 101]. In

support of such functions, it has been demonstrated that

selective pharmacological inhibition of MLCK, ZIP, and

ROCK (by blebbistatin, ML-7 or Y-27632, respectively) is

able to ablate the formation of the second polar body and

the correct spindle rotation required for normal cytokinesis
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[102–107]. The role of myosin phosphorylation during fer-

tilization is further underscored by studies in which mouse

oocytes were microinjected with nonphosphorylat-

able myosin regulatory light chain peptides [108]. Such a

strategy has been shown to effectively block sperm incor-

poration cone disassembly and obstruct cell cycle

progression with pronounced consequences for successful

fertilization [108].

Extending beyond the induction of fertilization, anoma-

lous kinase activity and thus the fidelity of downstream

phosphorylation events have been implicated in the etiology

of infertility as well as gross phenotypic and developmental

abnormalities in offspring [108–110]. Of particular concern,

disruption of global phosphorylation by pharmacological or

antibody inhibition has been shown to lead to abnormal

cortical granule exocytosis, redistribution of the ER and

IP3R1s, disruption of the second polar body formation and

extrusion, aswell as aberrant cytoskeletal reorganization and

cleavage during embryogenesis [100]. For instance, muta-

tion of MAPK signaling pathways abrogates normal IP3R1

phosphorylation required for the optimal release of Ca2?

ions at fertilization; those oocytes deprived of the MAPK

signaling pathway during maturation fail to mount normal

Ca2? oscillations and show compromised IP3R1 function

leading to compromised or arrested development [111]. Not

surprisingly, phosphorylation of IP3R1 by Polo-like kinase1

(PLK1) also appears to underlie the spatial and temporal

regulation of intracellular Ca2? signals required for oocyte

maturation. In fact, PLK1 has been shown to co-localizewith

MAPK and its activity is reduced in the absence of MAPK/

ERK activity [112] with devastating consequences for

fertilization. Similarly, inhibition of CAM kinase II by

pharmacological means [myristoylated-AIP (autocamtide-

2-related inhibitory peptide)] disrupted the inactivation of

MPF (maturing promoting factor), preventing cell cycle

resumption and cortical granule exocytosis in both fertilized

and ethanol-activated oocytes [100].

Collectively, these data highlight the importance of

phosphorylation cascades in several pivotal aspects of

oocyte activation. First, this form of PTM directly affects

the activity of a diverse suite of protein targets with

dominant roles in transducing the initial Ca2? signal into

embryonic activation. Second, even subtle disruptions to

these integral pathways can cause dramatic and irreversible

consequences for future offspring. Moreover, when these

disruptions occur on a broad scale, they can elicit gross

biochemical, phenotypic and genomic abnormalities cul-

minating in arrested embryonic development. Such a

situation arises, at least in part, because a majority of the

enzymes involved in intrinsic cellular repair pathways,

such as base excision repair (BER) and homologous

recombination (HR), require activation via phosphorylation

(or other forms of PTMs) prior to being able to engage in

the detection and mitigation of DNA damage (reviewed in

[113–115]).

DNA repair within the oocyte

At the moment of fertilization, the majority of oocyte

activation events either occur in parallel with, or in quick

succession after, the initiation of Ca2? oscillations.

Fig. 2 Protein kinases are intimately tied to each essential event of

oocyte activation. Protein kinases and phosphorylation events have

been directly implicated in transducing the calcium (Ca2?) signal into

many of the necessary activation events required for successful

fertilization. Such events encompass a swift block to polyspermy,

cortical granule exocytosis, polar body extrusion, pronuclear devel-

opment, plasma membrane reorganization, recruitment of maternal

mRNAs, DNA repair and resumption of the cell cycle (See Table 1)

(Adapted from [85])
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Table 1 Phosphorylation directs key physiological events required

for successful fertilization and early embryonic development. Wide-

spread post-translational modifications, in particular phosphorylation

has been implicated in directing a diverse suite of physiological

responses required for oocyte activation and early embryonic

development. A remarkable degree of redundancy exists between

kinases at fertilization suggesting the highly integrated nature of these

processes for the successful activation of development. A number of

key kinases, their regulators, and proposed functions are listed in this

table

Kinase Regulated by Proposed function(s) References

Conventional protein kinase C (cPKC) Intracellular Ca2?

