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TNF	� Tumor necrosis factor
IL	� Interleukin
iNOS	� Nitric oxide synthase
COX	� Cyclooxygenase
NO	� Nitric oxide
PGE2	� Prostaglandin E2
CXCR3	� CXC chemokine receptor3
CCR5	� C-C chemokine receptor type 5
ICAM-1	� Intercellular adhesion molecule 1
VCAM-1	� Vascular cell adhesion molecule 1
IDO	� Indoleamine 2,3-dioxygenase
HLA-G5	� Human leukocyte antigen class I molecule G5
EV	� Extracellular vesicle
TSG6	� Tumor necrosis factor-induced protein 6
Breg	� Regulatory B cell
STAT3	� Signal transducer and activator of transcription 

3
Blimp1	� B lymphocyte-induced maturation protein 1
IL-1Ra	� IL-1 receptor antagonist
APC	� Antigen-presenting cell
MIF	� Macrophage migration inhibitory factor.

Introduction

Mesenchymal stem cells (MSCs) are multi-potent cells that 
can be isolated from various adult tissues, such as the bone 
marrow, umbilical cord, adipose, peripheral blood, liver, 
and tooth root [1, 2]. In  vitro, these cells are adherent to 
plastic dishes and can be passaged consecutively for 30–40 
generations while retaining their multipotency [3, 4]. They 
can be induced to differentiate into cells of mesodermal 
lineages, such as adipocytes, chondrocytes, and osteoblasts 
[3]. Interestingly, they also have the potential to trans-dif-
ferentiate into ectodermal or endodermal cell lineages [5]. 

Abstract  In addition to being multi-potent, mesenchy-
mal stem cells (MSCs) possess immunomodulatory func-
tions that have been investigated as potential treatments in 
various immune disorders. MSCs can robustly interact with 
cells of the innate and adaptive immune systems, either 
through direct cell–cell contact or through their secretome. 
In this review, we discuss current findings regarding the 
interplay between MSCs and different immune cell subsets. 
We also draw attention to the mechanisms involved.
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Phenotypically, MSCs are positive for cell surface antigens, 
including stem cell antigen-1 (Sca-1), CD105, CD73, and 
CD90, and they do not express markers of hematopoietic 
cell lineage, such as CD34, CD45, CD11b, major histo-
compatibility complex class II (MHCII), and endothelial 
marker CD31 [6–9] (Fig. 1).

Stem cell-based investigations have increased hope for 
the treatment of many diseases. Nevertheless, the clinical 
applications of embryonic stem cells (ESCs) and induced 
pluripotent stem cells (iPSCs) are hindered by their tera-
toma-generating ability in vivo [10, 11] and, most impor-
tantly, ethical concerns [12]. MSCs bring new enthusiasm 
for regenerative medicine and immune disorder-related dis-
eases, because they are convenient to isolate, have strong 
self-renewal abilities, and have multi-potent differentiation 
abilities. Moreover, MSCs are free of the complications 
that can emerge with the use of ESCs and iPSCs. Much 
has been learnt about the functions of MSCs during tis-
sue repair and in the control of immune disorders. They 
can directly replace damaged tissues through differentia-
tion, even though this is less effective than that of ESCs or 
iPSCs. Several studies have reported the successful promo-
tion of tissue regeneration, including the liver [13], kidney 
[14], heart [15], and pancreas [16] through the administra-
tion of MSCs. Most importantly, MSCs modulate tissue 

regeneration and various immune disorders through their 
immunoregulatory properties. These cells are capable of 
interacting with various types of immune cells, including T 
cells, B cells, natural killer (NK) cells, macrophages, den-
dritic cells (DCs), neutrophils, and mast cells. These inter-
actions occur through direct cell–cell contact or their spe-
cific secretome, which consists of various growth factors 
and immunomodulatory factors. This balances the immune 
response and regulates inflammation profiles, thus promot-
ing the successful treatment of various immune cell-asso-
ciated diseases, as reviewed in detail elsewhere [17–19]. In 
this study, we primarily discuss the current findings on the 
immunomodulatory properties of MSCs and the associated 
mechanisms.

