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Abstract Immunoglobulin gamma (IgG) antibodies are

key effector proteins of the immune system. They recog-

nize antigens with high specificity and are indispensable

for immunological memory following pathogen exposure

or vaccination. The constant, crystallizable fragment (Fc)

of IgG molecules mediates antibody effector functions

such as complement-dependent cytotoxicity, antibody-

mediated cellular cytotoxicity, and antibody-dependent

cell-mediated phagocytosis. These functions are regulated

by a single N-linked, biantennary glycan of the heavy

chain, which resides just below the hinge region, and the

presence of specific sugar moieties on the glycan has

profound implications on IgG effector functions. Emerging

knowledge of how Fc glycans contribute to IgG structure

and functions has opened new avenues for the therapeutic

exploitation of defined antibody glycoforms in the treat-

ment of cancer and autoimmune diseases. Here, we review

recent advances in understanding proinflammatory IgG

effector functions and their regulation by Fc glycans.
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Immunoglobulins

Immunoglobulins (Igs) are glycoproteins secreted by B

cells and plasma cells and constitute one of the main

effector mechanisms of the adaptive immune system. Igs

evolved to specifically recognize target structures (anti-

gens) and mediate appropriate actions by communicating

with cellular and humoral components of the immune

system. Antigen recognition is mediated by the ‘‘fragment

antigen binding’’ (Fab) domains which contain the com-

plementarity-determining regions (CDRs) located in the

N-terminal region of heavy chains (HCs) and light chains

(LCs) (Fig. 1, IgG). These areas are characterized by a high

degree of variability in amino acid composition in between

antibodies, which in turn leads to a broad spectrum of

potential binding partners. The characteristic architecture

of Igs, composed of disulfide bond-stabilized b-sheets as

well as inter-chain disulfide bonds, guarantees the struc-

tural integrity required for the functionality of antibodies.

The C-terminal regions of the two HCs constitute the

‘‘fragment crystallizable’’ (Fc), which contains the binding

sites for immune effector molecules such as the comple-

ment system or Fc receptors. In some antibody types,

including IgG, the Fab and Fc regions are separated by a

less-structured stretch of amino acids called the ‘‘hinge

region’’ which provides flexibility to the antibody and

contains the disulfide bond(s) linking the two HCs [1, 2].

Being amongst the most abundant serum proteins [3],

immunoglobulins fulfill essential functions in protecting our

body against invading pathogens. Depending on the type and

stage of an infection as well as the anatomical site, different

functional properties are required. This functional diversifi-

cation is achieved by a process called antibody class

switching. Thereby, tightly regulated DNA recombination

events lead to the excision and replacement of the antibody’s
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constant region while keeping the CDRs and, therefore, the

specificity of the antibody largely unchanged. The different

constant regions are called isotypes and are differentiated in

five classes (IgA, IgD, IgE, IgG and IgM) and six subclasses

(IgG1–4 and IgA1–2). The decision which type of antibody

is produced is dependent on the signals a B cell encounters

during its maturation towards an antibody-secreting cell

(ACS). A naı̈ve mature B cell, previously selected in the

bone marrow and spleen for functional integrity of the cell-

surface-bound antibody (B-cell receptor, BCR) and low self-

reactivity, expresses cell-surface IgD and/or IgM. Alterna-

tive splicing of the primary VH transcript results in the

secreted antibody, which now lacks the cytoplasmic tail and

the transmembrane region of the BCR. This allows B cells to

simultaneously produce cell-surface-bound- (BCR) and

secreted (antibodies) immunoglobulins with identical bind-

ing specificities. Upon cognate antigen encounter, B cells

can enter several developmental programs eventually

resulting in further diversification of the antibody repertoire

by somatic hypermutation (SHM), a process which leads to

mutation of the CDR sequences, and differentiation into

long-lived memory B cells, terminally differentiated long-

lived ASC (plasma cells) or short-lived ASC (plasmablasts).

The sites of antigen-induced B-cell differentiation are sec-

ondary lymphoid organs such as the spleen, lymph nodes or

gut-associated lymphoid tissues. Differentiation can take

place independent of T cells, resulting in little SHM and

limited class switch or in a T-cell dependent manner, which

typically involves the generation of germinal centers where

extensive SHM takes place and switching to all classes of

antibodies can occur. The nature of the antigen, anatomic

location, signaling via pattern recognition receptors and the

cytokine milieu are crucial for the choice of the differenti-

ation program and the decision which antibody isotypes

develop [4]. Antibodies fulfill important functions within the

immune system such as neutralization of toxins or microbes

and assisting the killing of transformed cells or bacteria by

opsonization, antibody-dependent cell-mediated cytotoxicity

(ADCC), antibody-dependent cell-mediated phagocytosis

(ADCP) or complement-dependent cytotoxicity (CDC)

(Fig. 2). This review puts a focus on the generation and

functions of the most abundant human antibody class in

circulation, immunoglobulin G (IgG) and highlights the

aspects of how these effector functions are regulated.