DAG

Phosphatidylserine

Stimulation/maintenance of Ca2?

oscillations

Extrusion of the second PB

Cell cycle resumption/MII exit

PN formation

Spindle dynamics/organization

Cytoskeletal reorganization

DNA repair

Block to polyspermy

Cortical granule translocation/exocytosis

Differential activation of kinases

[85, 95–98, 172–174]

Novel protein kinase C (nPKC) DAG

Phosphatidylserine

Meiotic spindle dynamics

Formation/extrusion of the second PN

Cortical granule translocation

[95, 175, 176]

Atypical protein kinase C (aPKC) Phosphatidylserine

Negatively charged

phospholipids

Regulation of nuclear activity

Cortical granule exocytosis

[177]

Calmodulin-dependent protein kinase II

(CAMKII)

Intracellular Ca2?

bound to

calmodulin

(CAM)

Protein degradation by ubiquitination

Decrease in MPF/resumption of meiosis

Cortical granule translocation/exocytosis

Maternal mRNA recruitment

MII exit

Cyclin B1 and securin destruction

Decreases in the activity of MAPK

Second PB extrusion

Formation of maternal PN

Phosphorylation of IP3R1s

Regulation of apoptosis

Sister chromatid segregation/

decondensation

[85, 99, 174, 178–182]

Polo-like kinase1 (PLK1) Intracellular Ca2? Redistribution of the ER

Phosphorylation of IP3R1s

Regulation of Ca2?

Enhance receptor function on ER

Removing an APC/C inhibitor

[85, 112, 183, 184]

Myosin light chain kinases (MLCK) Intracellular Ca2?

phosphorylation of

myosin II

Block to polyspermy

PN formation

Cytoskeletal remodeling

PB formation/extrusion

Cleavage/cytokinesis

Redistribution of the ER and IP3R1s

Calcium oscillations

Regulator of myosin II in non-muscle

cells

Spindle rotation

Morula-to-blastocyst transition

[85, 102–107, 185]
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However, at the time of pronuclear formation, the con-

ceptus experiences a transient arrest of Ca2? oscillations

[7]. Recent evidence has raised the possibility that this

phenomenon is staged to allow a critical round of DNA

repair to occur prior to DNA replication during the first

mitotic division [12]. In addition, this temporary suspen-

sion of Ca2? oscillations enables the reconfiguration of the

sperm chromatin prior to pronuclear formation and syn-

gamy [116]. However, the capacity of preimplantation

stage embryos to repair damaged DNA remains to be fully

characterized, and it seems that phosphorylation of existing

repair proteins and maternal (and more even recently

paternal) mRNAs capable of damage detection and cell

cycle control are likely responsible for directing DNA

repair [117–121]. Fittingly, the effects of paternal miRNAs

seem to be mediated, at least in part, by post-transcriptional

regulation over maternal and early zygotic mRNAs (e.g.,

miRNA mediated mRNA stability control; refer to section

‘Epigenetics and DNA repair’) [117, 122]. The quality of

the paternal and maternal genetic contributions at fertil-

ization greatly influences the developmental competency of

the derivative organism [123]. It follows that the absence

of efficient DNA repair at this critical developmental phase

can either result in complete embryonic arrest or poor

embryo development associated with increased risks of

immunodeficiency, neurological disorders, and cancer

within offspring and a concomitant reduction in life

expectancy [124–127].

While many somatic cells experience a consequential

increase in the synthesis of DNA repair enzymes and

protective proteins in response to DNA damage [128, 129],

the ovulatory stage oocyte is, in contrast, transcriptionally

silent and incapable of mounting such a response [130].

