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Introduction

The gut microbiota can be viewed as an actual body organ 
contributing to the well-being of the host organism. The 
trillions of microbes colonizing the gastrointestinal tract 
influence local and systemic processes such as nutri-
ent transformation [1], vitamin supply [2], maturation of 
mucosal immunity [3, 4], gut-to-brain communication [5], 
and even tumor progression [6]. Like other organs, the 
proper function of the gut microbiota relies on a stable cel-
lular composition, which in the case of the human micro-
biota consists mainly of bacteria from the phyla Bacteroi-
detes, Firmicutes, Actinobacteria, and to a lesser extent 
Proteobacteria [7]. Large shifts in the ratio between these 
phyla or the expansion of new bacterial groups lead to a 
disease-promoting imbalance, which is often referred to as 
dysbiosis. A reduction of microbial diversity and outgrowth 
of Proteobacteria are cardinal features of dysbiosis [8, 9]. 
A growing number of diseases is associated with intesti-
nal dysbiosis, which in some cases contributes to disease 
development or severity. Dysbiosis is a hallmark of inflam-
matory bowel diseases (IBD) such as ulcerative colitis and 
Crohn’s disease [10], but also metabolic disorders [11], 
autoimmune diseases [12], and neurological disorders [13]. 
Dysbiosis can trigger disease in the first weeks of life as 
observed in necrotizing enterocolitis [14], during adult-
hood through the promotion of colorectal cancer [15], or in 
elderly people as exemplified by Clostridium difficile-asso-
ciated diarrhea [16].

Unlike infectious microbes, the pathogenicity of spe-
cific intestinal bacteria cannot be established through 
the application of Koch’s postulates given that a major 
fraction of the microbiota cannot be isolated as pure 
culture. Therefore, the pathogenic implication of spe-
cific microbes in a disease largely relies first on the 
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identification of shifted bacterial populations based on 
high-throughput DNA sequencing of conserved 16S 
rRNA genes [17]. The replication of a disease through 
the transplantation of the gut microbiota from a diseased 
animal to a healthy one is often used in a second step to 
confirm the contribution of intestinal dysbiosis to disease. 
Microbiota transplantation demonstrated the contribution 
of intestinal microbes, among others, to obesity [18] and 
atherosclerosis [19] in mice. Nevertheless, despite strong 
evidence gained from 16S rRNA sequencing and micro-
biota transplantation, the culpability of specific bacterial 
groups enriched in a disease state often remains circum-
stantial. Instead of being true offenders, suspected bacte-
ria can just be bystanders to real pathogens that remain 
below the threshold of current detection techniques. The 
extensive mutualism prevailing in the intestinal micro-
biota strengthens connections between offenders and 
bystanders. Bacteria producing a broad range of diges-
tive enzymes frequently cross-feed other bacteria harbor-
ing limited foraging abilities [20]. Increased liberation of 
nutrients may promote the parallel outgrowth of harm-
less and harmful bacteria. Furthermore, the borderline 
between good and evil is often blurred given that some 
symbiotic bacteria may become pathogenic when present 
in larger numbers in the gut. Such bacteria, referred to 
as pathobionts [21], may be difficult to recognize when 
their expansion occurs simultaneously to other changes 
in the gut microbial composition. Beyond the assignment 
of guilt by association, the discovery of the mechanisms 
underlying the shifts of microbial groups is instrumental 
to understand the processes leading to dysbiosis. Accord-
ingly, the identification of factors causing strong shifts in 
the gut microbiota is pivotal to devise strategies aimed at 
preventing intestinal dysbiosis.

Between resilience and fragility

Several exogenous and endogenous factors affect the 
microbial composition of the intestine. The resulting effects 
range from transient to long-lasting and these effects can 
scale from harmless to harmful. Often, a single factor is 
not sufficient to induce dysbiosis as the gut microbiota has 
an intrinsic resilience, a capacity to adapt to variations in 
nutrient availability and changing environmental condi-
tions. The combined actions of several factors by contrast 
can move microbial groups to a tipping point, which even-
tually burst to vast shifts of pathological significance. The 
main factors influencing the composition of the gut micro-
biota are the diet, various drugs, the intestinal mucosa, 
the immune system, and the microbiota itself. Moderate 
shifts in microbial composition can then provide a win-
dow of opportunity for other aggravating factors to amplify 
changes in specific bacterial groups to the point of imbal-
ance. Oxidative stress, bacteriophages, and bacteriocins are 
typical factors exacerbating shifts of the microbiota to the 
point of dysbiosis (Fig. 1).

The threshold required to trigger dysbiosis largely 
depends on the bacterial groups affected. Broad shifts in the 
main phyla Bacteroidetes and Firmicutes may remain with-
out pathologic consequence, whereas increased amounts of 
marginal groups may wreak havoc. For example, Entero-
bacteriaceae normally represent a minor fraction of the 
gut microbiota [22]. Bacteria from the family of Entero-
bacteriaceae can expand rapidly consecutive to changes 
in oxidative conditions of the gut such as occurring during 
inflammation [9, 23]. Because of the pyrogenicity of Enter-
obacteriaceae lipopolysaccharide (LPS), outgrowth of this 
bacterial family usually intensifies an ongoing inflamma-
tory response.

Fig. 1   Factors contributing to 
intestinal dysbiosis. The gut 
microbiota is subject to natural 
variations induced by the 
changing supply of nutrients, 
drugs, the immune system, 
and the intestinal mucosa. The 
action of stress factors such as 
oxidative stress, the induction 
of bacteriophages, and secretion 
of bacteriocins amplify the 
changes in microbial composi-
tion leading to decreased diver-
sity and outgrowth of specific 
bacterial taxa
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In addition to the main factors introduced here above, 
additional parameters such as temperature, atmospheric 
pressure, and oxygen partial pressure also influence the 
microbial composition of the gut. For example, the expo-
sure of mice to a low temperature of 6 °C increased intes-
tinal Firmicutes levels at the cost of Bacteroidetes and 
the resulting cold-adapted microbiota increased energy 
expenditure [24]. The relative abundance of Firmicutes was 
also increased in human subjects living at high altitudes 
[25], although the impact of altitude on the microbiota may 
be difficult to distinguish from the effects of lower ambi-
ent temperatures and different dietary habits. A group of 
mice embarked on a 13-day space flight on the Space Shut-
tle Atlantis yielded the first data about the gut microbiota 
in micro-gravity. The analysis of microbial composition 
revealed only little changes at the phylum level, but some 
variations in Clostridiales and Lactobacillales at the order 
level [26]. Space flight also caused loss of body weight and 
decreased water intake, meaning that these alterations may 
also account for the changes in the gut microbiota reported.

Nutrition

The diet is a major element affecting the intestinal micro-
biota. Natural variations in food intake cause transient 
changes in microbial composition, although predomi-
nant components such as meat, fish, and fibers have dura-
ble effects on the microbiota and leave typical signatures 
characterized by shifts in specific bacterial groups [27]. 
Changing food composition as well as food shortage or 
oversupply affect the gut microbiota. The absence of nutri-
ents in the gut occurring in parenteral feeding increases 
the levels of Proteobacteria, which promote inflammation 
at the mucosal wall and eventually cause a breakdown of 
the epithelial barrier [28]. Excess supply of nutrients leads 
to obesity, which is associated with dysbiosis and inflam-
matory metabolic disorders. Obesity is characterized by 
decreased microbial diversity [29] and over-representation 
of Firmicutes (Fig. 2) as observed in ob/ob mice [18, 30] 
and in obese humans [31, 32]. A lower ratio of Bacteroi-
detes to Firmicutes results in a higher release of LPS into 
the circulation [33]. Higher LPS levels contribute to a state 
of chronic low-grade inflammation occurring in obesity 
(Fig. 2a). In mice, elevated levels of circulating LPS initi-
ate weight gain and up-regulate markers of inflammation to 
a similar extent as a high-fat diet [34]. Metabolic endotox-
emia is further enhanced by increased permeability of the 
gut wall that is caused by a high-fat/high-sugar diet through 
increasing levels of adherent-invasive Escherichia coli, 
which infiltrates the intestinal epithelium thereby decreas-
ing mucus thickness [35, 36]. The diet usually is a com-
bination of protein, fat and carbohydrates, and therefore, 

the isolated effect of each macronutrient on the microbiota 
in vivo is not easily determined. But diets rich in one or two 
of these types of food provide valuable clues about their 
respective influences.