Immunoglobulin G

IgG is the prototypic antibody composed of two HCs and

two LCs linked by disulfide bonds. Each IgG molecule

contains a single, highly conserved IgG-Fc N-glycan in

each of the two CH2 domains and may carry additional
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Fig. 1 Structure of the

immunoglobulin G (IgG)

molecule. IgG is composed of

two heavy and two light chains

linked by disulfide bonds. The

antigen-binding fragment (Fab)

consists of two moieties with

identical structure which define

the antigen-specificity through

their complementarity-

determining regions (CDR). The

crystallizable fragment (Fc)

mediates antibody effector

functions through binding to Fc

receptors and interaction with

the C1q component of the

complement system. Each IgG

molecule contains a single,

highly conserved IgG-Fc N-

glycan in each of the two CH2

domains (Fc glycan) and may

carry additional glycans in the

antigen-binding sites (Fab

glycans). CH constant heavy,

CL constant light, Fab antigen-

binding fragment, Fc

crystallizable fragment
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glycans in the antigen-binding sites [5, 6]. One reason for

its predominance in serum is the exceptionally long half-

life of 21 days due to recycling via the neonatal Fc receptor

(FcRn) as loss of FcRn dramatically reduces the half-life of

IgG [7–9]. FcRn binds to internalized IgG at low pH (6.5)

and recycles to the cell surface where higher pH leads to

the release of IgG back into circulation [8].

The four human IgG subclasses are named according

to their frequency in serum IgG-1, -2, -3, and -4 and share

more than 90 % amino acid (AA) sequence homology

with some important differences: the cysteine- and pro-

line-rich hinge region, which contains inter-HC disulfide

bonds and determines Fab-arm flexibility, is the hotspot

of diversity. IgG3 has the longest hinge constituted of up

to 62 AA and 11 disulfide bonds (exact numbers vary in

allelic variants called allotypes). The extended length

allows the Fab domain of IgG3 to have a great amount of

conformational flexibility relative to its Fc [2, 10]. In

contrast, IgG2 has a rigid hinge composed of only 12 AA

containing four disulfide bonds making it the IgG isotype

with the most restricted Fab-arm flexibility [2, 10]. IgG1

(15 AA hinge, 2 disulfide bonds) and IgG4 (12 AA, 2

disulfide bonds) have intermediate properties [2, 10].

Further important AA differences are located in the

binding region for complement proteins and Fc receptors,

the CH2 domain of the HC. Additional AA sequence

variations stem from allelic differences in the human

population. These, if immunogenic, are called allotypes,

some of which can influence functional properties, in

particular for IgG3 [2, 11].
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Fig. 2 Effector functions of

IgG antibodies. In addition to

neutralization initiated by

binding of the Fab domain to

target molecules, the antibodies’

Fc fragment mediates IgG

effector functions such as

killing of transformed cells or

bacteria by opsonization,

antibody-dependent cell-

mediated cytotoxicity (ADCC),

antibody-dependent cell-

mediated phagocytosis (ADCP)

or complement-dependent

cytotoxicity (CDC)
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Fc-dependent effector functions of IgG

In addition to binding antigen via their Fab fragments, IgG

antibodies regulate immune responses through their Fc

domain (Fig. 2). First, IgG can initiate the activation of the

complement pathway, resulting in the generation of the

proinflammatory anaphylatoxins C3a and C5a and the

membrane attack complex which may lead to lysis of the

target cell by complement-dependent cytotoxicity (CDC).

Second, IgG autoantibodies can cross-link cellular Fc

receptors specific for IgG (FccRs) that are present on most

innate immune effector cells, including neutrophils, mast

cells and macrophages. FccRs mediate important IgG

effector functions such as induction of antibody-dependent

cellular cytotoxicity and opsonization and phagocytosis of

antigens.

Receptors binding to the Fc domain of IgG are called

Fc-gamma receptors (FccRs) (Fig. 3). Humans express five

or six classical FccRs which are grouped into activating

[FccRI, FccRIIa (FccRIIc expressed by some individuals

[12]) and FccRIIIa], inhibitory (FccRIIb) and glyco-

sylphosphatidylinositol (GPI)-anchored (FccRIIIb) Fc

receptors (Fig. 3). With the exception of T cells, all major

immune cells express FccRs, which allows antibodies to

explore the functions of many cells and exhibit a wide

range of effector mechanisms. IgG isotypes bind to FccRs
with their CH2 domain [13–16]. Differences in the CH2

AA composition [17], Fc glycan structure [18, 19] and

hinge region [15, 17] influence IgG binding to FccRs.
Activating FccRs contain immunoreceptor tyrosine-based

activation motifs (ITAM) in their intracellular domain or

their adaptor proteins, whereas FccRIIb contains an

immunoreceptor tyrosine-based inhibitory motif (ITIM),

which allows it to counteract activating signals. Based on

the receptor‘s affinity for IgG, FccRI is referred to as ‘‘high

affinity FccR’’, whereas all other FccRs are considered

‘‘low affinity FccRs’’. The high affinity results in FccRI
being constantly associated with IgG, whereas firm binding

to low-affinity FccRs requires the formation of an immune

complex [20]. Although due to the high serum-IgG con-

centration, even low-affinity FccRs are almost saturated

with IgG in blood [21], the faster off-rates allow cells

expressing these receptors to rapidly sample IgGs in

solution [22–25].

