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Abstract To sustain the bio-energetic demands of growth,

proliferation, and effector functions, the metabolism of

immune cells changes dramatically in response to

immunologic stimuli. In this review, I focus on B cell

metabolism, especially regarding the production of

intestinal IgA antibody. Accumulating evidence has

implicated not only host-derived factors (e.g., cytokines)

but also gut environmental factors, including the possible

involvement of commensal bacteria and diet, in the control

of B cell metabolism during intestinal IgA antibody pro-

duction. These findings yield new insights into the

regulation of immunosurveillance and homeostasis in the

gut.
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Introduction

The metabolic processes in immune cells and their effects

on overall immune regulation, including immune diseases,

have become the focus of intense investigation in the

emerging field of immunometabolism [1, 2]. The core

function of metabolic pathways is the synthesis or degra-

dation of sugars, fatty acids, nucleic acids, or proteins

coupled with the consumption or generation of ATP by

oxidative phosphorylation or glycolysis. Signals associated

with infection, inflammation, and other biologic states are

mediated through the pattern recognition receptors, cyto-

kine receptors, and antigen receptors (e.g., T and B cell

receptors) of immune cells, reprogramming these cells and

leading to changes in their function, growth, proliferation,

and metabolism [3–5]. By providing energy and precursor

molecules, these metabolic changes support biosynthetic

activities associated with immune cell activation, such as

the production of effector molecules, including cytokines,

chemokines, and antibodies. However, recent studies

demonstrate that, in addition to their actions in energy

generation and general biosynthesis, metabolic processes

play critical roles in controlling the specific functions and

differentiation of immune cells [3–5]. Therefore, the

metabolic pathways of immune cells might be manipulated

to alter their immune functions (e.g., T cell differentiation)

and thus provide immunotherapy by modulating activation

and differentiation of immune cells [6, 7].

The regulation of immunometabolism in T cells is well

studied [8, 9]. In general, naı̈ve and memory T cells use the

TCA (tricarboxylic acid) cycle and fatty acid oxidation

(FAO) for energy production. Upon activation, the meta-

bolic machinery of T cells typically is shifted toward

glycolysis [10]. This shift is favorable for obtaining the

intermediates necessary for building the components
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required for cell proliferation (e.g., membranes, proteins,

and nucleotides). In response to the cytokine environment,

activated T cells then differentiate into various subsets,

including Th1, Th2, Th17, and regulatory T (Treg) cells

and cytotoxic T lymphocytes (CTL). Several lines of evi-

dence have shown that energy metabolism varies markedly

among T cell subsets [8]. For instance, like naı̈ve and

memory T cells, Treg cells show high levels of FAO rates

while the other effector T cells such as Th1, Th2, Th17

cells and CTL preferentially use aerobic glycolysis path-

way [11]. In addition, a recent study showed that follicular

helper T cells, another important effector cells for antibody

production, exhibited less glycolysis [12]. Thus, distinct

metabolic requirement is defined by the consequences of

cell differentiation.

Macrophages are another example of immune cells with

subset-specific metabolism which is also associated with

the cell differentiation (reviewed in Ref. [4]). Currently,

macrophages are divided into at least two subpopulations:

M1 macrophages, which have a pro-inflammatory pheno-

type, and M2 macrophages, which are anti-inflammatory

[13]. The metabolic properties of each of these subsets

differ greatly. Polarization into M1 macrophages is

accompanied by a rapid shift toward aerobic glycolysis,

whereas M2 macrophages preferentially use FAO-medi-

ated oxidative phosphorylation [14].

As in T cells, the rates of glycolysis increase in activated

B cells in response to various stimuli in vitro [15–17];

however, little is known about the metabolic changes that

occur during the differentiation of B cells into antibody-

producing plasma cells (PCs), especially in vivo. To

address this issue, we exploited the unique environment of

the intestine, where immunologic stimuli associated with

environmental factors such as commensal microorganisms

and diet induce the spontaneous differentiation of B cells

into immunoglobulin A (IgA)-producing PCs (IgA PCs)

[18]. These features allowed us to reveal the metabolic

changes during B cell differentiation into antibody-pro-

ducing PCs in the intestine.