Proteins

In the long term, high uptake of animal proteins, amino 
acids and fats increases the relative amounts of Bacte-
roides, whereas low protein and elevated carbohydrate 
ingestion raises Prevotella levels [37, 38]. But short-term 
bursts of high-protein intake do not necessarily yield the 
same effects. In obese men, the consumption of a protein-
rich diet did not affect the abundance of Bacteroides, but 
the Roseburia/Eubacterium rectale group of bacteria was 
reduced probably due to lower carbohydrate intake [39]. 
In rats, feeding with a high-protein diet is associated with 
lower contents of Clostridium species and Faecalibac-
terium prausnitzii, while Bacteroides do not increase in 
parallel [40]. Whereas the microbial changes induced by 
high-protein consumption are rather moderate, the changes 
in fermentation products are more evident. A high-protein 
diet increases the production of branched-chain fatty acids, 
but also the production of potentially toxic substances such 
as sulfide, ammonia and N-nitroso compounds [27, 39, 41]. 
With an excess dietary intake of protein and amino acids, 
also the synthesis of nitric oxide increases [42]. This anti-
microbial product strongly influences the gut microbiota, 
and increased NO levels measured in obese patients likely 
contribute to the development of an obesity-associated 
microbiota [42–44].

Fats

A high fat intake induces remarkable changes in the gut 
microbiota composition. The overall diversity decreases 
together with the relative abundance of Bacteroidetes, 
whereas the relative abundance of Firmicutes increases 
[45]. Even structural features such as the degree of fatty 
acid saturation imprint the microbiota. Feeding unsaturated 
fats to mice increased Actinobacteria, lactic acid bacteria 
and Akkermansia muciniphila creating a microbial com-
position that protected from weight gain and white adipose 
tissue inflammation [46]. Interestingly, feeding mice with 
saturated fat resulted in a higher production of LPS and 
higher activation of Toll-like receptor (TLR)-4 and TLR2 
than feeding with unsaturated fat [46].

High-fat diet also influences the gut microbiota indi-
rectly by increasing the pool of bile acids. After emulsifi-
cation of dietary lipids, the majority of bile acids is reab-
sorbed in the distal ileum. Non-absorbed bile acids strongly 
influence the microbial growth by creating an environment 
of low pH and strong antimicrobial activity [47]. Feeding 
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rats with cholic acid leads to a microbial composition 
resembling the obesity pattern of low Bacteroidetes to 
Firmicutes ratio [48]. Considering the stimulatory effect 
of high-fat diet on bile acids in the large intestine in mice 
[49], bile acids likely contribute to the impact of high fat 
intake on obesity-related dysbiosis. Furthermore, bile acids 
are signaling molecules binding to the nuclear hormone 
farnesoid X receptor (FXR) and the G-protein-coupled bile 
acid receptor TGR5. Binding to FXR not only regulates bile 
acid synthesis but also influences lipid, glucose and energy 
homeostasis [50]. In the liver, FXR inhibits the induction 
of the sterol regulatory element-binding protein SREBP1c, 
thus inhibiting lipogenesis and decreasing the risk of stea-
tosis. TGR5 signaling induces the production of gluca-
gon-like peptide (GLP)-1 in the intestine which improves 
insulin sensitivity. By increasing mitochondrial activity 
in brown adipose tissue and oxidative phosphorylation in 

muscle, TGR5 activation also elevates energy expenditure 
[51, 52]. Gut bacteria regulate bile acid receptor signaling 
by converting primary bile acids into secondary bile acids 
that show different binding affinities. Especially bacteria of 
the phylum Firmicutes have 7α-dehydroxylation activity 
to turn cholic and chenodeoxycholic acid into deoxycholic 
and lithocholic acids, which have a lower binding affinity 
for FXR, but a higher affinity for TGR5 [53] (Fig. 2d).

Fibers

Fibers have a direct effect on the microbiota by reaching 
the colon due to their indigestibility and feeding microbial 
fermentation. A diet rich in plant polysaccharides promotes 
the growth of Bacteroidetes over Firmicutes [54]. Inter-
estingly, a gut microbiota with an increased Firmicutes to 
Bacteroidetes ratio has a higher capacity to extract energy 
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Fig. 2   Consequences of nutritionally induced imbalance between 
Firmicutes and Bacteroidetes. Obesity, high dietary fat and sugar 
intake and an enlarged bile acid pool decrease the Bacteroidetes to 
Firmicutes ratio. Changes in this ratio affect chronic inflammation, 
and metabolic changes related to energy supply to colonocytes, lipo-
genesis, gluconeogenesis, insulin sensitivity and thereby glucose 
tolerance. Bacterial LPS (a), SCFA (b), increased monosaccharide 

uptake (c) and secondary bile metabolisms (d) are key mediators of 
such metabolic adaptations. ANGPTL4 angiopoietin-like factor IV, 
FXR farnesoid X receptor, TGR5 G-protein-coupled bile acid recep-
tor, SCFA short chain fatty acid, GPR43/GPR41 G-protein-coupled 
receptors 43/41, LPS lipopolysaccharide, ChREBP carbohydrate 
response element-binding protein, SREBP1c sterol regulatory ele-
ment-binding protein 1c
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from the diet by providing more enzymes for the break-
down of dietary polysaccharides [18, 55], thereby increas-
ing the uptake of monosaccharides and short chain fatty 
acids (SCFA) by the intestinal mucosa. This process maxi-
mizes nutrient utilization but in case of excess food sup-
ply also maximizes energy storage. Microbially released 
monosaccharides are transferred to the liver via the portal 
vein and activate the carbohydrate response element-bind-
ing protein ChREBP, leading to increased transcription of 
several genes involved in de novo hepatic lipogenesis [56, 
57], thus augmenting lipid transfer to fat stores in periph-
eral tissues (Fig.  2c). The increased intestinal absorption 
of the SCFA butyrate, acetate and propionate provides 
additional energy for diverse tissues (Fig. 2b). Butyrate is 
mainly used by the colonocytes and stimulates their prolif-
eration and differentiation [58]. Acetate fuels lipogenesis in 
peripheral tissues, especially muscle, whereas propionate 
enters gluconeogenesis in the liver [58]. A higher produc-
tion of SCFA by obesity-associated microbiota might be 
one factor contributing to higher triglyceride deposition in 
fat tissues as well as in the liver [59]. In addition to their 
caloric contribution SCFA activate metabolic pathways by 
acting as ligands to the G-protein-coupled receptors GPR41 
and GPR43 (also known as free fatty acid receptors 3 and 
2) [60, 61]. GPR41 and GPR43 activation is associated 
with adipose tissue expansion and inflammatory processes, 
although the outcome of this activation as being protective 
or causative remains unclear (as reviewed in [62]). Acti-
vation of GPR41 and GPR43 also elevates leptin levels in 
adipocytes, which results in increased insulin sensitivity 
and higher satiety [63, 64]. GPR43 signaling in intestinal 
L-cells increases production of GLP-1 that improves glu-
cose tolerance [65]. Acetate and propionate are the main 
ligands activating GPR43 in adipose tissue and immune 
cells as butyrate mainly serves as energy source for colo-
nocytes and relatively small amounts reach the periphery 
[66]. In dysbiosis related to obesity, SCFA profiles change 
consecutive to decrease in the ratio between Bacteroidetes, 
producing high amounts of acetate and propionate, and 
Firmicutes, mainly producing butyrate [67]. Therefore, 
decreased acetate and propionate production by the micro-
biota likely reduces GPR43 signaling.