FccRI (CD64) is expressed by myeloid cells (mono-

cytes, DCs, macrophages) and granulocytes (neutrophils,

mast cells) and binds with very high affinity to IgG1, 3

and 4 but does not bind IgG2. Signaling by FccRI leads to
the activation and differentiation of monocytes towards

monocyte-derived DCs and may contribute to antigen

presentation to T cells [26]. FccRI is deregulated in sev-

eral antibody-mediated autoimmune diseases implying a

potential role in disease pathology [27, 28]. FccRI-bound
monomeric IgG is constantly internalized and recycled to

the cell surface, whereas cross-linking with the cognate

antigen leads to internalization and degradation [29].

Despite its high affinity for monomeric IgG, mice trans-

genic for human FccRI suggest that the receptor retains its
ability to bind IgG-ICs in vivo and contributes to IC-

mediated cell activation [30].

FccRIIa is expressed by granulocytes, monocytes,

macrophages, DCs and platelets [31]. FccRIIc is encoded

by a gene that resulted from the crossover of fcgr2a and

fcgr2b [32]. It is only found on NK cells, and allelic

polymorphisms result in FccRIIc being expressed by only

approximately 45 % of individuals [12, 33] where it can

contribute to cytotoxicity [33].

The FccRIII (CD16) exists in two alternative forms

encoded by two different genes, a transmembrane FccRIIIa
expressed on natural killer (NK) cells and macrophages,

and a GPI-linked FccRIIIb present on neutrophils [34, 35].

The activating low-affinity FccRIIIa (CD16) mediates

antibody-dependent cellular cytotoxicity (ADCC) and is

highly expressed on the cytotoxic CD56dim CD16? NK-

cell subset as well as on other hematopoietic cells (Fig 3).

NK cells are thought to be the key mediators of ADCC, a

mechanism harnessed in monoclonal antibody treatments

of various cancers overexpressing unique antigens, such as

neuroblastoma, breast cancer, B-cell lymphoma, and

others.

FccRIIb is the only FccR expressed on B cells and

plasma cells. Its co-engagement with the BCR delivers an

inhibitory signal and can, therefore, be envisioned as a

negative feedback from circulating antibodies, which may

limit B-cell differentiation and antibody production [36].

Its importance for B-cell homeostasis is highlighted by the

autoimmune susceptibility of mice lacking FccRIIb [37]

and reduced expression on B cells derived from patients

with various antibody-mediated autoimmune diseases

[27, 38, 39]. FccRIIb expression on murine plasma cells

regulates their persistence and apoptosis [40] and limits

IgG autoantibody production [41].

On myeloid cells and granulocytes, such as monocytes,

dendritic cells, neutrophils and basophils, FccRIIb can be

co-expressed with activating FccRs [32]. Immune com-

plex-mediated activation of monocytes was shown to be

negatively regulated by FccRIIb [42, 43], and conse-

quently, absence of FccRIIb on murine DC results in

increased T-cell priming [36]. These studies suggest that

loss of balanced FccR signaling could result in uncon-

trolled responses that can lead to the damage of healthy

tissues and the initiation of autoimmune disease.
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Complement-mediated IgG effector functions

Complement activation is one of the most effective defense

mechanisms of the immune system. It is initiated by the

binding of so-called initiators of the complement system

such as C1q, ficolins or mannose-binding lectin to target

surfaces like infected cells or microbes. Their binding leads

to a cascade of events ultimately culminating in the for-

mation of the membrane attack complex and lyses of the

target. IgG can assist the initiation of the complement sys-

tem in three ways. (1) C1q binds with high affinity to

antigen-bound, but not monomeric IgG [44, 45], (2) IgG

carrying IgG-Fc N-glycan terminating in mannose may

additionally be able to bind mannose-binding lectin [46, 47]

and (3) C3b, a downstream component of the complement

cascade, can directly bind to IgG [48]. IgG isotypes have

different C1q binding affinities with IgG3 binding most

potently followed by IgG1, very weak binding for IgG2 and

none for IgG4 [49]. The main interaction points of C1q are

located in IgG’s CH2 and are constituted by residues which

are mostly conserved between isotypes [13, 50]. The

structure of the hinge region, the IgG-Fc N-glycan and the

relative orientation of the Fab domain influences the affinity

of C1q and may explain binding differences between IgG

isotypes [44, 51].

Fc glycan-modulated IgG effector functions

Human immunoglobulins are Fc-glycosylated and can,

depending on the isotype and the sequence of the anti-

gen-binding regions (complementarity-determining

regions, CDR), carry additional glycans in the Fab

domains. IgG is unique with respect to a single, highly

conserved asparagine 297 (N297)-glycosylation site

which points towards a hole in the Fc region formed by

the CH2 and CH3 domains.