Preferential differentiation of B cells into IgA PCs
in the intestine

IgA is the primary antibody type in the intestine, where it

protects the host against pathogenic infections [19] and

binds to commensal microorganisms to maintain its

homeostatic communities [20]. The gut-associated lym-

phoid tissues (GALTs) are the primary sites for the

initiation and induction of intestinal IgA antibody pro-

duction [21].

Peyer’s patches (PPs) are the predominant GALT. The

follicle-associated epithelium overlying PPs contains

antigen-sampling M cells for the uptake of antigens and

their translocation to underlying regions, where antigen-

presenting cells, such as dendritic cells (DCs), reside

[22, 23]. In the unique cytokine environment (e.g., IL-4,

IL-6, and TGF-b) of the intestine, the immunologic inter-

actions among DCs, T cells, and B cells activate B cells for

their commitment into IgA? B cells [21]. Thus, the B cells

in the PPs are naı̈ve B cells predominantly, with a minor

component of activated IgA? B cells (Fig. 1).

After their differentiation in the PPs, IgA? B cells begin

to express receptors for sphingosine 1-phosphate,

chemokines (e.g., CCR9), and adhesion molecules (e.g.,

a4b7 integrin), allowing the cells to emigrate from the PPs

and subsequently traffic into the intestinal lamina propria

(iLP) [24, 25]. Upon their arrival at the iLP, IgA? B cells

further differentiate into IgA PCs under the influence of IL-

5, IL-6, IL-10, IL-15, a proliferation-inducing ligand

(APRIL), and B cell-activating factor (BAFF) (Fig. 1) [26].

B cells from peritoneum and isolated lymphoid follicle

(ILF) are the other sources of intestinal IgA PCs [27, 28].

Unlike B cells in the PPs which produce the IgA antibody

against T cell-dependent antigens with the help by DCs and

T cells, B cells from peritoneum and ILF uniquely recog-

nize T cell-independent antigens such as polysaccharide

and phosphorylcholine [27, 28]. Upon the activation, these

B cells exhibit class switching to express IgA and subse-

quently traffic to the intestine, where they further

differentiate into IgA PCs.

Changes of energy metabolism during cell
differentiation from naı̈ve B cells into IgA PCs

We performed metabolic analysis using capillary elec-

trophoresis–mass spectrometry, revealing that the energy–

metabolite profile of naı̈ve B cells in the PPs differed from

that of IgA PCs in the iLP [29]. Specifically, both naı̈ve B

cells and IgA PCs exhibited similar levels of TCA cycle

metabolites (e.g., citrate and succinate). In contrast, meta-

bolic intermediates of glycolysis (e.g., glucose mono-

phosphate and fructose bis-phosphate) were detected

preferentially in IgA PCs compared with naı̈ve B cells

(Fig. 1). In addition, glucose uptake and the activity of

glyceraldehyde 3-phosphate dehydrogenase, a key gly-

colytic enzyme, were consistently higher in IgA PCs than

in naı̈ve B cells [29]. Therefore, unlike naı̈ve B cells in the

PPs, IgA PCs in the iLP appear to use glycolysis prefer-

entially as an energy metabolic pathway (Fig. 1).

Consistently, various in vitro studies demonstrated that

stimulation of B cells with various stimuli in vitro induced

the increase of glycolysis activity with the changes in the

proliferation, cell size, survival, gene expression and anti-

body production [16, 30–32]. It was reported that glucose-
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initiated energy generation is essential for antibody pro-

duction [17]. Indeed, impairment of glucose uptake by B

cell-specific deletion of GLUT1 results in decreased anti-

body production [17]. Therefore, it is likely that the

metabolic changes are not simply a consequence of cell

activation but is also essential for the cell differentiation-

associated immunological and biological processes

including antibody production. Additionally, as mentioned

above, these activation signals, especially in IgA? B cells

in the intestine, associate with the increased expression of

CCR9 and a4b7 integrin, which determine their trafficking

into the intestine [24, 25]. So, it is possible that the

metabolic changes are related with B cell migration, which

is a subject of future study.