The question raises whether a balanced microbiota can 
be restored through prebiotic and probiotic supplementa-
tion. Prebiotics directly modulate the microbiota and entail 
reduced gut permeability and endotoxemia, thus reduc-
ing inflammation [47, 68, 69]. These changes are linked 
to higher levels of GLP-2 which reduces gut permeability 
[69]. An intake of the prebiotic oligofructose shifts the 
composition of the gut microbiota towards a lean pattern 
by increasing Bacteroidetes and reducing Firmicutes in 
ob/ob mice and in rats genetically prone to develop obesity 
and insulin resistance [70, 71]. Probiotics that induce the 

secretion or lower the suppression of angiopoietin-like fac-
tor IV (ANGPTL4, also known as fasting-induced adipose 
factor) have a beneficial effect on the lipid metabolism in 
adipocytes. ANGPTL4 inhibits lipoprotein lipase, which 
hydrolyses triglycerides from lipoproteins for the fatty acid 
uptake into the cell. Interestingly, germ-free mice defi-
cient in ANGPTL4 lose their protection from diet-induced 
obesity [72]. Supplementation of mice with the probiotic 
Lactobacillus paracasei increases circulating levels of 
ANGPTL4 and reduces body fat [73] (Fig. 2c). Akkerman-
sia muciniphila is another species that proved to reduce 
obesity when supplemented to mice [74, 75]. While this 
species might cause increased severity in colitis models 
[76, 77], it has a protective effect in obese mice by thicken-
ing the mucus layer, thereby decreasing gut permeability, 
reducing endotoxemia and preventing inflammation [75] 
(Fig. 2a).

Carbohydrates

The processing of complex plant polysaccharides, such as 
pectins, xylans and fructans, requires a battery of endo- 
and exoglycosidases featuring activities capable of releas-
ing monosaccharides such as rhamnose, galacturonic acid, 
arabinose, xylose, fructose and glucose [78]. By contrast, 
the utilization of intestinal mucin glycans requires differ-
ent activities consisting of galactosidases, N-acetylglu-
cosaminidases, N-acetylgalactosaminidases, fucosidases 
and sialidases. The structural differences between dietary 
carbohydrates and intestinal glycans and the correspond-
ing need for different processing machineries have pushed 
bacteria to specialize for the utilization of limited subsets 
of carbohydrates. The processing of complex carbohy-
drates often relies on cooperative actions between distinct 
bacterial taxa. In addition to enabling mutualistic interac-
tions, the cleavage of complex carbohydrates and release 
of monosaccharides in the gut lumen also generate oppor-
tunities for bacteria, which lack carbohydrate-processing 
enzymes. For example, E. coli does not express any gly-
cosidase capable of degrading complex carbohydrates, but 
it is an avid consumer of the monosaccharides N-acetylglu-
cosamine, N-acetylneuraminic acid (Neu5Ac) and fucose 
[79]. Accordingly, intestinal E. coli and other Enterobac-
teriaceae respond to the presence of specific monosaccha-
rides by increasing proliferation and changing the expres-
sion of virulence factors [80, 81].

The capacity to cleave sialic acid, such as Neu5Ac and 
N-glycolylneuraminic acid (Neu5Gc), is restricted to a 
limited number of bacterial taxa [82]. Nan gene clusters 
encoding sialidases, transporters and catabolic enzymes 
enable the release of sialic acid from intestinal glycans 
and its utilization as carbon source. Some Bacteroides spe-
cies, such as Bacteroides fragilis, express fully operational 
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nan clusters, whereas others, such as Bacteroides thetaio-
taomicron [83] only express sialidases but lack transporters 
mediating the uptake of free sialic acid. Sialic acid liber-
ated in this way is accessed by other bacteria that express 
transporters enabling the uptake of the sugar. This type of 
cross-feeding is a common mechanism prevailing in the 
intestinal environment. Monosaccharides released from 
intestinal glycans can therefore be utilized by bacteria 
devoid of glycosidases and mediate a strong proliferating 
response thereby leading to dysbiosis. Antibiotic treatment 
has been shown to disturb microbiota and lead to increased 
liberation of sialic acid, which fuels the expansion of the 
pathogens Salmonella enterica serovar Typhimurium and 
Clostridium difficile in a mouse model [84]. Similarly, the 
outgrowth of E. coli and exacerbation of intestinal inflam-
mation occurring after dextran sulfate sodium ingestion 
was shown to depend on the release of sialic acid from 
intestinal α2,3-linked sialylated glycans [85]. As mentioned 
in the introduction to this review, the intricate interactions 
between bacterial taxa ranging from mutualistic to parasitic 
networks complicate the identification of the mechanisms 
underlying dysbiosis.

Drugs

Oral administration is the most frequently applied route 
of uptake for drugs. The convenience of this path enables 
the regular uptake of drugs without medical intervention, 
increasing the exposure of the gut microbiota to drugs and 
thereby promoting dysbiosis.

Non‑steroidal anti‑inflammatory drugs

Conventional non-steroidal anti-inflammatory drugs, such 
as aspirin, ibuprofen and naproxen, affect the intestinal 
microbial composition when taken daily over months, as 
shown by increased abundance of Bacteroidaceae and 
Enterobacteriaceae [86]. Because non-steroidal anti-
inflammatory drugs cause stomach ulcers, proton-pump 
inhibitors are often prescribed in combination to alleviate 
these side effects on the gastric and small intestinal mucosa. 
Proton-pump inhibitors themselves have been reported to 
alter the gut microbiota, which contributes to increased risk 
for C. difficile-associated diarrhea [87] and hepatic enceph-
alopathy in cirrhotic patients [88]. The impact of drugs on 
intestinal microbes underlines the confounding importance 
of medications when associating diseases with intestinal 
dysbiosis. For example, the hepatic gluconeogenesis inhibi-
tor metformin is a standard medication used in the treat-
ment of type 2 diabetes. As shown recently, the uptake of 
metformin affects the composition of the gut microbiota 
by elevating E. coli levels [89]. Accordingly, it is essential 

to take in account the impact of medications on intestinal 
microbes when addressing possible correlations between 
changes in the gut microbiota in chronic disorders.

Antibiotics

Through their antibacterial activity antibiotic drugs have an 
intrinsic potential in promoting intestinal dysbiosis. Most 
orally administered antibiotics will alter the gut microbiota, 
albeit transiently for the duration of treatment. Some antibi-
otics however induce long-lasting changes in the gut micro-
biota. Whereas several antibiotics, such as amoxicillin, do 
not have any significant long-term impact on the gut micro-
biota, treatment of children with macrolide antibiotics lead 
to long-lasting decrease in Firmicutes and Actinobacteria 
with concomitant increase in Bacteroidetes and Proteobac-
teria [90]. Similarly, treatment of adults with ciprofloxacin 
decreases gut microbial diversity transiently but also leaves 
a long-lasting signature characterized by increased abun-
dance of Gram-positive aerobes [91]. Repeated exposure to 
antibiotics can destabilize the gut microbiota and promote 
the outgrowth of antibiotic-resistant pathogenic bacteria, as 
observed through the development of C. difficile-associated 
diarrhea in elderly people [92]. In addition to their expected 
antibiotic effects, some antibiotic drugs also exert an eubi-
otic action [93] by promoting the expansion of beneficial 
bacteria through the suppression of pathobionts. Such an 
eubiotic effect is typical for rifaximin, which contributes to 
increasing the gut microbial diversity in IBD patients [94] 
and also improves symptoms of irritable bowel syndrome 
[95].