During protein translation, a pre-formed lipid-linked

glycan is transferred and covalently attached to N297 in

the lumen of the endoplasmic reticulum (ER). This ini-

tial glycan is composed of two N-acetylglucosamines

ITAM

ITIM

Name Fc RI Fc RIIA Fc RIIC Fc RIIIA Fc RIIIB Fc RIIB
B23DCB61DCA61DCC23DCA23DC46DCDC

Expression

Lymphoid not expressed not expressed NK cells NK cells not expressed B cells, plasma cells

Myeloid Monocytes, DCs, 
macrophages

Monocytes, DCs, 
macrophages not expressed Monocyte, DC 

macrophage not expressed Monocytes, DCs, 
macrophages

Granulocyte Neutrophils, 
eosinophils Neutrophils not expressed not expressed

Neutrophils, 
mast cells, 
eosinophils

Neutrophils, baso-
phils, mast cells

IgG binding 

Fc R allele - H131 R131 Q13 stop13 H158 F158 - I232 T232

IgG1 6x107 5x106 3x106 1x105 - 2x105 1x105 2x105 1x105 ND

IgG2 - 5x105 1x105 2x104 - 7x104 3x104 - 2x104 ND

IgG3 6x107 9x105 9x105 2x105 - 1x107 8x106 1x106 2x105 ND

IgG4 3x107 2x105 2x105 2x105 - 2x105 2x105 - 2x105 ND

Fig. 3 Human Fc receptors for IgG (FccR). FccRs differ in their cellular distribution, their function and their affinity for the IgG-Fc fragment
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(GlcNAc) followed by nine mannose (Man) and three

glucose (Glc) residues [52, 53]. Its structure is highly

conserved in eukaryotes and serves as an important

mechanism for protein folding and quality control of

proteins carrying N-glycans [52]. If folded properly, the

IgG polypeptide is transferred from the ER to the Golgi,

where glycosyl-hydrolases and -transferases can modify

the glycan structure leading to such diverse and highly

complex glycans as seen in the IgG Fc. In addition to

the oligosaccharide core, more than 95 % of the

biantennary complex-type structure of the final IgG

glycan carries an N-acetylglucosamine on both arms

[54, 55] and 85 % are fucosylated [56] (Fig. 4). In

contrast, the presence of galactose is less homogenous

with 40 % of glycans carrying one galactose (G1 glycan)

and the frequency of non-galactosylated (G0) or bi-

galactosylated glycans (G2) ranging between 20 and

40 % depending on age and gender [55, 57, 58]. The

most distal sugar on the glycan is sialic acid (neuraminic

acid, Neu5Ac). Around 5–10 % of glycans carry sialic

acid on one arm, and approximately 1 % of serum IgG-

Fc glycans are bi-sialylated [5, 58, 59]. In addition to the

Fc domain, roughly 15–20 % of human serum IgGs are

glycosylated in their Fab domain [60, 61]. The functional

significance of Fab glycosylation is incompletely under-

stood, but it has been suggested that it might impact

binding affinities of antigen–antibody interactions

[62, 63].

Removal of the entire Fc N-glycan impairs antibody

effector functions [13, 64], and the presence or absence of

distinct IgG-Fc monosaccharides was shown to regulate

IgG effector functions.

Fc fucose

The majority of circulating IgG antibodies are fucosylated

[56] which, compared to afucosylated isotypes, reduces

IgǴs binding affinitiy for the activating FccRIII (CD16)

and thereby its potential to induce antibody-dependent

cellular cytotoxicity [19]. Fucosylation also appears to

impair antibody-dependent cell-mediated phagocytosis

[65, 66]. Consequently, clinical trials using afucosylated

monoclonal antibodies were initiated and showed

improved efficacy in target cell depletion [67–69].

Fc galactose

In adoptive transfer models of autoimmune diseases, non-

pathogenic doses of autoantibodies become pathogenic

when present as agalactosyl glycoforms [18, 70, 71].

Decreased levels of galactosylation are associated with

several chronic inflammatory diseases such as rheumatoid

arthritis, systemic lupus erythematosus, multiple sclerosis,

and in patients with tuberculosis [55, 72–74]. In contrast,

increased IgG-Fc galactosylation is detectable during

pregnancy, and in rheumatoid arthritis patients who expe-

rience pregnancy-induced remission [75, 76] suggesting

that Fc galactosylation might exert anti-inflammatory

functions. In line with this hypothesis, a recent study

showed that high galactosylation of IgG immune com-

plexes in mice promotes the association of FccRIIB and

dectin-1, which blocks the proinflammatory effector func-

tions of C5aR and CXCR2 [77]. The observation that

antiviral activity and spontaneous control of HIV infection

are associated with increased prevalence of total and
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Fig. 4 Structure of a fully processed IgG-Fc N-glycan. The