The shift to glycolysis-mediated energy metabolism

likely is useful for generating metabolic intermediates for

cell activation and growth. For instance, the glucose mono-

phosphate and 3-phosphoglycerate generated through gly-

colysis are used in the pentose phosphate and serine

biosynthetic pathways for nucleotide and amino acid syn-

thesis, respectively [33]. In addition, glucose is

metabolized into pyruvate and then acetyl-CoA, to join the

TCA cycle by condensing with oxaloacetate to form

citrate. In addition to its use in the TCA cycle, citrate can

be exported into the cytoplasm, where it is converted to

acetyl-CoA and used in fatty acid synthesis [33], which is

required for B cell differentiation [34]. Hence, the shift to

glycolysis in IgA PCs is considered to support the

generation and production of IgA antibody without

requiring the consumption of preexisting amino acids and

fatty acids.

Molecular mechanisms underlying the energy
metabolic changes in B cells

Several key molecules involved in the regulation of

immunometabolism in T cells have been identified [35].

Upon the activation-induced shift to aerobic glycolysis, T

cells express glucose transporter Glut1 on the cell surface

to facilitate glucose uptake [10]. Similarly, B cells stimu-

lated with LPS or through the B cell receptor begin to

express Glut1, which is an essential step for antibody

production [17]. As mentioned above, B cell-specific

deletion of Glut1 reduced B cell numbers and impaired

antibody production [17].

In both T and B cells, Glut1 expression is dependent on

the activation of the kinase Akt by phosphatidylinositol

3-kinase (PI3K) [10, 15]. In addition, PI3K–Akt signaling

activates the mechanistic target of rapamycin (mTOR) and

supports effector T cell differentiation, growth, and func-

tion by enhancing glycolytic metabolism [36]. Whereas

Th1, Th2, and Th17 cells engage glycolysis through mTOR

signaling, Treg cells depend on FAO [11]. In agreement

with these findings, rapamycin-induced suppression of

mTOR promoted the generation of Treg cells [37, 38]. Of

IgA

IgA PC

IgM+

B220+
IgA+

Lamina
propria

Naïve
B cell

IgA+ GC B cell/
plasmablast IgA

plasmablast

Glycolysis
OXPHOS

Glycolysis
OXPHOS

Peyer’s patch

Glucose uptake
GAPDH activity
Glycolysis metabolites

Fig. 1 Shift of energy metabolism during the differentiation of B

cells into IgA-producing plasma cells. Naı̈ve B cells, the predominant

B cell population in Peyer’s patches, obtain biosynthetic energy from

oxidative phosphorylation (OXPHOS) through the TCA cycle. After

the activation of B cells and their differentiation into germinal center

(GC) B cells and IgA? plasmablasts, they traffic into the intestinal

lamina propria, where they ultimately differentiate into IgA-produc-

ing plasma cells (PCs). IgA PCs utilize both glycolysis and OXPHOS

for energy generation. This metabolic shift is associated with changes

in glucose uptake, GAPDH activity, and glycolytic metabolites
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the two predominant mTOR complexes, termed mTORC1

and mTORC2, mTORC1 is required for Th1 and Th17

cells, whereas Th2 cells use mTORC2 [39]. Indeed,

impairment of mTORC1- and mTORC2-mediated signal-

ing led to defects in the development of Th1/Th17 and Th2

cells, respectively [39]. Like T cells, the complete deletion

of mTOR in B cells resulted in the suppression of germinal

center responses, including class switching [40]. In addi-

tion, B cell-specific deletion of the tuberous sclerosis

complex, a negative regulator mTORC1, led to the acti-

vation of mTORC1, thus increasing PC differentiation and

antibody secretion [41].

Requirement of vitamin B1 for the maintenance
of intestinal IgA

Diet is well known to affect energy metabolism and also

immune responses including intestinal IgA production

[42, 43]. Among various dietary components, vitamins are

essential factors for immune responses [44]. For example,

it is well known that vitamin A is a key factor in the control

of lymphocyte trafficking into the intestine by inducing the

expression of a4b7 integrin and chemokine receptor CCR9

on activated B and T cells, which is mediated by conver-

sion of vitamin A to retinotic via retinaldehyde

dehydrogenase expressed in intestinal DC [24, 25].