Microbial regulation of drugs

As outlined here above, several drugs affect the gut micro-
biota. The reverse is true, too. Intestinal bacteria can metab-
olize drugs and thereby modify their bioavailability to the 
host [96]. Just to name few examples, the cholesterol-low-
ering drug simvastatin [97] and the glucocorticoid agonist 
prednisolone [98] are modified through multiple bacterially 
encoded enzymes present in the gut. The topoisomerase I 
inhibitor irinotecan applied in cancer chemotherapy is inac-
tivated by glucuronidation in the liver. This modification is 
reversed in the gut through the action of bacterial glucuro-
nidases, which re-activate the drug and increase intestinal 
toxicity [99]. Beyond their interactions with the gut micro-
biota, several drugs also affect the intestinal mucosa and 
its barrier function [100]. The complex interplay between 
drugs, the microbiota, the intestinal mucosa, and the 
immune system underline the importance of a comprehen-
sive approach when unravelling the mechanisms underlying 
intestinal dysbiosis.
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Intestinal mucosa

Mucins

The gastrointestinal tract is lined with mucus secreted 
by goblet cells, thereby protecting the epithelium from a 
direct contact with the microbiota. In addition to build-
ing a physical barrier, the intestinal mucus is a source of 
nutrients for intestinal bacteria that can liberate carbohy-
drates from the glycan chains of mucins. Several bacterial 
groups, including for example Akkermansia muciniphila 
and Bacteroides thetaiotaomicron, express carbohydrate 
hydrolases as part of polysaccharide-utilization loci, 
which confer the ability to extract and metabolize carbo-
hydrates from the intestinal mucus. The composition and 
thickness of this mucus varies along the intestinal tract, 
being thin and patchy in the ileum, but thick and strati-
fied in the colon where the bulk of the microbiota resides. 
Glycoproteins of the mucin family are the main constitu-
ents of the intestinal mucus. Mucins carry dense arrays 
of O-linked glycan chains featuring fucosylated and sia-
lylated structures. The glycosylation pattern of mucins 
varies along the intestinal segments, with fucosylation 
being prominent in the ileum and decreasing in the colon, 
whereas the extent of sialylation increases from the ileum 
to the distal colon [101]. The distribution of mucins also 
varies along the gastrointestinal tract. Especially the gel-
forming mucins MUC2, MUC5AC, MUC5B and MUC6, 
which represent the main constituents of the intesti-
nal mucus in humans, are differentially expressed, with 
MUC5AC and MUC6 being mainly found in the stomach 
mucus and MUC2 being mainly found in the colon [102].

The human colon secretes about 200  ml of mucus 
daily. This amount is largely controlled through the tran-
scriptional regulation of MUC2 expression. Multiple fac-
tors including the bacterial products LPS and lipoteichoic 
acid, cytokines such as tumor necrosis factor (TNF)-α, 
interleukin (IL)-4 and IL-13, and hormones such as 
vasoactive intestinal peptide increase MUC2 transcrip-
tion [103, 104]. Mucin glycosylation also changes under 
the influence of hormones and cytokines produced dur-
ing inflammation [105]. Bacterial LPS and the cytokine 
IL-23 induce the expression of the fucosyltransferase 
FUT2 in the small intestine, which increases the fuco-
sylation of intestinal mucins [81, 106]. The resulting 
changes in glycosylation alter the supply of carbohy-
drates available to bacteria utilizing mucin glycans as 
carbon source, thereby changing the microbiota composi-
tion. Increased availability of specific carbohydrates also 
affects the expression of virulence factors by pathogens, 
as shown by the repression of LEE virulence genes by 
enterohaemorrhagic E. coli mediated by increased con-
centration of free fucose in the colon [80].

Glycans

The ability to extract carbohydrates from mucin glycans is 
concentrated in bacterial groups, which express a vast set 
of hydrolase enzymes and transporters enabling the utili-
zation of monosaccharides as carbon sources. Among the 
bacterial phyla of the human gut, Bacteroidetes express the 
largest carbohydrate-fermenting machineries. Several Fir-
micutes, such as Ruminococcus intestinalis, R. gnavus and 
R. flavefaciens also express more than 100 carbohydrate-
degrading enzymes per genome and are capable of digest-
ing mucin glycans [107]. By contrast, members of Pro-
teobacteria, such as Enterobacteriaceae have very limited 
ability to degrade intestinal mucins. Among Actinobacte-
ria, several Bifidobacterium spp. are specialized at ferment-
ing complex fucosylated oligosaccharides [108], which 
explains their prominence in the gut of breastfed infants. 
Akkermansia muciniphila, a member of the Verrucomi-
crobiota phylum, commonly found in the gut microbiota is 
another microbe specialized in the utilization of intestinal 
mucins as carbon source [109]. Carbohydrate-fermenting 
machineries are decisive for the maintenance of specific 
bacterial groups in the gut, as demonstrated by the dramatic 
drop in fitness of a mutant B. thetaiotaomicron lacking pol-
ysaccharide-utilization loci involved in the metabolism of 
mucin O-glycans [110].

Adhesion to intestinal glycans

Bacterial adhesion is another parameter influenced by 
variations of the carbohydrate landscape in the intestinal 
mucosa. Several bacteria express adhesins, fimbriae and 
pili carrying carbohydrate-binding domains. Lactobacilli 
for example rely on a family of mucus-binding proteins 
to colonize the gastrointestinal tract [111]. In addition to 
commensals, pathogenic bacteria such as Campylobacter 
jejuni express adhesins that bind to fucosylated epitopes, 
such as blood group antigens H2, Lewis-b, Lewis-y and 
Lewis-x [112], which are exposed on intestinal mucins 
and epithelial cells. Changes in the density of fucosylated 
glycans or the passage of soluble fucosylated molecules, 
such as milk oligosaccharides [113] in the intestinal lumen 
alter the adhesion of C. jejuni to the intestinal mucosa and 
force its elimination from the intestinal tract. The impor-
tance of intestinal carbohydrates in regulating the bind-
ing of microbes and even controlling their tissue and ani-
mal tropism is illustrated by the binding specificity of E. 
coli K99. This strain expresses fimbriae, which recognize 
gangliosides terminated with α2,3-linked Neu5Gc [114]. 
This ligand is richly expressed in the intestinal mucosa 
of young piglets, which are the common targets of E. coli 
K99, whereas adult pigs, expressing gangliosides termi-
nated with α2,3-linked Neu5Ac, are resistant to E. coli K99 
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infection. The role of glycosylation in conferring binding 
to the intestinal mucosa is not limited to bacteria. Several 
bacterial toxins of type AB5, such as cholera, shiga and 
pertussis toxins, enter cells after binding to surface car-
bohydrates. The SubAB toxin secreted by Shiga toxigenic 
E. coli for example binds to Neu5Gc-containing glycans 
on human gut epithelial cells [115]. Human cells cannot 
synthesize Neu5Gc, but this carbohydrate is incorporated 
on human glycans after ingestion of food rich in Neu5Gc 
such as red meat [116]. The modulation of SubAB sus-
ceptibility through the assimilation of dietary Neu5Gc 
shows that nutrients affect the composition of the intestinal 
mucosa and thereby the risk for disease. Changes in intes-
tinal glycosylation can also alter the local distribution of 
bacteriophages, which express carbohydrate-binding pro-
teins [117]. In addition to the diet, genetic polymorphisms 
related to intestinal glycans also have profound effects on 
the composition of the gut microbiota. For example, hypo-
morphic alleles leading to differential expression of the 
α1–2 fucosyltransferase FUT2 enzyme confer susceptibility 
to Crohn’s disease [118]. Finally, the microbiota itself also 
regulates intestinal mucin secretion and glycosylation, as 
outlined by the different glycosylation of MUC2 produced 
in conventionally raised mice and germ-free mice [119].