Instead, these cells depend on stores of pre-synthesized

proteins and/or mRNA transcripts to drive repair pathways

during fertilization and early embryo development [131],

which additionally may work in combination with paternal

epigenetic modulators [118] (see Section ’Epigenetics and

DNA repair’). During these transcriptionally inert stages of

development, PTM of pre-synthesized and maternally

stored repair enzymes are likely to facilitate the activation

of the fundamental machinery necessary for mitigating

DNA and/or cellular damage. In this context, an impressive

array of PTMs (including acetylation, phosphorylation,

Table 1 continued

Kinase Regulated by Proposed function(s) References

Mitogen-activating protein kinase

(MAPK) and Extracellular signal-

regulated kinases (ERK)

Intracellular Ca2?

CSF activity

Activation and regulation of Ca2? release

Formation of PN

Disintegration of the pronuclear envelope

Cortical re-organization prior to

fertilization

Translocation of the meiotic spindle

Redistribution of the ER and IP3R1s

Formation of ER and IP3R1 cortical

clusters phosphorylation of IP3R1

[85, 93, 102, 106, 111, 186, 187]

M-phase kinases or Maturation promoting

factor (MPF)

Intracellular Ca2?

ATP

Cyclin

Stimulation/maintenance of Ca2?

oscillations promoting resumption of

meiosis and cell-cycle transitions

Nuclear membrane breakdown

[85, 186]

Rho-kinase (ROCK) Intracellular Ca2? Rho-furrowing phase of cytokinesis

Spindle rotation

Polar body formation

Phosphorylation of IP3R1

Cytoskeletal rearrangement

Ooplasmic segregation

Spindle rotation

[86, 112, 186, 188–190, 107]

Zipper-interacting protein kinase (ZIP

kinase)

Intracellular Ca2? Regulator of myosin II required for

cytokinesis

[101]

Protein kinase A (PKA) Intracellular Ca2? Phosphorylate IP3R1 [175, 191]

Protein kinase G (PKG) Intracellular Ca2? Phosphorylate IP3R1 [192]

Tyrosine kinases (FYN and LYN) Intracellular Ca2? Phosphorylate IP3R1 [193, 194]

Protein kinase B (PKB) Intracellular Ca2? Phosphorylate IP3R1 [195]
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methylation, ubiquitination, and sumoylation, as well as

histone modification) have been implicated in cellular

repair capacity and have been found to dramatically

influence the kinetics of DNA repair [23, 127, 132]. Recent

research within our own laboratory has provided evidence

for the induction of a dramatic series of post-fertilization

reparative (and protective) events involved in ensuring

oocyte viability prior to embryogenesis [10, 133, 134].

Furthermore, we have also provided evidence for DNA

repair and protection pathways with stage-dependent

activity in the mammalian oocyte [10, 133, 134]. As a

culmination of this work, it has been suggested that oocytes

experience accelerated repair of oxidative DNA damage

following fertilization driven by post-translational modifi-

cations of proteins that participate in the BER pathway [10]

(Fig. 3a). This pathway, which includes the key elements

of oxoguanine glycosylase (OGG1), apurinic/apyrimidinic

endonuclease (APE1), and X-ray repair cross comple-

menting protein 1 (XRCC1), is capable of repairing the

common oxidative DNA base adduct, 8-hydroxyguanosine.

While the BER pathway is considered the primary

orchestrator of oxidative damage repair in the zygotic

genome, a host of other enzymes have the capacity to

contribute to these and other repair processes [134]. A

recent proteomic comparison of murine MII oocytes and

zygotes identified a total of 53, and in primate oocytes,

approximately 37 proteins involved in DNA damage and

DNA repair related processes [121, 130]. In the MII

oocyte, enzymes required for nucleotide excision repair

(NER), single strand break repair (SSB), double strand

break repair (DSB), and BER are all highly expressed

[121, 130], thus highlighting their potential for activation

and use immediately following fertilization. In the same

manner, a proteomic analysis of high- and low-quality

oocytes in a porcine model indicated a positive correlation

between the abundance of DNA repair proteins and the

quality of the oocyte [135]. Microarray and bioinformatic

approaches have also confirmed the expression of a similar

profile of proteins in human oocytes and early embryos

[136].