Asparagine 297-linked complex-type glycan is located within the

CH2 domains of the Fc fragment and consists of a complex,

biantennary structure. In vivo, such a fully processed glycan will be

found only in trace amounts as the majority of antibodies will carry

either no, one or two galactose residues and a fraction of those

carrying galactose will additionally possess sialic acid
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antigen-specific agalactosylated antibodies additionally

argues for a functional significance of antibody galacto-

sylation in humans and is in line with the assumption that

lack or loss of IgG Fc-linked galactose occurs during or

promotes inflammation [6, 78]. Along these lines, Ho et al.

recently reported that in patients with chronic hepatitis B

low IgG-Fc galactosylation levels are associated with high-

grade liver inflammation and fibrosis, suggesting that IgG-

Fc galactosylation might be a potential noninvasive indi-

cator of severe liver necroinflammation and fibrosis [79].

One important aspect to consider when investigating the

impact of galactose is that it provides the basis for the

addition of sialic acid, the most distal sugar moiety on the

IgG-Fc glycan.

Fc sialic acid

Similar to Fc galactosylation, decreased levels of IgG

sialylation are observed in chronic autoimmune diseases

such as rheumatoid arthritis, juvenile idiopathic arthritis

and Wegener’s granulomatosis [55, 80–82]. It has also

been demonstrated that IgG sialylation increases during

pregnancy and that this increase may be associated with the

remission of rheumatoid arthritis during pregnancy [83].

While the aforementioned data clearly support the

hypothesis that these terminal sugar residues are involved

in modulating antibody activity, they suggest that it is not

the lack of galactose residues itself but, rather, the con-

comitant absence of terminal sialic acid residues that may

be responsible for the enhanced inflammatory activity

exerted by aglycosylated glycoforms [18, 70]. The rele-

vance of sialic acid residues for modulating immune

responses is highlighted by the finding that intravenous

immunoglobulins (IVIG) completely lose their immuno-

suppressive capacity upon removal of Fc-sialic acid

residues by neuraminidase treatment in experimental

autoimmune disease models [18]. Conversely, IVIG

preparations as well as isolated Fc fragments enriched for

terminal sialic acid residues appear to have a more than

tenfold higher anti-inflammatory activity [70, 84]. Pro-

posed mechanisms that mediate anti-inflammatory

activities of Fc sialylation include the induction of an anti-

inflammatory cytokine milieu following binding of sialy-

lated IgGs to the murine C-type lectin receptor SIGNR1,

which in turn induces interleukin (IL)-33 and IL-4 pro-

duction and eventually leads to the upregulation of the

inhibitory FccRIIb on macrophages, thereby limiting

antibody-mediated immunopathologies [85]. However,

conflicting results exist concerning the ability of SIGNR1

and its human homolog DC-SIGN to recognize the sialy-

lated IgG-Fc glycan [86, 87] and if these receptors are

required for the anti-inflammatory properties of sialylated

Fc [88]. In humans, Fc sialylation reduces proinflammatory

IgG effector functions such as complement-dependent

cytotoxicity (CDC) by inhibiting the binding of the anti-

body’s CH2 domain to C1q [89]. Thus, the mechanisms

that mediate anti-inflammatory properties of Fc sialylation

are not fully understood and might involve Fc receptor-

dependent and -independent mechanisms. Therapeutic

implications of the aforementioned findings lie in the

possibility to modify Fc glycosylation to increase the anti-

inflammatory efficacy of both IVIG and monoclonal anti-

body-mediated immunotherapies. It remains to be

evaluated whether Fc sialylation can be harnessed to

improve anti-inflammatory efficacy and the clinical

response to IgG-mediated treatment strategies.

Therapeutic relevance and concluding remarks

The aforementioned studies clearly demonstrated that

minor structural changes in IgG-Fc glycosylation pro-

foundly affect antibody effector functions and opened up

new opportunities for designing therapeutic antibodies with

increased efficacies. Defucosylated antibodies which

enhance ADCC are currently evaluated and increasingly

utilized in cancer therapy. Obinutuzumab, a glycoengi-

neered anti-CD20 antibody with reduced fucosylation and

increased bisecting GlcNAc, has recently been approved as

first-line treatment for patients with chronic lymphocytic

leukemia (CLL) and follicular lymphoma (FL) who did not

benefit from treatment with a fucosylated anti-CD20 anti-

body, i.e., rituximab [90]. Removal of the N-glycan impairs

FccR binding and complement activation, and this strategy

has been increasingly recognized as a targeted treatment

for autoimmune conditions. In vivo administration of the

bacterial IgG glycan-hydrolysing enzyme EndoS, which

cleaves the linkage between the two GlcNAc residues in

the core of the N-linked glycan, was shown to ameliorate

the development of various experimental models of

autoimmune diseases [91–94], and this appears to be safe

and well-tolerated in preclinical models [95] and represents

a potential strategy to limit antibody-mediated autoimmune

disease conditions [96].