Immunity

The immune system enables a symbiotic relationship with 
commensal microbiota by maintaining a non-inflamma-
tory homeostasis. This state of tolerance relies on multiple 
mechanisms such as a physical mucus barrier minimizing 
the contact to the epithelium, and the secretion of antimi-
crobial proteins and immunoglobulin A [120]. Despite the 
absence of inflammation, the immune system constantly 
senses and contains the gut microbiota. Each component of 
the immune system exerts pressure on portions of the gut 
microbiota (Fig.  3). For example, the absence of immu-
noglobulin A yields a strong expansion of anaerobic bac-
teria, especially mucosa-adherent segmented filamentous 
bacteria (SFB) of the phylum Firmicutes [121] (Fig.  3d). 
Components of the innate immune system, such as TLR, 
nucleotide oligomerization domain (NOD) proteins, and 
the inflammasome also affect the bacterial composition of 
the gut.

Inflammasome

Inactivation of the NOD-like receptor family pyrin domain 
containing 6 (NLRP6) protein, which is a component of 
the inflammasome complex, results in the expansion of 
Prevotella spp. and TM7 bacteria [122] (Fig.  3a). These 
microbial changes render mice more susceptible to dextran 

sulfate sodium-induced colitis and intestinal infections. 
The higher susceptibility is enhanced by impaired mucus 
secretion from goblet cells in NLRP6-deficient mice lead-
ing to a reduced mucus layer [123]. Interestingly, mucus 
reduction is directly caused by the altered microbiota and 
not by NLRP6-deficiency as it is transferable to wild-type 
mice by co-housing. NLRP6 activation mediates the secre-
tion of IL-18 via caspase-1. The role of IL-18 in intestinal 
homeostasis is still controversial. It acts as a pro-inflamma-
tory cytokine that suppresses mucin production by inhibit-
ing the maturation of goblet cells, thus promoting colitis as 
typically seen in ulcerative colitis [124, 125]. In contrast, 
IL-18 also down-regulates IL-22-binding protein, which 
enables IL-22 to induce intestinal tissue repair and expres-
sion of antimicrobial peptides [126, 127].

Innate immunity

TLR5, the pattern recognition receptor that recognizes 
flagellin on the epithelial surface, plays a major role in 
maintaining the balance of the microbiota. Apart from 
stimulating IL-8 and TNFα secretion in epithelial cells and 
monocytes [128, 129], TLR5 signaling also induces the 
expression of IL-22 and IL-17 in the mucosa [130]. Upon 
inactivation of TLR5, dysbiosis with altered abundances of 
more than 100 phylotypes develops (Fig. 3b), thereby pro-
moting several features of the metabolic syndrome includ-
ing obesity and insulin resistance [131]. Microbial trans-
plantation from TLR5-deficient mice to wild type mice 
confirmed the causative role of dysbiosis in the develop-
ment of the metabolic syndrome. TLR5 deficiency can also 
cause a bloom in Enterobacteriaceae, especially E. coli, 
which results in spontaneous colitis [132, 133].

The NOD2 receptor, expressed in monocytes and 
Paneth cells [134], regulates commensal gut community by 
restricting the number of bacteria and the colonization by 
pathogens, especially in the terminal ileum [135]. Crohn’s 
disease is associated with polymorphisms in the NOD2 
gene [136, 137]. Defects in the NOD2 receptor lower the 
expression of α-defensin in Paneth cells [138] (Fig.  3c). 
Loss of α-defensin increases the ratio of Firmicutes to Bac-
teroidetes. In line with this result, expression of human 
α-defensin in mice decreases the abundance of SFB, which 
belong to the phylum Firmicutes, and decreases the num-
bers of IL-17-producing Th17 cells in the lamina propria 
[136]. In the colon, SFB are located close to the epithe-
lium [139] and are instrumental in initiating antimicro-
bial defense, for example by promoting the development 
of Th17 cells. The expression of IL-17 in turn increases 
α-defensin secretion, which inhibits the expansion of SFB. 
Accordingly, deletion of the IL-17 receptor leads to a simi-
lar dysbiosis as seen with defects in the NOD2 receptor 
[140]. SFB also induce the development of regulatory T 
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(Treg) cells [141]. Treg cells maintain a mutualistic inter-
action with the microbiota by secreting anti-inflammatory 
IL-10 and transforming growth factor-β (TGF-β) [142]. 
IL-10 has a profound effect on the microbiota composition. 
Mice deficient in IL-10 have increased numbers of Verru-
comicrobia, Bacteroidetes, and Proteobacteria as character-
ized by a 100-fold increase in E. coli [143]. These bacterial 
shifts are accompanied by inflammation in the caecum and 
colon [144]. The beneficial influence of probiotics like lac-
tobacilli and bifidobacteria comprises the ability to induce 
Treg cells and thereby IL-10 secretion [145]. Also Faecali-
bacterium prausnitzii, which is less abundant in Crohn’s 
disease patients than in healthy subjects, exerts its anti-
inflammatory effects partially via the elevation of IL-10 
production [146]. TGF-β also suppresses an inflammatory 

response and mediates immune tolerance. Its production 
is not limited to Treg cells, but occurs in various cells of 
the intestinal mucosa including intestinal dendritic cells 
(DC) [147]. As IL-10, TGF-β maintains homeostasis of 
the gut microbiota by regulating microbial composition. 
In the absence of DC-specific TGF-β signaling, members 
of Enterobacteriaceae, especially E. coli, are significantly 
enriched [148]. The probiotic Clostridium butyricum 
is able to induce TGF-β signaling in DC, which in turn 
induces Treg cell generation [147].

Immune modulation by dysbiosis

While a dysbiotic gut community is a hallmark of sev-
eral inflammatory diseases, dysbiosis in turn also triggers 
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Fig. 3   Mechanisms of immune regulation of the gut microbiota. 
Elements of the inflammasome (a), the innate (b, c) and adaptive 
immune systems (d) control the gut microbiota composition. Inter-
play between cytokines, immune cells, bacterial groups, and the 
intestinal environment affects inflammation, tissue repair, and secre-
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nucleotide oligomerization domain 2 receptor, NLRP6 NOD-like 
receptor family pyrin domain containing 6, IgA immunoglobulin A, 
IL interleukin, DSS dextran sulfate sodium, SFB segmented filamen-
tous bacteria, Th17 cells T helper 17 cells, Treg cells regulatory T 
cells, TGF-β transforming growth factor beta



2968	 G. A. Weiss, T. Hennet 

1 3

mechanisms that unbalance the intestinal homeostasis and 
cause inflammation. The translocation of bacteria across 
the gut epithelium increases in dysbiosis [149]. Small num-
bers of translocated commensal bacteria, as they occur in 
a healthy human gut, are removed by the action of Th1 
and Th17 cells that are particularly induced by polysac-
charides of Bacteroides spp. [150]. and mucosa-adherent 
SFB [151]. But high numbers of invading bacteria continu-
ously activate TLRs and elicit an overexpression of pro-
inflammatory cytokines, which damage the gut epithelium 
and lead to chronic intestinal inflammation [152]. Chronic 
inflammation is associated with several metabolic disor-
ders such as autoimmune diabetes. Strikingly, higher SFB 
levels as found in MyD88-deficient mice protect mice of a 
diabetic genotype from developing the disease indicating 
that microbiota exert both inhibiting and promoting effects 
[153–156].