T cells

T cells are extensively distributed throughout tissues. In 
the thymus, hematopoietic stem cell-derived progenitors 
develop into T cells through a series of distinct develop-
mental stages [20]. Activation of naïve T cells requires 
two signals, namely, T cell receptor signaling and co-stim-
ulatory signaling [21, 22]. Upon activation, CD4+ T cells 
can differentiate into T-helper 1 (Th1), Th2, Th9, Th17, or 

MSCs

Fibroblast-like shapes

epytonehPygolohproM Multipotency

Adipocytes Chondrocytes Osteocytes

Positive markers:
Sca-1, CD105, 

CD73, CD44, and CD29
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Fig. 1   Multiple criteria for the definition of MSCs. MSCs can be iso-
lated from various origins, such as the bone marrow, adipose tissues, 
and peripheral blood. In culture, they are adherent to plastic dishes, 
thus can be purified and expanded by consecutive passaging. Usually, 
MSCs exhibit heterogeneous population of fibroblast-like shapes. 
MSCs are multi-potential which can differentiate into cells of mes-

enchymal tissues, including adipocytes, chondrocytes, and osteocytes. 
These cells can also trans-differentiate into cells of non-mesenchymal 
tissues. Usually, mouse and human MSCs are positive for such mark-
ers as Sca-1, CD105, CD73, CD44, and CD29, while they are nega-
tive for such markers as CD34, CD45, CD11b, MHCII, and CD31. 
These criteria combined to form a strict definition of MSCs
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regulatory T cell (Treg) subsets, depending on the strength 
of the stimulation and the cytokine milieu [23–26]. Vari-
ous infections also activate and promote the differentiation 
of CD8+ T cells into cytotoxic T lymphocytes that secrete 
granzymes, perforins, and various cytokines to kill infected 
cells [27]. T-cell-mediated immunity is the key component 
of the adaptive immune system, protecting against infec-
tions and malignancies but also mediating a number of 
autoimmune diseases [28].

The interplay between MSCs and T cells has been inten-
sively studied. It was found that MSCs potently inhibited T 
cell proliferation in several models. A study investigating 
baboon MSCs highlighted their proliferation-suppressive 
feature, which could also be applied to an in  vivo graft-
versus-host disease (GVHD) model [29]. Moreover, human 
bone-marrow-derived MSCs efficiently inhibited the prolif-
eration of T lymphocytes in vitro. The proliferation-inhib-
iting effect of MSCs on T cells is thought to be mediated 
by the release of transforming growth factor beta (TGF-β) 
and hepatocyte growth factor (HGF), which leads to the 
decrease of cyclin D2 and the increase of p27kip1 expres-
sion in T cells, resulting in arrest of proliferation in the G1 
phase [30, 31]. MSCs are also capable of inducing apopto-
sis of activated T cells, a process associated with the con-
version of tryptophan into kynurenine [32], and with the 
Fas/Fas ligand-dependent pathway [33].

In addition to affecting T-cell proliferation and apopto-
sis, MSCs can also alter the activation and differentiation 
process of T cells. Several lines of evidence have exhibited 
that MSCs suppressed interferon (IFN)-γ and IL-17 secre-
tion but promoted IL-10 production of T cells by antago-
nizing the differentiation of Th1 and Th17 cells, thereby 
inducing the generation of Tregs [34, 35]. MSCs also sup-
pressed effector T-cell priming indirectly through the regu-
lation of DCs and NK cells [36]. These findings were appli-
cable to several in  vivo models, as MSC transplantation 
efficiently improved several inflammatory diseases, such as 
experimental autoimmune encephalomyelitis (EAE) [34], 
arthritis [37], experimental autoimmune uveitis [38], trans-
plant arteriosclerosis [39], acute hepatitis [40], systemic 
lupus erythematosus (SLE) [41], and GVHD [42].