Fig. 3 Fertilization induces a dynamic suite of protective and

reparative events to ensure successful egg–embryo transition. These

include: a post-translational modifications (PTMs) of pre-synthesized

maternally derived repair enzymes that provide the fundamental

machinery necessary for mitigating DNA and/or cellular damage in

the early embryo; b significant alterations in glutathione (GSH) and

glutathione peroxidase activity, thus truncating the effects of post-

ovulatory oocyte aging and defending the embryo against the

accumulation of oxidative DNA damage; and c a complex assortment

of transmembrane transporter molecules implicated in facilitating the

removal of genotoxic agents from the cytosol (Adapted from

[2, 10, 126, 127])
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In addition to direct DNA repair, the oocyte is endowed

with a host of alternative protective systems that may serve

as the first line of defense against various forms of cellular

damage including oxidative insult [10, 126, 127, 137]. In

some instances, these protective systems are differentially

expressed and/or activated in peri- and post-fertilized

oocytes, generally rendering these cells less susceptible

after fertilization has commenced. Examples include

transmembrane transporter proteins involved in drug

exclusion and antioxidant defenses that act to resolve

oxidative DNA base adducts and prevent protein alkylation

and mitochondrial disruption [10, 131, 133, 134]. In this

context, accumulating evidence indicates that immediately

prior to fertilization, concentrations of the antioxidant

glutathione (GSH) are significantly increased in the oocyte,

and remain elevated during the zygote stage, before pre-

cipitously falling by the 2-cell embryo stage [138].

Consistent with these data, it has also been shown that

glutathione peroxidase activity is increased in zygotes

compared to MII stage oocytes, thus providing additional

protection to the zygote against hydrogen peroxide-induced

DNA strand breakage [10; Fig. 3b] in conjunction with its

essential role in paternal pronucleus formation and suc-

cessful preimplantation development [139].

Epigenetics and DNA repair

Perhaps not surprisingly, embryonic quality and the

effective maintenance of genomic integrity are influenced

by the epigenetic signatures of both parental gametes [140].

Indeed, it appears that the correct establishment of epige-

netic modifications and subsequent chromatin scaffolding

are crucial steps in regulating the fidelity of the first mitotic

cleavages with their absence leading to pronounced con-

sequences for the development of a preimplantation

embryo [127]. In this context, it has been shown that the

inhibition of H3K4 demethylation can inhibit cleavage to

the 4-cell stage embryo [127], while the inactivation of

histone lysine methyltransferase (KMT5A) induces early

embryonic lethality prior to the 8-cell stage [141]. Simi-

larly, the deletion of Jumonji C domain-containing

demethylase (JMJD2C) arrests embryo development prior

to the formation of a blastocyst [142]. Recent evidence also

suggests that the propensity of epigenetic modifications to

modulate contact between nucleosomes and chromatin may

serve to influence the compaction and/or relaxation state of

the DNA fiber [143, 127]. In this capacity, epigenetic

modifications may not only ‘open’ and ‘close’ regions of

the DNA for transcription, but they may also act as

important molecular gatekeepers during DNA deconden-

sation and repair by providing the requisite enzymes with

appropriate access to the DNA template [143–145]. In this

respect, an enrichment of proteins responsible for epige-

netic modification and chromatin remodeling (e.g.,

SMARCA5, CHD3, and CHD4) has been found in the

mouse MII oocyte and early embryo, a particularly

important consideration given the transcriptionally inert

nature of immature oocytes prior to fertilization [123]. In

further support of this notion, a dramatic loss in DNA

demethylation [as evidenced by a reduction in 5-methyl-

cytosine (5mC) content] has been recorded shortly after the

protamine-histone exchange that occurs within the paternal

genome following fertilization [146, 147]. This demethy-

lation phenomenon appears to be closely associated with

the appearance of DNA DSBs (cH2A.X) and DNA repair

markers [Poly(ADP-Ribose) Polymerase 1 (PARP-1)]