The anti-inflammatory activity of sialylated IgGs was

first demonstrated for intravenous immunoglubulins

(IVIG): in contrast to fully sialylated IVIG preparations,

desialylated IVIG failed to suppress autoimmune disease

development in an antibody-mediated experimental

arthritis model [18]. Subsequent studies confirmed the

protective and crucial role of IVIG sialylation in various

experimental autoimmune disease conditions

[84, 87, 97, 98]. Fc-sialylated glycovariants were shown to

mediate upregulation of the inhibitory FcgRIIB [18], to

block B-cell proliferation independent of Fc receptors [99]

in mice and to limit proinflammatory IgG effector

Regulation of antibody effector functions through IgG Fc N-glycosylation 843
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functions through impairment of CDC in humans [89]. A

scalable process to produce fully sialylated IVIG with

consistent enhanced anti-inflammatory activity has recently

been described, and the safety and efficacy of fully sialy-

lated IgG will soon be evaluated in clinical trials [84]. Such

trials, if well designed, are instrumental to evaluate the

biological significance of IgG-Fc N-glycan modifications in

human diseases and might generate strategies for tailoring

IgG-based recombinant antibodies for the treatment of

cancer and autoimmune diseases.
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Khademi M, Olsson T, Hohlfeld R, Meinl E, Krumbholz M

(2015) Pro-inflammatory pattern of IgG1 Fc glycosylation in

multiple sclerosis cerebrospinal fluid. J Neuroinflamm

12(1):1–14. doi:10.1186/s12974-015-0450-1

75. Rook GA, Steele J, Brealey R, Whyte A, Isenberg D, Sumar N,

Nelson JL, Bodman KB, Young A, Roitt IM et al (1991) Changes

in IgG glycoform levels are associated with remission of arthritis

during pregnancy. J Autoimmun 4(5):779–794

76. Bondt A, Selman MH, Deelder AM, Hazes JM, Willemsen SP,

Wuhrer M, Dolhain RJ (2013) Association between galactosy-

lation of immunoglobulin G and improvement of rheumatoid

arthritis during pregnancy is independent of sialylation. J Pro-

teome Res 12(10):4522–4531. doi:10.1021/pr400589m

77. Karsten CM, Pandey MK, Figge J, Kilchenstein R, Taylor PR,

Rosas M, McDonald JU, Orr SJ, Berger M, Petzold D, Blanchard

V, Winkler A, Hess C, Reid DM, Majoul IV, Strait RT, Harris

NL, Kohl G, Wex E, Ludwig R, Zillikens D, Nimmerjahn F,

Finkelman FD, Brown GD, Ehlers M, Kohl J (2012) Anti-in-

flammatory activity of IgG1 mediated by Fc galactosylation and

association of FcgammaRIIB and dectin-1. Nat Med

18(9):1401–1406. doi:10.1038/nm.2862

78. Ackerman ME, Crispin M, Yu X, Baruah K, Boesch AW, Harvey

DJ, Dugast AS, Heizen EL, Ercan A, Choi I, Streeck H, Nigrovic

PA, Bailey-Kellogg C, Scanlan C, Alter G (2013) Natural vari-

ation in Fc glycosylation of HIV-specific antibodies impacts

antiviral activity. J Clin Invest 123(5):2183–2192. doi:10.1172/

jci65708

79. Ho CH, Chien RN, Cheng PN, Liu JH, Liu CK, Su CS, Wu IC, Li

IC, Tsai HW, Wu SL, Liu WC, Chen SH, Chang TT (2015)

Aberrant serum immunoglobulin G glycosylation in chronic

hepatitis B is associated with histological liver damage and

reversible by antiviral therapy. J Infect Dis 211(1):115–124.

doi:10.1093/infdis/jiu388

80. Parekh RB, Roitt IM, Isenberg DA, Dwek RA, Ansell BM,

Rademacher TW (1988) Galactosylation of IgG associated

oligosaccharides: reduction in patients with adult and juvenile

onset rheumatoid arthritis and relation to disease activity. Lancet

(London, England) 1 (8592):966–969

81. Scherer HU, van der Woude D, Ioan-Facsinay A, el Bannoudi H,

Trouw LA, Wang J, Haupl T, Burmester GR, Deelder AM,

Huizinga TW, Wuhrer M, Toes RE (2010) Glycan profiling of

anti-citrullinated protein antibodies isolated from human serum

and synovial fluid. Arthritis Rheum 62(6):1620–1629. doi:10.