A disturbed microbiota also affects the maturation of the 
innate immune system as gut bacteria per se are a driving 
force in that process. Without microbiota, the function of 
neutrophils and DC is impaired, displaying reduced kill-
ing of pathogens and reduced secretion of type I interfer-
ons (IFN-I) and IL-15, respectively [157, 158]. Already 
the development of myeloid cells in the bone marrow is 
delayed in the absence of microbiota [159]. This delay 
impairs the clearance of systemic infections and increases 
the susceptibility to allergies [158–160]. Disturbances in 
the microbial community can have a similar detrimental 
effect. Mice treated with antibiotics during early develop-
ment have an increased production of IL-4 and lower num-
bers of Treg cells, and later in life, are more susceptible to 
colitis and airway hyper-reactivity [161]. Persistent altera-
tions caused by antibiotic treatment in early human life cor-
relate with IBD, asthma and atopic dermatitis in later life 
[162–164]. The state of non-inflammatory homeostasis in 
the gut can be shaken up by both the host immune system 
and the intestinal microbiota. Imbalance of their interplay 
increases the risk for immune-related diseases.

Oxidative stress

Oxidative stress occurring during inflammation is a factor 
amplifying dysbiosis by strongly decreasing the microbial 
diversity in the gut and by promoting the outgrowth of 
specific bacterial taxa. Leukocyte infiltration is a hallmark 
of intestinal inflammation, which is accompanied by gen-
eration of reactive oxygen and nitrogen species. The result-
ing oxidative stress exerts a manifest antimicrobial action, 
especially targeting strictly anaerobic bacteria that are sus-
ceptible to oxygen intoxication. The amount of microbes 
drops dramatically upon onset of inflammation, leading to 
the depletion of close to 80% of the microbiota in some 

models [9]. In addition to killing anaerobic residents, reac-
tive oxygen species also promote the selective growth of 
bacterial groups through nitrate and tetrathionate respira-
tion [165]. Sulfate-reducing bacteria are widespread in the 
gut microbiota [166] and produce hydrogen sulfide (H2S) 
and thiosulfate (S2O3

2−), which can be oxidized to tetrathi-
onate (S4O6

2−) in the presence of reactive oxygen species. 
Elevation of tetrathionate in the gut promotes the growth 
of certain Enterobacteriaceae including Salmonella and 
Citrobacter, which can use tetrathionate as a respiratory 
electron acceptor [167]. The reaction of nitric oxide with 
superoxide anion yields peroxynitrile (ONOO−), which is 
a strong reactive product of the respiratory burst of mac-
rophages [168]. Peroxynitrile isomerizes to nitrate (NO3

−), 
which can be utilized by E. coli through nitrate respira-
tion, thereby favoring its growth during inflammation. The 
importance of nitric oxide and nitrate respiration in confer-
ring a growth advantage to E. coli was confirmed by inhib-
iting the nitric oxide synthase iNOS with aminoguanidine 
hydrochloride during colitis in a mouse model [169]. The 
ability to utilize nitrate as respiratory electron acceptor is 
a factor contributing to dysbiosis. Interestingly, nitrate res-
piration can be boosted in S. enterica ser. Typhimurium 
through expression of the bacteriophage-transmitted viru-
lence gene sopE, which stimulates iNOS expression in the 
intestinal mucosa [170]. This example shows that oxida-
tive stress and bacteriophages can synergize to promote 
dysbiosis.

Bacteriophages

The bacteriophage fraction of the gut microbiota is like 
the dark matter of the universe. Bacteriophages probably 
play a major role in the homeostasis of the gut micro-
biota, but their true contribution is difficult to establish 
given the challenging identification of bacteriophage sig-
natures within microbial genomes. Unlike bacteria iden-
tified by 16S rRNA sequencing, bacteriophage genomes 
lack conserved regions enabling their simple classifica-
tion. A recent metagenomics survey aimed at identifying 
bacteriophages in the human gut found 44 bacteriophage 
groups, of which about a fifth was found in the majority 
of the samples analyzed. A group of 23 bacteriophages, 
mainly representing members of the order of Caudovi-
rales and family of Microviridae, was even found in more 
than 50% of healthy individuals [171]. Because lyso-
genic bacteriophages dominate the human gut [172, 173], 
phage sequences are mainly embedded as prophage DNA 
in bacterial chromosomes. The difficulty in distinguishing 
viral open reading frames from bacterially encoded genes 
likely results in the under-estimation of the bacterio-
phage diversity in the gut. The newly discovered adaptive 
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immune system of bacteria consisting of captured foreign 
DNA fragments into bacterial chromosomes is a valu-
able source of information to recognize bacteriophage 
infections. The clustered regularly interspaced short 
palindromic repeats (CRISPRs) represent an archive of 
past infections in bacterial genomes and their sequenc-
ing reveals the history of phages encountered by bacte-
rial hosts. The analysis of CRISPRs in the gut microbi-
ota from 124 European subjects revealed close to 1000 
bacteriophages, of which 78% were shared by at least 
two individuals [173]. The sequences of the DNA spac-
ers flanking phage fragments enabled the assignment of 
11 bacterial hosts for 31 assembled phage contigs, show-
ing that 14 of these phages target bacteria of the families 
of Bacteroides and Parabacteroides [173]. The analysis 
of bacteriophage occurrence in IBD confirmed the diver-
sity of bacteriophages in ulcerative colitis and Crohn’s 
disease. Bacteriophage richness, as defined by the num-
ber of taxa per sample, was increased in these diseases, 
whereas bacterial richness was concomitantly decreased 
[174]. Whether bacteriophages indeed contribute to dis-
ease development remains, however, unclear at this stage.

Environmental stress imposed by inflammation and anti-
biotics can activate the lytic cycle of integrated prophages, 
thereby leading to a rapid elimination of bacterial hosts. In 
addition to a sudden change in the abundance of some bac-
terial taxa, the lytic action of bacteriophages liberates intra-
cellular toxins [175] as well as cell wall fragments, lipids 
and nucleic acids, which are recognized as pathogen-asso-
ciated molecular patterns activating innate immunity. The 
interlaced stimulation of the immune response and activa-
tion of phage lytic cycles fuel each other, which amplifies 
dysbiosis occurring during gut inflammation. Beyond their 
impact on the gut microbiota consecutive to environmental 
challenges, phages also contribute to the long-term shape 
of the gut microbiome through their action as vectors for 
the horizontal transfer of resistance genes.

The intestinal mucosa is another factor influencing 
the interactions between bacteriophages and their bacte-
rial hosts. Several bacteriophages express proteins featur-
ing C-type lectin folds and immunoglobulin-like domains 
[176], which interact with the heavily O-glycosylated 
mucin MUC2 [177, 178] in the colon. For example, the 
highly antigenic outer capsid protein of the bacterio-
phage T4 preferentially binds to O-glycan chains found on 
mucins. Adhesion to intestinal glycoproteins increases the 
bacteriophage density in the mucus layer, which acts as a 
protective barrier for the host by killing mucus-penetrating 
bacteria [117]. Changes in mucosal glycosylation, as occur-
ring during intestinal inflammation [81], can alter the local 
abundance of bacteriophages and affect the proliferation or 
eradication of specific bacterial groups, thereby promoting 
dysbiosis.