Interestingly, MSCs are not capable of suppressing 
T cells unless they are pre-stimulated by certain inflam-
matory cytokines, such as IFN-γ and at least one other 
cytokine, specifically tumor necrosis factor (TNF)-α, inter-
leukin (IL-)1α, or IL-1β [43, 44]. In response to stimula-
tion by these inflammatory cytokines, MSCs upregulated 
their inducible nitric oxide synthase (iNOS) and cycloox-
ygenase (COX)-2 expression levels, which resulted in 
robust production of the immunosuppressive molecules 
nitric oxide (NO) and prostaglandin E2 (PGE2) to modu-
late immune responses [43, 45]. In addition, these MSCs 
produced a variety of chemokines and adhesion molecules, 

such as CXC chemokine receptor 3 (CXCR3) ligands, C-C 
chemokine receptor type 5 (CCR5) ligands, intercellular 
adhesion molecule 1 (ICAM-1), and vascular cell adhesion 
molecule 1 (VCAM-1). These chemokines are critical for 
lymphocyte recruitment to injured sites in close proximity, 
thus ensuring their optimum suppressive function [17, 43, 
44, 46]. The induced expression of soluble immunoregula-
tory molecules and adhesion molecules was both indispen-
sable for effective T-cell inhibition, since blocking either of 
them would greatly reverse the suppressive effects of MSCs 
[43, 44].

However, the immunosuppressive ability of MSCs 
is not always achieved, as several contradictory find-
ings showed that MSCs were unable to suppress or even 
enhance T cell responses under several conditions. Indeed, 
the immunomodulatory capacity of MSCs is dependent 
upon the types and strengths of the inflammatory signals 
they receive. This plasticity of MSCs in immunomodula-
tion was demonstrated in a study investigating how differ-
ent concentrations of IFN-γ and TNF affected the functions 
of MSCs in immune regulation [47]. In this study, low pro-
inflammatory cytokine levels led to inadequate production 
of NO from murine MSCs, whereas high proinflammatory 
cytokine levels resulted in adequate production of NO and 
guaranteed their inhibitory effects on T cells. The plastic-
ity of murine MSCs was also applicable in human MSCs 
[47] (Fig. 2). This was confirmed in vivo in several murine 
models, including models for delayed-type hypersensitivity 
response, tumor growth, and heart transplantation [47, 48].

Notably, the key molecules mediating the immunosup-
pressive function of MSCs are species dependent, with 
iNOS being a key molecule in mice, whereas indoleamine 
2,3-dioxygenase (IDO) is a key molecule in humans [49, 
50]. iNOS is a synthase that catalyzes the production of NO 
in  vivo, which is highly immunosuppressive at high con-
centrations [51]. In murine models of GVHD and experi-
mental arthritis, iNos−/− or iNOS inhibitor treated MSCs 
failed to suppress T cells and thus did not exert therapeutic 
effects [43, 52]. IDO strongly inhibited immune responses 
by depleting tryptophan and promoting the accumulation 
of tryptophan metabolites [53, 54]. Similar to iNOS, IDO 
in human MSCs exerted immunosuppressive functions in a 
few models [50, 54, 55]. Human MSCs also secreted a con-
siderable amount of soluble human leukocyte antigen class 
I molecule G5 (HLA-G5) to mediate their immunosuppres-
sive functions [35]. Nevertheless, murine and human MSCs 
also share some common molecules in mediating T-cell 
immunosuppression. One of the most important molecules 
may be PGE2, whose role was highlighted in a number of 
studies. Mouse bone-marrow MSCs secrete large amounts 
of PGE2, which is correlated with higher efficacy to EAE 
inhibition, collagen-induced arthritis mitigation, and mixed 
lymphocyte reaction suppression [39, 52, 56]. In addition, 
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the emerging roles of MSC-derived extracellular vesicles 
(EVs) in T-cell suppression are attracting increasing inter-
est [57–61]. Similar to the functions of MSCs, EVs may 
also inhibit effector T cell differentiation, activation, and 
proliferation [62–66], induce T cell apoptosis [66, 67], and 
promote Treg generation [65–68]. Other soluble factors, 
such as TGF-β, HGF, tumor necrosis factor-induced protein 
6 (TSG6), and IL-10, have also been implicated in suppres-
sion of T cells [30, 69–71]. However, the role of TGF-β has 
not been completely defined, since TGF-β may act directly 
on MSCs by inhibiting iNOS expression, thus antagonizing 
their immunosuppressive effects [69].