Another example is vitamin B9 (also known as folate),

which is required for the maintenance of Treg cells [45].

We recently found that vitamin B1 (thiamine) is also

important for the intestinal IgA responses, which was

linked to energy metabolism. Vitamin B1 plays a pivotal

role in energy generation by acting as a cofactor of pyru-

vate dehydrogenase and a-ketoglutarate dehydrogenase,

which are essential enzymes in the TCA cycle [46].

Because they are unable to synthesize vitamin B1, mam-

mals must obtain this cofactor from their diet [47]. We

confirmed that the TCA cycle is selectively impaired in

mice that received a diet deficient in vitamin B1, which is

coincident with decreased numbers of naı̈ve B cells and

consequent atrophy of PPs (Fig. 2) [29]. In contrast, IgA

PCs in the iLP of these mice were unchanged in both

frequency and absolute cell number (Fig. 2) [29]. In

agreement with these findings, the expression level of

THTR1, a transporter of vitamin B1, was higher in the

naı̈ve B cells than in the IgA PCs of mice, and in vitro

treatment with a vitamin B1 antagonist decreased the

number and viability of purified naı̈ve B cells, whereas the

cell number of purified IgA PCs remained unchanged [29].

As mentioned above, IgA PCs use glycolysis for the energy

generation (Fig. 1), which could support energy supply in

the absence of vitamin B1-dependent energy generation

(Fig. 2) [29]. Consistently, glycolytic metabolites (e.g.,

glucose mono-phosphate and fructose bis-phosphate) and

glycolysis-associated enzymes (e.g., glyceraldehyde

3-phosphate dehydrogenase) were preferentially noted in

IgA PCs.

As mentioned earlier, intestinal IgA responses against

orally administered antigen are initiated in the PPs [21].

Indeed, vitamin B1 dependency during intestinal B cell

differentiation influenced antigen-specific IgA responses

against oral vaccine; that is, mice fed the vitamin B1-de-

ficient diet during oral immunization showed reduced

numbers of naı̈ve B cells and consequently decreased

levels of antigen-specific fecal IgA production compared

with those of mice that received a complete diet [29].

Taken together, these studies show that vitamin B1 directly

affects the survival and proliferation of naı̈ve B cells in the

PPs, which are required for efficient IgA antibody

responses against oral vaccine.

Similarities and differences in B cell energy
metabolism between the systemic and intestinal
immune compartments

Intestinal B cells share some metabolic characteristics with

their counterparts in systemic immune compartments, such

as the spleen. For example, the levels of TCA cycle

metabolites were identical between intestinal and splenic B

IgA plasma cell in the iLPNaïve B cell in the PP

Vitamin B1
deficiencyNo ATP ATP from 

glycolysis

ATP

ATP AA, FA

Glycolysis

ATP

ATP

Impaired cell proliferation
and cell death Cell Survival

AA, FA

ATP

Fig. 2 Relationship between energy metabolism and vitamin B1

dependency during the differentiation of B cells into IgA-producing

plasma cells. Naı̈ve B cells in the Peyer’s patches (PP) generate ATP

from the amino acid (AA)- or fatty acid (FA)-originated TCA cycle,

whereas IgA plasma cells utilize the glycolysis-initiated TCA cycle.

Because vitamin B1 deficiency impairs enzymatic activity in the TCA

cycle, naı̈ve B cells cannot generate ATP in the absence of vitamin B1

and thus fail to survive and proliferate. In contrast, despite impair-

ment of the TCA cycle, IgA plasma cells remain able to synthesize

energy through glycolysis, allowing them to survive in the absence of

vitamin B1
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cells [21]. Consistent with this finding, the spleen

decreased in size due to the decreased numbers of naı̈ve B

cells that resulted when mice received a vitamin B1-defi-

cient diet [21]. These vitamin B1-deficient mice also had

decreased serum IgG responses against intraperitoneally

immunized antigen [21]. Therefore, the energy metabolism

and vitamin B1 dependency of naı̈ve B cells in the spleen

appear to be similar to those of naı̈ve B cells in the PPs.