[148]. Furthermore, the distinctive co-localization of

cH2A.X foci formation with the sites of demethylation

within the paternal pronucleus during the pre-replicative

stages of development, has led some to postulate that DNA

demethylation may be regulated by indirect DNA repair-

induced mechanisms such as the BER or NER pathways

[149]. Such a model is consistent with the fact that the

paternal gamete must decondense before syngamy [116],

and that the maternal gamete is responsible for ensuring the

genetic integrity of both nuclear contributions [87, 88].

Interest is also beginning to focus on the epigenetic

regulation imposed by the fertilizing spermatozoon

[150, 151]. In this regard, it is now recognized that, in

addition to delivering the signal(s) that initiate the fertil-

ization cascade, the male gamete may also contribute

developmentally important epigenetic modulators (e.g.,

DNA methylation, sperm-specific histones, and other

chromatin-associated proteins), as well as a number of

small noncoding RNAs (sncRNAs), to the oocyte during

fertilization that may all participate in successful embryo-

genesis [122, 151–153]. A strong case for this form of

regulation has been mounted on the basis of experiments

involving the use of conditional germline specific, Dicer

and Drosha knockout mouse models. These studies have

revealed that an embryos developmental potential, tran-

scriptomic homeostasis and early zygotic gene activation

are each dependent on paternally derived sncRNA cargo

[117, 122, 151]. It has also been suggested that a specific

sub-class of sncRNAs, known as the small interfering

RNAs (siRNAs), may participate in key developmental

processes encompassing pronuclear formation, DNA

repair, orchestrating oocyte activation, the transition from

maternal to embryonic gene control, and the establishment

of imprints in early embryos [154]. Such findings offer

many exciting avenues for future research, not the least of

which will be to determine how epigenetic mechanisms of

regulation are seamlessly integrated with maternally

mediated PTM of signaling pathways to support early

embryonic development.
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Additional protective mechanisms of the oocyte
and early embryo

In recent years, a variety of additional mechanisms have

been identified that may prevent the propagation of damage

in the fertilized oocyte. In marine invertebrates as in some

mammalian species, post-fertilization activation has been

implicated in promoting the synthesis of transmembrane

transporter molecules, such as the ABCB protein, P-gly-

coprotein (PGP), and an ABCC protein similar to the

multidrug resistant (MDR)-associated protein (MRP)-like

transporter [154]. Though poorly understood, these pro-

teins appear to be trafficked to the plasma membrane where

they become functionally active and thereafter increase the

bi-directional transport capacity of the cell [133, 134, 154].

Such proteins have been implicated in the transport of

genotoxic agents from the intracellular environment and

away from the vulnerable genomic material

[133, 134, 155], as well as shuttling hormones and amino

acids from the surrounding environment to the zygote to

facilitate growth and development [156]. In somatic and

cancer cell models, a similar complement of transmem-

brane transporter proteins has been implicated in multidrug

resistance [157]. In these cells, the transport activity of the

proteins appears to be intimately tied to their activation by

post-translational phosphorylation events driven by Ca2?

and the serine/threonine kinases of PKC and/or PKA

[133, 134, 158–160]. These results are particularly inter-

esting given the notable increase in PKC activity that flows

from the elevated levels of intracellular Ca2? as well as a

secondary stimulus of DAG, which are present at the time

of fertilization. Taken together, it is tempting to speculate

that PKC may hold a key role in the increased activation of

transmembrane transporters to help protect mammalian

oocytes and early embryos (Fig. 3c).