B cells

B cells are another hallmark effector cells of the adaptive 
immune system. These cells are differentiated from hemat-
opoietic stem cells through a series of coordinated stages 
[72]. Following the recognition of specific antigens by B 
cell receptors, naïve B cells will proliferate and differenti-
ate into activated antibody-producing cells and memory 
cells to mediate and sustain protection against foreign 
pathogens [73–75]. Distinct from the conventional B cells 
which are termed B2 cells, there is a population of B1 cells 
enriched in the pleural and peritoneal cavities in mice. 

These cells respond effectively to innate immune signals 
and play a role in the elimination of pathogens and in pro-
viding long-term protection for the host [76]. Regulatory 
B cells (Bregs) are another subset of B cells; they produce 
IL-10 and exert immunomodulatory functions in several 
models [77].

Both human and murine MSCs are capable of sup-
pressing the proliferation, differentiation, and activation 
of B cells. Several lines of evidence demonstrated that B 
cells co-cultured with MSCs exhibited cell cycle arrest, 
impaired plasma cell generation, compromised immuno-
globulin-secreting ability, and reduced chemotactic proper-
ties [78–81]. Soluble factors are of critical importance to 
exert this suppressive function [78, 81–83]. CCL2 is one 
such factor mediating these actions, as metalloproteinase-
processed CCL2 derived from MSCs inhibited signal 
transducer and activator of transcription 3 (STAT3) activa-
tion in plasma cells, leading to PAX5 expression and thus 
suppression of immunoglobulin synthesis [80, 82]. In a 
recent study, IL-1 receptor antagonist (IL-1Ra) derived 
from MSCs was shown to control B-cell differentiation and 
arthritis progression [83]. In addition, EVs derived from 
MSCs were also important in suppressing B-cell prolifera-
tion, differentiation, and antibody production, which were 
observed in a dose-dependent manner [60, 84]. In addition, 
cell–cell contact was also crucial, and was associated with 
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Fig. 2   MSC plasticity in immuno-modulation. In response to high 
levels of proinflammatory cytokines that exist in the acute phase of 
inflammatory diseases, MSCs are licensed to secrete large amounts 
of immuno-suppressive factors, such as NO (mice) or IDO (humans), 
PGE2, TGFβ, and IL-10. In addition, these MSCs also produce vari-
ous chemokines and express adhesion molecules that are responsible 
for T-cell recruitment and keeping T cells in close proximity with 
them. As a result, T cells are suppressed in proliferation, activation, 

and differentiation. Moreover, CD4+CD25+Foxp3+ Tregs can also be 
generated by these suppressive MSCs (left panel). In response to low 
levels of proinflammatory cytokines that exist in various chronic dis-
eases, MSCs still produce considerable amounts of chemokines and 
adhesion molecules that recruit T cells in close proximity with them. 
However, they produce only low levels of the immuno-suppressive 
factors. Thus, the recruited T cells are unchecked and become acti-
vated (right panel)
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the PD-1/PD-L1 pathway [85]. In addition to these find-
ings, the modulation of several other signaling pathways, 
such as Akt, extracellular response kinase 1/2, p38, and B 
lymphocyte-induced maturation protein 1 (Blimp1) signal-
ing, was highlighted in other studies [79–81].

There is evidence that MSCs also regulate 
B-cell responses through the induction of Bregs, 
which are CD19+CD24highCD38high in humans and 
CD19+CD1dhighCD5+ in mice. These cells secrete a con-
siderable amount of anti-inflammatory cytokine IL-10, 
resulting in suppressed immune responses [86]. Indeed, the 
induction of Bregs by MSCs was shown to be efficient in 
treating several diseases in mouse models, such as GVHD, 
SLE, and EAE [86–89].