However, unlike naı̈ve B cells, splenic PCs had low levels

of glycolytic metabolites [21], suggesting that the glycol-

ysis-mediated pathway is a specific phenomenon of

intestinal IgA PCs and may reflect features of the unique

immunologic environment of the intestine, such as con-

tinuous exposure to commensal bacteria and diets.

In addition to the intestine, respiratory tissues provide IgA

antibody. For instance, tonsils in human and nasopharynx-

associated lymphoid tissue (NALT) in rodents show similar

immunological phenotypes to Peyer’s patches as inductive

lymphoid tissues for IgA production [48]. Furthermore,

infection and inflammation induce the development of

inducible bronchus-associated lymphoid tissue (iBALT),

which also initiates IgA-mediated immune responses [49].

Since some immunologic phenotypes are different between

respiratory and intestinal tissues (e.g., lack of germinal

center formation in NALT and less numbers of commensal

bacteria) [48], it is interesting to examine whether metabolic

phenotypes and associated dependency on vitamin B1 were

similar between respiratory and intestinal IgA PCs.

Possible involvement of gut environment
in the control of B cell metabolism

Intestinal tissue creates the unique environment for the

preferential IgA production. For instance, it was demon-

strated that interaction between IgA PCs and the other cells

(e.g., DCs, stromal cells, and epithelial cells) is required for

the efficient production of intestinal IgA, which is at least

partly mediated by APRIL and BAFF [26]. Additionally,

other cytokines such as IL-5, IL-6, IL-10, IL-15 and thymic

stromal lymphopoietin (TSLP) are also involved in the

intestinal IgA production [26]. As mentioned above,

stimulation of B cells with these cytokines leads to the

changes of energy metabolism, particularly preferential

usage of glycolysis [16, 30–32]. Thus, it is likely that

unique immunologic gut environment promotes efficient

production of intestinal IgA together with preferential

usage of glycolysis-initiated energy metabolism.

In addition to the internal factors, commensal bacteria

likely affect the induction and function of intestinal IgA [18].

Indeed, germ-free mice have decreased intestinal IgA

responses and structurally immature PPs [50]. We previously

identified a subset of intestinal IgA PCs that is induced by

commensal bacteria, CD11b? IgA PCs, which show unique

characteristics such as vigorous proliferation and the pro-

duction of high amounts of IgA [51]. Our study showed that

they require the lymphoid structure of PP and IL-10, abundant

cytokine in the iLP [51], implicating that the phenotype

CD11b? IgA plasma cells may be obtained during terminal

differentiation. Given that metabolic changes alter cell pro-

liferation and IgA antibody production, commensal bacteria

likely influence the metabolism of intestinal IgA PCs, espe-

cially CD11b? IgA PCs.

Like vitamins, dietary fatty acids influence host immune

function and metabolism [43, 52–54]. Indeed, overnutrition

due to a high-fat diet leads to thedevelopment of inflammation

in adipose tissue, which is frequently associated with obesity

and atherosclerosis [55]. Recent findings from our laboratory

and others suggest that in addition to the quantityof dietary oil,

the FA composition of dietary oils is another important factor

in various immunologic and inflammatory conditions

[43, 52–54]. For example, we reported that intestinal IgA

production was increased in mice maintained on a palmitic

acid-enriched oil (e.g., palm oil) and palmitic acid directly

promoted IgA production from PCs and stimulated cell pro-

liferation through the conversion of palmitic acid into

sphingolipids by serine palmitoyltransferase [56]. These

activation pathways may be coincident with the changes of

energy metabolism that occur in intestinal IgA PCs.

Conclusion

As in other immune cells, the functions of B cells are

dependent on their metabolism. The switching of B cell

metabolic pathways is controlled not only by host-originated

factors associated with cell activation and differentiation but

also possibly by gut external environmental factors (e.g.,

commensal microorganisms and diet); these control mech-

anisms are especially important for the intestinal IgA

antibody production pathway. Given that intestinal IgA

antibody is a primary effector molecule in preventing

intestinal infection and maintaining an appropriate compo-

sition of commensal microorganisms, understanding B cell

metabolism in the intestine not only provides fundamental

information about B cell biology but also new insights into

the development of immunotherapy and mucosal vaccines.
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