Bacteriocins

The prevalent competition for nutrients in the colon drives 
the development of strategies enabling bacteria to outcom-
pete or eliminate their competitors. One of these strategies 
is illustrated by the secretion of bacteriocins, which are 
toxic proteins and peptides targeting related taxa compet-
ing for the same resources. The family of bacteriocins cov-
ers colicins in E. coli, pyocins in Pseudomonas, pesticins in 
Pasteurella pestis and Yersinia pestis among others [179]. 
Bacteriocins also include microcins, which are short anti-
microbial peptides [180]. The bacterial strains producing 
bacteriocins also express immunity proteins that protect 
them against the toxic effect of their own bacteriocins. 
Most bacteriocins kill by forming pores in membranes or 
by cleaving nucleic acids. Stress conditions such as oxi-
dative and genotoxic stress induce the expression of bac-
teriocins [181], thus underlining the significance of bac-
teriocins in the mechanisms amplifying shifts in bacterial 
composition during inflammation-related oxidative stress. 
The expression of microcins in Enterobacteriaceae is also 
induced in conditions of nutrient shortage. For example, 
E. coli Nissle 1917 secrete microcins [182] preventing the 
growth of other E. coli strains when iron availability is 
limited, for example during inflammation. In fact, supple-
mentation of mice with iron during intestinal inflammation 
decreases the production of microcins, which results in the 
proliferation of competing E. coli thereby restricting the 
growth of E. coli Nissle 1917 [183]. Of note, E. coli Nissle 
1917 is the only probiotic recommended by the European 
Crohn’s and Colitis Organization as an alternative to the 
non-steroid anti-inflammatory drug mesalazine in the treat-
ment of ulcerative colitis, as underlined in recent meta-
analyses [184, 185]. Niche competition in the intestine has 
also been described for Gram-positive bacteria, such as 
members of the Enterococcus genus. Enterococcus faecalis 
produces a bacteriocin transmitted through plasmid conju-
gation, which disrupts the proliferation of other enterococci 
[186]. Beyond their contribution to the development of 
dysbiosis during inflammation, bacteriocins represent inter-
esting candidate drugs aiming at the selective inhibition of 
pathogenic bacteria resistant to conventional antibiotics, 
such as C. difficile [187] and methicillin-resistant Staphylo-
coccus aureus [188].

Dysbiosis and disease

As outlined in the previous sections of this review, the 
mechanisms destabilizing the gut microbiota are plentiful. 
Equally numerous are the diseases, which intestinal dys-
biosis influences the course and severity. Typical examples 
including IBD [189], type 1 diabetes [190], celiac disease 
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[191], and cardiovascular disorders [192] have been cov-
ered extensively in other reviews. We here focus our discus-
sion on three diseases affecting human beings at different 
stages of life, namely necrotizing enterocolitis in newborns, 
colorectal cancer in adults, and C. difficile-associated diar-
rhea in elderly people.

Necrotizing enterocolitis

Necrotizing enterocolitis is a fulminant gut inflammation 
that is most frequent in premature newborns, affecting up to 
10% of infants with a birthweight below 1500 g. Mortality 
can be as high as 30% [14]. The first signs of necrotizing 
enterocolitis are usually a distended abdomen and bloody 
stool. As reflected by these unspecific symptoms, the 
pathogenesis of necrotizing enterocolitis is unclear. Sev-
eral risk factors, including enteral feeding, bottle-feeding, 
immature immunity, and altered microbiota increase the 
incidence of necrotizing enterocolitis. Conversely, breast-
feeding decreases the occurrence of necrotizing enterocol-
itis by at least sixfold in comparison with bottle-feeding 
[193]. This large impact has led the American Academy 
of Pediatrics to recommend feeding premature babies with 
breast milk immediately after birth [194]. The molecular 
nature of the protection conferred by breast milk remains 
however elusive. Breast milk lactoferrin and immunoglob-
ulins have been investigated as possible protective com-
pounds but found to be ineffective at decreasing the inci-
dence and severity of necrotizing enterocolitis [195]. Given 
that pasteurized breast milk is as protective as fresh milk, 
heat-resistant compounds such as milk oligosaccharides are 
likely to contribute to the protective effect. Oral supplemen-
tation with the prebiotics galacto-oligosaccharide, fructo-
oligosaccharide and lactulose nevertheless did not influ-
ence the course of necrotizing enterocolitis, although they 
mediated a relative increase of bifidobacteria and lactoba-
cilli levels in the treated newborns [196]. Supplementation 
with the probiotic Bifidobacterium breve BBG-001 also 
failed to improve the survival rate of infants with necrotiz-
ing enterocolitis [197]. Despite the unclear etiology, several 
findings converge towards a central role of the gut microbi-
ota in triggering necrotizing enterocolitis. A sudden rise of 
Proteobacteria and a concomitant fall of Firmicutes levels 
has been found to precede the onset of the disease. Entero-
bacteriaceae, which are prominent members of the Proteo-
bacteria phylum, express hexacylated LPS that are strong 
pyrogens and induce a robust inflammatory response medi-
ated through TLR4 signaling. The mechanisms underlying 
the increase in Proteobacteria remain unclear. Is the pro-
liferation of facultative anaerobic bacteria such as Entero-
bacteriaceae facilitated by the presence of oxygen in the 
newborn colon? As outlined in the present review, multi-
ple mechanisms account for the development of dysbiosis. 

Given the resilience of the gut microbiota in response to 
changes, the occurrence of dysbiosis in necrotizing entero-
colitis is likely the result of a chain of events combining an 
inadequate supply of protective nutrients and prebiotics, an 
immature immune system and an insufficient secretion of 
intestinal mucus.

Colorectal cancer

Dysbiosis of the gut microbiota can entail severe conse-
quences. It is a primary driving force of inflammation and 
is unequivocally linked to the development of colorectal 
cancer [15]. Around 15% of all cases of cancer are linked 
to a viral or bacterial infection [198]. Infectious agents, 
especially viruses, can initiate or enhance tumor growth by 
inducing chronic inflammation, transferring active onco-
genes into the host genome or by promoting immunosup-
pression. Microbial pathogens can influence tumorigenesis 
either directly by substances that lead to DNA damage, 
such as nitric oxide or reactive oxygen species, or indirectly 
by creating a pro-inflammatory microenvironment [199]. 
For example, an infection with oncogenic Helicobacter 
pylori results in chronic inflammation with dysregulated 
β-catenin signaling in epithelial cells fostering malignant 
transformations in the stomach [200]. Also in the colon, 
risk for adenocarcinoma is increased with H. pylori infec-
tion [201]. Especially strains positive for the virulence fac-
tor cytotoxin-associated gene A (CagA) are linked to carci-
noma development [201, 202]. But what role do members 
of the commensal microbiota play and which shifts in the 
microbiota are linked to tumor development? The micro-
biota composition is significantly different in colorectal 
cancer patients compared to healthy individuals. Colorec-
tal cancer is associated with increased abundance of the 
phyla Firmicutes and Fusobacteria [203, 204]. Strikingly, 
Fusobacteria constitute around 10% of the gut bacteria in 
colorectal cancer patients, but less than 0.1% in healthy 
individuals. These shifts in the microbiota can create a gut 
community with higher genotoxic and carcinogenic poten-
tial. Fusobacterium nucleatum, a species highly abundant 
in tumor tissues [205], expresses the virulence factor Fuso-
bacterium adhesin A (FadA) [206]. This adhesion molecule 
increases epithelial permeability and invasion of microbes 
into the cells [207]. FadA also activates proliferation and 
growth of normal and adenoma cells via β-catenin signal-
ing [208].