As in T cells, inflammatory stimulation of MSCs 
enhances their inhibitory effects on B cells. Potent IFN-γ 
signaling is crucial to stimulate the suppressive function 
of MSCs [85]. Moreover, sufficient inflammatory signals, 
such as signals from the bacterium Mycoplasma argin-
ini, efficiently enhanced the ability of MSCs to suppress 
the antibody secretion of B cells [90]. In contrast, insuffi-
cient inflammatory signal-stimulated MSCs, such as those 
derived from lupus-like mice or SLE patients, are compro-
mised in suppressing B-cell proliferation and differentia-
tion, or can even increase the number of antibody-secret-
ing B cells [91, 92]. Thus, it is understandable that several 
conflicting results have been observed, as some researchers 
report that the proliferation, activation, differentiation, and 
antibody production of B cells could be enhanced through 
the addition of MSCs [93, 94]. Although it is suggested 
that these disparities might result from variances in B cell 
purity, stimuli, source of MSCs, and the MSC-to-B cell 
ratio [95], the plasticity of MSCs as a result of the different 
intensities of the inflammatory signals they receive should 
also be carefully considered.

DCs

DCs play crucial roles in the acquisition, processing, trans-
porting, and presentation of various antigens and comprise 
the most potent antigen-presenting cells (APCs) in the 
body [96]. These cells are specialized in antigen presenta-
tion and, therefore, are of critical importance in directing 
the responses of the adaptive immune system [4].

Increasing evidence demonstrates that MSCs have 
potent immunosuppressive effects on DCs. In an in  vitro 
study, it was found that both MSCs and their culture super-
natants inhibited the activation of DCs, down-regulated 
their endocytosis and IL-12 secreting ability, prevented 
their maturation, and decreased their ability to activate 
alloreactive T cells [97]. Similar findings were obtained 
in another in  vitro study, which demonstrated that MSCs 

strongly inhibited the differentiation of monocytes to DCs, 
and skewed mature DCs to an immature state by suppress-
ing their expression of MHCII, CD1-α, CD80, and CD86, 
and by inhibiting their IL-12 production [98]. In addition 
to inhibiting the differentiation of DCs from monocytes, 
MSCs also profoundly inhibit the differentiation and func-
tion of CD34-positive hematopoietic progenitor cell-
derived DCs [99, 100]. Similar findings have also been 
demonstrated by several other studies [101–103]. MSCs 
can also skew mature DCs into a regulatory phenotype 
dependent on Jagged1, Jagged2, or IL-10-SOCS3 signal-
ing [104–106]. In addition, the migration of DCs can be 
impaired by MSCs, which downregulated molecules asso-
ciated with DC migration, such as CCR7 and CD49dβ1, 
and decreased their antigen presentation and inflammatory 
cytokine secretion ability, making them less efficient in 
activating T cells [36, 103, 107, 108]. In accordance with 
these in  vitro findings, it was found that administration 
of MSCs effectively improved fulminant hepatic failure 
induced by Propionibacterium acnes and LPS by induc-
ing the generation of regulatory liver DCs and Tregs [109]. 
In addition, infusion of ex-vivo MSC-stimulated DCs 
alleviated colitis in mice by increasing Treg amounts and 
decreasing lymphocyte proliferation [110]. The suppressive 
effects of MSCs on DCs also resulted in mitigation of sev-
eral other immune disorders, including acute GVHD [108], 
allograft rejection [111], and type 1 diabetes [65].

In exploring possible mechanisms, it was found that IL-6 
was involved in the suppressive effects of MSCs on DC 
differentiation, even though its strength was controversial 
[100, 112–114]. M-CSF was another candidate in this pro-
cess, but was tested in combination with IL-6 [99]. Further 
mechanistic studies indicated that MSC-derived PGE2 and 
its receptor EP4 played a major role in the inhibitory effects 
of MSCs on DCs [109]. Notably, PGE2 levels were upreg-
ulated in MSC-monocyte co-cultures, and the addition of 
PGE2 inhibitor NS-398 restored DC function and differen-
tiation, whereas direct addition of PGE2 blocked monocyte 
differentiation toward DCs [114]. In addition, EVs derived 
from MSCs were also shown to promote the induction of 
immature IL-10-secreting DCs, which were indicated in 
suppression of inflammatory T-cell responses to islet anti-
gens [65]. Importantly, direct cell–cell contact of MSCs 
and DCs was also suggested in the suppression of DC gen-
eration, a process mediated by activation of Notch signaling 
in DCs [100]. Another finding showed that MSCs blocked 
cell cycle progression of DCs which may account for the 
impaired differentiation and function of DCs co-cultured 
with MSCs [115]. Interestingly, in certain circumstances, 
the survival of MSCs is dependent on DCs, which has been 
emphasized in a recent study showing that lymphotoxin-β 
expression in DCs assisted adipose-derived MSC survival 
in mouse models of scleroderma skin fibrosis [116].
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Macrophages