1002/art.27414

82. Espy C, Morelle W, Kavian N, Grange P, Goulvestre C, Viallon

V, Chereau C, Pagnoux C, Michalski JC, Guillevin L, Weill B,

Batteux F, Guilpain P (2011) Sialylation levels of anti-proteinase

3 antibodies are associated with the activity of granulomatosis

with polyangiitis (Wegener’s). Arthritis Rheum

63(7):2105–2115. doi:10.1002/art.30362

83. van de Geijn FE, Wuhrer M, Selman MH, Willemsen SP, de Man

YA, Deelder AM, Hazes JM, Dolhain RJ (2009) Immunoglobulin

G galactosylation and sialylation are associated with pregnancy-

induced improvement of rheumatoid arthritis and the postpartum

flare: results from a large prospective cohort study. Arthritis Res

Ther 11(6):R193. doi:10.1186/ar2892

84. Washburn N, Schwab I, Ortiz D, Bhatnagar N, Lansing JC,

Medeiros A, Tyler S, Mekala D, Cochran E, Sarvaiya H, Garofalo

K, Meccariello R, Meador JW 3rd, Rutitzky L, Schultes BC, Ling

L, Avery W, Nimmerjahn F, Manning AM, Kaundinya GV,

Bosques CJ (2015) Controlled tetra-Fc sialylation of IVIg results

in a drug candidate with consistent enhanced anti-inflammatory

activity. Proc Natl Acad Sci USA 112(11):E1297–E1306. doi:10.

1073/pnas.1422481112

846 I. Quast et al.

123

http://dx.doi.org/10.1021/bi9621472
http://dx.doi.org/10.1021/bi9621472
http://dx.doi.org/10.1016/j.bbagen.2005.11.021
http://dx.doi.org/10.1021/bp040016j
http://dx.doi.org/10.4049/jimmunol.1502136
http://dx.doi.org/10.4049/jimmunol.1502136
http://dx.doi.org/10.4049/jimmunol.1301249
http://dx.doi.org/10.1182/blood-2013-05-504043
http://dx.doi.org/10.1158/1078-0432.ccr-04-0850
http://dx.doi.org/10.1158/1078-0432.ccr-04-0850
http://dx.doi.org/10.1007/s10616-007-9103-2
http://dx.doi.org/10.1007/s10616-007-9103-2
http://dx.doi.org/10.1016/j.molimm.2012.01.001
http://dx.doi.org/10.1126/science.1154315
http://dx.doi.org/10.1006/jaut.1996.0104
http://dx.doi.org/10.1006/jaut.1996.0104
http://dx.doi.org/10.1002/art.39273
http://dx.doi.org/10.1186/s12974-015-0450-1
http://dx.doi.org/10.1021/pr400589m
http://dx.doi.org/10.1038/nm.2862
http://dx.doi.org/10.1172/jci65708
http://dx.doi.org/10.1172/jci65708
http://dx.doi.org/10.1093/infdis/jiu388
http://dx.doi.org/10.1002/art.27414
http://dx.doi.org/10.1002/art.27414
http://dx.doi.org/10.1002/art.30362
http://dx.doi.org/10.1186/ar2892
http://dx.doi.org/10.1073/pnas.1422481112
http://dx.doi.org/10.1073/pnas.1422481112


85. Anthony RM, Kobayashi T, Wermeling F, Ravetch JV (2011)

Intravenous gammaglobulin suppresses inflammation through a

novel T(H)2 pathway. Nature 475(7354):110–113. doi:10.1038/

nature10134

86. Yu X, Vasiljevic S, Mitchell DA, Crispin M, Scanlan CN (2013)

Dissecting the molecular mechanism of IVIg therapy: the inter-

action between serum IgG and DC-SIGN is independent of

antibody glycoform or Fc domain. J Mol Biol 425(8):1253–1258.

doi:10.1016/j.jmb.2013.02.006

87. Anthony RM, Wermeling F, Karlsson MC, Ravetch JV (2008)

Identification of a receptor required for the anti-inflammatory

activity of IVIG. Proc Natl Acad Sci USA 105(50):19571–19578.

doi:10.1073/pnas.0810163105

88. Bayry J, Bansal K, Kazatchkine MD, Kaveri SV (2009) DC-

SIGN and a2,6-sialylated IgG Fc interaction is dispensable for

the anti-inflammatory activity of IVIg on human dendritic cells.

Proc Natl Acad Sci 106(9):E24. doi:10.1073/pnas.0900016106

89. Quast I, Keller CW, Maurer MA, Giddens JP, Tackenberg B,

Wang LX, Munz C, Nimmerjahn F, Dalakas MC, Lunemann JD

(2015) Sialylation of IgG Fc domain impairs complement-de-

pendent cytotoxicity. J Clin Invest 125(11):4160–4170. doi:10.

1172/JCI82695

90. Sehn LH, Goy A, Offner FC, Martinelli G, Caballero MD,

Gadeberg O, Baetz T, Zelenetz AD, Gaidano G, Fayad LE,

Buckstein R, Friedberg JW, Crump M, Jaksic B, Zinzani PL,

Padmanabhan Iyer S, Sahin D, Chai A, Fingerle-Rowson G, Press

OW (2015) Randomized phase II trial comparing obinutuzumab

(GA101) with rituximab in patients with relapsed CD20? indo-

lent B-cell non-Hodgkin lymphoma: final analysis of the GAUSS

study. J Clin Oncol 33(30):3467–3474. doi:10.1200/jco.2014.59.