A dysbiotic gut community may trigger tumor devel-
opment via innate immune responses, more precisely by 
activation of MyD88. In a mouse model of spontaneous 
intestinal tumorigenesis, signaling through MyD88 was 
necessary for extensive tumor growth [209]. By contrast, 
mice with chemically induced colitis had more intestinal 
tumors without MyD88 signaling [210]. The second branch 
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of MyD88 signaling, via inflammasome-derived IL-18, 
might explain the contradictory effects of MyD88 signal-
ing in the different cancer models. The lack of protective 
and tissue-repairing IL-18 and the resulting inability to 
heal chemically induced epithelial damages might enhance 
the mutation rate and adenoma formation in epithelial cells, 
thereby outbalancing the protective effect of MyD88 defi-
ciency [211–214]. In contrast to MyD88, TLR4 signaling 
showed consistent tumor-promoting effects in several can-
cer models [215]. TLR4 signaling is increased in colorec-
tal cancer patients [216, 217]. The LPS-mediated increase 
in prostaglandin E2 that activates epidermal growth factor 
receptors [215, 218, 219] is needed to promote prolifera-
tion of epithelial cells and their protection against apopto-
sis. However, the same mechanism might also promote the 
formation and growth of colorectal tumors when LPS stim-
ulation exceeds the normal level and elicits chronic TLR4 
activation [219, 220]. Interestingly, an increased inflamma-
tory state in obese individuals correlates with higher risk of 
colorectal cancer [221]. Elevated TLR4 activation is also 
observed in IBD [222]. The two main forms of IBD, ulcer-
ative colitis and Crohn’s disease, are risk factors for colitis-
associated colorectal cancer [223, 224]. The TLR/MyD88 
pathway is in fact of major importance for the initiation of 
colitis-associated cancer. In the absence of MyD88, mice 
presenting spontaneous colitis induced by IL-10-deficiency 
fail to develop carcinogen-induced tumors [225].

Specific shifts in the microbiota facilitate the formation 
of colorectal cancer. High consumption of red meat, a rich 
source of thiol-containing amino acids, increases the num-
ber of sulfate-reducing bacteria (e.g., Desulfovibrio spp., 
Desulfobacter spp.) in the intestine. These bacteria gener-
ate H2S which decreases mucus formation, inhibits meth-
ylation of DNA and increases the generation of reactive 
oxygen species [226]. Also, single bacterial species can 
contribute to tumor growth. Enterotoxigenic Bacteroides 
fragilis stimulates cell proliferation via increased β-catenin 
nuclear signaling [227] and damages DNA through reactive 
oxygen species [228]. Colitogenic E. coli overrepresented 
in the context of inflammation in IL-10 deficient mice pro-
motes the development of invasive carcinoma by synthesiz-
ing the genotoxin colibactin [143]. Colibactin causes DNA 
double-strand breaks and incomplete DNA repair resulting 
in genomic instability [229].

But microbiota can as well confer protection against 
colorectal cancer and prevent carcinogenesis. The micro-
bial metabolite butyrate activates the receptor GPR109a 
that triggers production of cytoprotective IL-18 and induces 
differentiation of Treg cells through IL-10, while inhibiting 
formation of pro-inflammatory Th17 cells [230]. Probiot-
ics such as bifidobacteria and lactobacilli create a favora-
ble microenvironment that decreases not only inflamma-
tory conditions but also the emergence of colorectal cancer. 

Especially in combination with prebiotics, Bifidobacterium 
and Lactobacillus genera were shown to reduce aberrant 
crypt foci occurrence in mice and in rats [226].

Clostridium difficile‑associated diarrhea

Clostridium difficile is a spore-forming strictly anaerobic 
Gram-positive bacterium that is often found in asympto-
matic subjects, including more than 50% of children and 
15% of healthy adults. The mere presence of toxicogenic 
C. difficile in a host is not a predictive marker for intesti-
nal inflammation [231]. Progression to disease requires in 
fact vegetative growth of C. difficile and secretion of toxins 
such as the TcdA and TcdB enzymes, which are glycosyl-
transferases modifying cytoplasmic Rho GTPases, thereby 
impairing cytoskeleton integrity [232]. The activity of 
TcdA and TcdB toxins is sufficient to trigger disease when 
released in the host intestinal tract [233]. The germination 
of C. difficile is facilitated by some bile acids found in the 
duodenum, such as taurocholate and deoxycholate [234]. 
The gut microbiota plays an essential role in suppressing 
the vegetative growth of C. difficile in asymptomatic sub-
jects, although the mechanisms of this inhibition remain 
unclear. A group of microbes may prevent the prolifera-
tion of C. difficile by exhausting nutrients essential for its 
growth. Carbohydrates, such as N-acetylglucosamine and 
Neu5Ac derived from intestinal mucins, are important 
nutrients supporting the growth of C. difficile [84]. These 
carbohydrates are preferentially metabolized by other gut 
microbes, thereby limiting the expansion of C. difficile and 
consequently disease development [235]. Besides seques-
tering nutrients away from C. difficile, some microbes 
transform bile acids, thereby reducing the rate of germi-
nation of clostridial spores in the gut [236]. The impor-
tance of gut microbes in mediating resistance to C. difficile 
growth is illustrated by the impact of antibiotics on promot-
ing C. difficile-associated diarrhea. The study of C. difficile 
infection in conjunction with antibiotic treatments linked 
the expansion of C. difficile to decreased Lachnospiraceae 
and increased Enterobacteriaceae levels in animal models 
[237–239]. Elevated levels of Enterobacteriaceae were also 
noted in elderly human subjects presenting with C. diffi-
cile-associated diarrhea [240, 241]. Finally, the astonish-
ing success of fecal microbial transplantation definitively 
demonstrated the role of the gut microbiota at keeping C. 
difficile at bay. The treatment of patients with refractory C. 
difficile infection by infusion with microbiota derived from 
healthy donors cured more than 90% of cases, whereas 
the traditional treatment with vancomycin only improved 
30% of cases [242]. The incidence of C. difficile infection 
increases with age, probably reflecting the progressive 
decreased microbial diversity and the loss of microbes con-
ferring resistance to C. difficile. As recently presented, the 
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expansion of C. difficile may be related to decreased bacte-
riocins secreted by bacteria that normally keep the patho-
gen at bay in asymptomatic subjects [187]. The identifica-
tion of bacteriocins targeting C. difficile would represent a 
valuable alternative or at least a complementary approach 
to fecal microbial transplantation.

Concluding remarks

The gut microbiota is an inherent component of ani-
mal physiology that reacts to internal and environmental 
changes, while playing important roles in regulating mul-
tiple host functions. As outlined in the present review, the 
contribution of dysbiosis to diseases is undisputed, but the 
mechanisms in play and the assignment of truly pathogenic 
microbes often remains circumstantial, if not speculative. 
The recent development of high-throughput sequencing 
techniques linked to the establishment of reliable micro-
bial 16S rRNA sequence databases resulted in an explosion 
of reports documenting the importance of the gut micro-
biota in regulating health and disease. Despite the wealth 
of information unraveled through past studies, the taxo-
nomic identification of intestinal bacteria only clarifies a 
single variable of the equation explaining gut ecology. 
Metagenomic approaches documenting the global genetic 
diversity of the intestinal ecosystem are gaining momen-
tum as sequencing technologies and bioinformatic analy-
sis constantly improve [243]. The determination of bio-
chemical parameters beyond the classical survey of SCFA 
profiles adds further dimensions to the characterization 
of metabolic pathways at play in microbial communities 
[244]. Finally, the integration of all data through heuristic 
algorithms [245] will not only facilitate the interpretation 
of experimental models but also enable the recognition 
of novel mutualistic networks among the gut microbiota. 
The comprehensive appreciation of gut ecology will allow 
a better control of intestinal dysbiosis and thereby lead to 
a significant health improvement across a broad range of 
inflammatory and metabolic conditions afflicting our mod-
ern society.
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