It is well known that macrophages are critical cells within 
the innate immune system [117]. Contrary to the long-held 
view that all macrophages are derived from monocytes in 
the bone marrow, recent studies have suggested the dis-
tinct origins of tissue resident macrophages and circulating 
macrophages; the former are derived from the yolk-sac and 
self-maintain independently of the bone marrow contribu-
tion during adulthood, whereas the latter are differentiated 
and replenished from bone-marrow monocytes [118, 119]. 
Macrophages have prominent plasticity and can be polar-
ized into classically activated M1 or alternatively activated 
M2 macrophages, depending on the specific micro-environ-
ment they are in. In general, M1 macrophages are proin-
flammatory and possess remarkable antimicrobial abilities 
via the secretion of various inflammatory cytokines and 
chemokines, whereas M2 macrophages are immunomodu-
latory by releasing IL-10 and trophic factors to promote tis-
sue repair and resolve inflammation [120].

Various in  vitro studies have demonstrated that co-
culture of macrophages with MSCs led to the generation 
of M2 macrophages, which secreted high levels of IL-10, 
and low levels of various inflammatory cytokines, such as 
IL-12, TNF-α, IL-1β, and IL-23, had increased phagocytic 
ability while displaying decreased co-stimulatory molecule 
CD86 and MHCII expressions [121–124]. Moreover, pro-
inflammatory stimulation-licensed MSCs promoted further 
M2 macrophage polarization [123, 125]. The biological 
relevance of these in  vitro findings has been investigated 
in vivo in several recent studies. In an elegant study inves-
tigating sepsis, it was demonstrated that administration of 
bone-marrow MSCs effectively improved organ function 
and reduced mortality. This beneficial effect was eliminated 
by macrophage depletion or IL-10 signaling abrogation 
[125]. In a model of cutaneous wound healing, the trans-
plantation of human gingiva MSCs formed a spatial inter-
action with macrophages in the wound site, thus suppress-
ing their TNF-α and IL-6 secretion while promoting IL-10 
production to mitigate local inflammation [121]. Similar 
effects of MSCs were observed in several other immune 
disorders, such as peritonitis [126], ischemia–reperfu-
sion injury [127], acute liver injury [128], atherosclerosis 
[128], endotoxemia [129], type 2 diabetes [130], asthma 
[131], and arthritis [83]. MSCs are also capable of enhanc-
ing recruitment of macrophages to injured sites, thus pro-
moting tissue regeneration or improving immune disorders 
[132, 133].

In investigating the mechanisms, it was found that 
this effect resulted from a combination of soluble fac-
tor-dependent signaling, including the release of PGE2 
functioning through the EP2 and EP4 receptors on mac-
rophages, and cell-contact-mediated signaling [125]. 

Inflammatory signals, such as IFN-γ, TNF-α, and LPS, 
stimulated the expressions of IDO and COX2 in MSCs, 
which further enhanced the suppressive functions of MSCs 
[95, 134, 135]. IL-1Ra was another factor mediating the 
immunomodulatory effect [83, 128]. IL-1Ra-deficient 
MSCs were less effective than wild-type MSCs in inducing 
M2 macrophage polarization and were unable to mitigate 
arthritic progression in a collagen-induced arthritis model 
[83]. In addition, MSC-derived exosomes were shown to 
induce generation of IL-10- and TGF-β-secreting M2-like 
macrophages from primary human and mouse monocytes 
[68]. TGF-β signaling was indicated in the mediation 
of M2 polarization of macrophages in a mouse model of 
asthma [136]. In a model of zymosan-induced peritonitis, 
inflammation-activated MSCs secreted TNF-stimulated 
gene 6 (TSG-6), which interacted through CD44 on mac-
rophages to decrease zymoson/TLR2-mediated nuclear 
translocation of NF-κB, creating a negative feedback loop 
to attenuate macrophage activation [126].