If this hypothesis was correct, it may afford unique

opportunities to increase the protection of maturing oocytes

with important implications for assisted reproductive

strategies. In this regard, the ‘drugability’ of kinases [161]

and their protein targets could provide avenues for the

improvement of oocyte and early embryonic quality

in vitro. The merits of this approach have been emphasized

by recent proof-of-concept studies. For instance, artificial

upregulation of transmembrane transporter molecules in

bovine and porcine oocytes has been shown to have a

dramatic positive impact on the post-cryopreservation

viability of late stage embryos [162, 163]. In addition,

recent literature indicates that numerous pharmacological

(bovine embryos: rifampicin and forskolin) and hormonal

(porcine GV stage oocytes: progesterone) signals can sig-

nificantly elevate membrane transporter protein expression

and/or activity, respectively [162, 163]. This paradigm

provides an exciting prospect in clinical IVF settings

whereby culture medium could be supplemented with

compounds to increase the efflux activity of transmem-

brane transport proteins and thus reduce the intracellular

availability of potentially damaging agents. This may

also prove to be a valuable mechanism for the protection of

the ovary and immature oocytes from both fresh and frozen

sources in clinical fertility management.

In the event that the innate prevention and repair sys-

tems are inadequate or overwhelmed by a particular insult,

mechanisms that are responsible for avoiding the propa-

gation of damage take center stage. This is particularly

important when considering the unique role that the oocyte

plays in the continuation of a species when, in extreme

cases, significant DNA damage could lead to chromosomal

loss, translocation or duplication. Cumulatively, such

damage could also significantly increase the mutational

load borne by the embryo and thus heighten the risk of

carcinogenesis in the offspring [164]. Correspondingly, a

variety of mechanisms have been identified as being

responsible for the removal of severely damaged oocytes or

early embryos. These are usually characterized by signifi-

cant cellular senescence, DNA fragmentation and

degradation, and eventually either cell atresia or apoptosis

(reviewed in [165–167]). Atresia dominates the mecha-

nisms involved in removal of immature oocytes from the

ovarian reservoir and involves ligand–receptor complex

systems, including tumor necrosis factor alpha (TNFa),
TNF-related apoptosis-inducing ligand (TRAIL or APO-2),

Fas ligand, APO-3 ligand, PFG-5 ligand, and associated

receptors; on the other hand, mature oocyte and early

embryo loss are primarily mediated by Bcl-2 family

members, Apaf-1 and caspase activation leading to apop-

tosis [154, 167–171].

The endowment of such elaborate systems for the

detection, prevention, repair, or as a last resort, removal of

a compromised cell clearly has evolutionarily benefits for a

species. However, the increasing instance of delayed

childbirth in our own species means that these mechanisms

are working against us, particularly considering the

expression of several key repair proteins has been found to

be drastically reduced between ‘young’ and ‘aged’ oocytes

[172] leading to a further potential increase in the demand

for assisted reproductive procedures. While the advent of

increasingly sophisticated assisted reproductive technolo-

gies to bypass such biological obstacles has been

remarkably beneficial to many couples wishing to con-

ceive, the reliance on this technology carries the very real

risk of exacerbating genetic and cellular damage through

gamete handling and culturing procedures in cells that

would otherwise fail to participate in fertilization events

[36].
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Concluding remarks

The process of fertilization elicits a complex suite of bio-

chemical and physiological modifications that prepare the

oocyte for sustained embryonic development. These events

are intimately tied to a prominent rise in intracellular Ca2?

at the moment of fertilization and the concomitant stimu-

lation of an extensive range of oocyte activation events.

Chief among these appears to be the activation of kinases

that mediate the post-translational modification of a suite of

key developmental proteins. It is now known that such

events are likely to work in unison with paternally derived

small non-coding RNA species, which regulate the stabil-

ity/translation of the limited pool of maternally stored

mRNA transcripts. This review contextualizes the role of

fertilization and oocyte activation in extending the viability

of the oocyte, initiating a series of biochemical alterations

required for embryonic development and highlighting the

prominent role that protein PTMs, and in particular phos-

phorylation, hold in their execution.
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