2139

91. Albert H, Collin M, Dudziak D, Ravetch JV, Nimmerjahn F

(2008) In vivo enzymatic modulation of IgG glycosylation inhi-

bits autoimmune disease in an IgG subclass-dependent manner.

Proc Natl Acad Sci USA 105(39):15005–15009. doi:10.1073/

pnas.0808248105

92. Benkhoucha M, Molnarfi N, Santiago-Raber ML, Weber MS,

Merkler D, Collin M, Lalive PH (2012) IgG glycan hydrolysis by

EndoS inhibits experimental autoimmune encephalomyelitis.

J Neuroinflamm 9:209. doi:10.1186/1742-2094-9-209

93. Hirose M, Vafia K, Kalies K, Groth S, Westermann J, Zillikens

D, Ludwig RJ, Collin M, Schmidt E (2012) Enzymatic autoan-

tibody glycan hydrolysis alleviates autoimmunity against type

VII collagen. J Autoimmun 39(4):304–314. doi:10.1016/j.jaut.

2012.04.002

94. Nandakumar KS, Collin M, Olsen A, Nimmerjahn F, Blom AM,

Ravetch JV, Holmdahl R (2007) Endoglycosidase treatment

abrogates IgG arthritogenicity: importance of IgG glycosylation

in arthritis. Eur J Immunol 37(10):2973–2982. doi:10.1002/eji.

200737581

95. Collin M, Shannon O, Bjorck L (2008) IgG glycan hydrolysis by

a bacterial enzyme as a therapy against autoimmune conditions.

Proc Natl Acad Sci USA 105(11):4265–4270. doi:10.1073/pnas.

0711271105

96. Lood C, Allhorn M, Lood R, Gullstrand B, Olin AI, Ronnblom L,

Truedsson L, Collin M, Bengtsson AA (2012) IgG glycan

hydrolysis by endoglycosidase S diminishes the proinflammatory

properties of immune complexes from patients with systemic

lupus erythematosus: a possible new treatment? Arthritis Rheum

64(8):2698–2706. doi:10.1002/art.34454

97. Schwab I, Mihai S, Seeling M, Kasperkiewicz M, Ludwig RJ,

Nimmerjahn F (2014) Broad requirement for terminal sialic acid

residues and FcgammaRIIB for the preventive and therapeutic

activity of intravenous immunoglobulins in vivo. Eur J Immunol

44(5):1444–1453. doi:10.1002/eji.201344230

98. Schwab I, Lux A, Nimmerjahn F (2015) Pathways responsible for

human autoantibody and therapeutic intravenous IgG activity in

humanized mice. Cell Rep 13(3):610–620. doi:10.1016/j.celrep.

2015.09.013

99. Hess C, Winkler A, Lorenz AK, Holecska V, Blanchard V,

Eiglmeier S, Schoen AL, Bitterling J, Stoehr AD, Petzold D,

Schommartz T, Mertes MM, Schoen CT, Tiburzy B, Herrmann

A, Kohl J, Manz RA, Madaio MP, Berger M, Wardemann H,

Ehlers M (2013) T cell-independent B cell activation induces

immunosuppressive sialylated IgG antibodies. J Clin Invest

123(9):3788–3796. doi:10.1172/jci65938

Regulation of antibody effector functions through IgG Fc N-glycosylation 847

123

http://dx.doi.org/10.1038/nature10134
http://dx.doi.org/10.1038/nature10134
http://dx.doi.org/10.1016/j.jmb.2013.02.006
http://dx.doi.org/10.1073/pnas.0810163105
http://dx.doi.org/10.1073/pnas.0900016106
http://dx.doi.org/10.1172/JCI82695
http://dx.doi.org/10.1172/JCI82695
http://dx.doi.org/10.1200/jco.2014.59.2139
http://dx.doi.org/10.1200/jco.2014.59.2139
http://dx.doi.org/10.1073/pnas.0808248105
http://dx.doi.org/10.1073/pnas.0808248105
http://dx.doi.org/10.1186/1742-2094-9-209
http://dx.doi.org/10.1016/j.jaut.2012.04.002
http://dx.doi.org/10.1016/j.jaut.2012.04.002
http://dx.doi.org/10.1002/eji.200737581
http://dx.doi.org/10.1002/eji.200737581
http://dx.doi.org/10.1073/pnas.0711271105
http://dx.doi.org/10.1073/pnas.0711271105
http://dx.doi.org/10.1002/art.34454
http://dx.doi.org/10.1002/eji.201344230
http://dx.doi.org/10.1016/j.celrep.2015.09.013
http://dx.doi.org/10.1016/j.celrep.2015.09.013
http://dx.doi.org/10.1172/jci65938

	Regulation of antibody effector functions through IgG Fc N-glycosylation
	Abstract
	Immunoglobulins
	Immunoglobulin G
	Fc-dependent effector functions of IgG
	Complement-mediated IgG effector functions
	Fc glycan-modulated IgG effector functions
	Fc fucose
	Fc galactose
	Fc sialic acid

	Therapeutic relevance and concluding remarks
	Acknowledgments
	References