NK cells

Natural killer (NK) cells are the key effector cells of the 
innate immune system; they are developed from a common 
lymphoid progenitor that is capable of giving rise to all 
lymphocyte subsets in or outside of the bone marrow [137, 
138]. The activities of NK cells are finely regulated by the 
interaction of various activating and inhibitory receptors 
expressed on their surfaces with cognate ligands [139]. NK 
cells are critically involved in the control of various types 
of microbial infections and tumors by inducing direct cyto-
toxicity of target cells and/or proinflammatory cytokine 
production [140, 141].

A number of studies have demonstrated that MSCs 
are potent inhibitors of NK cells, as they are capable of 
suppressing the proliferation, cytokine production, and 
cytotoxicity of NK cells under specific circumstances 
[142–147]. For this, the ratio of MSCs and NK cells is 
important, since such suppressive effects could only be 
exerted at high MSC-to-NK ratios [144]. The significance 
of these findings was investigated in vivo, in which MSC 
administration hindered the trafficking and activation of 
NK cells in the liver, thus ameliorating Poly(I:C)-induced 
liver injury [146]. To clarify the mechanisms, soluble fac-
tors, such as IDO, PGE2, HLA-5, and EVs, have been 
shown to play critical roles [35, 60, 145]. Notably, block-
ing the synthesis or activities of either IDO or PGE2 sig-
nificantly reversed the suppressive effect, with the two fac-
tors acting synergistically in this process [144, 145]. CD73 
can dephosphorylate AMP into adenosine, and is crucial in 
the induction of an anti-inflammatory environment medi-
ated by adenosine [148]. It was found that up-regulation of 
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CD73 on NK cells by MSCs led to such inhibition [149, 
150]. In addition, direct cell–cell contact is also neces-
sary for the inhibition of NK cells, which is involved in 
expression of TLR4 on MSCs [147, 151]. Nevertheless, 
disparities concerning the role of MSCs in modulating NK 
cells have been noted, as several studies reported oppo-
site effects. It was shown that MSCs, when irradiated as 
a feeder layer, stimulated the proliferation of NK cell pro-
genitors significantly [152]. Another study observed that 
MSCs efficiently enhanced the IFN-γ levels secreted by NK 
cells when stimulated by IL-12/IL-18 [153]. Moreover, NK 
cells and MSCs interacted in a positive feedback manner, 
in which NK cell-derived IFN-γ stimulated the CCL2 syn-
thesis of MSCs, which in turn primed NK cells for the fur-
ther release of IFN-γ [154]. NK cells also stimulated MSC 
recruitment, a process dependent on chemokines CCL5 and 
CXCL7 secreted by NK cells [155]. In addition to these 
findings, MSCs are lysis-sensitive targets for activated 
NK cells. It has been shown in several studies that MSCs 
could be efficiently lysed by activated NK cells, which was 
involved with the various activating receptors on NK cells 
[144, 156].

Taken together, these findings suggest that the inter-
play between MSCs and NK cells strongly depends on the 
stimulation of both cells, their microenvironment, and their 
ratios. Even so, more in vivo investigations should be con-
ducted to determine the significance of these observations.

Neutrophils

Neutrophils are polymorphonuclear leukocytes and are rec-
ognized as one of the key players during acute inflamma-
tion [157]. They are abundantly found in the bloodstream 
and can be recruited to sites of injury within minutes. Neu-
trophils eliminate pathogens through multiple mechanisms, 
such as phagocytosis, secretion of bactericidal molecules, 
and neutrophil extracellular traps [4, 157, 158].

In 2008, it was first reported that MSCs had benefi-
cial effects on neutrophils. Human bone-marrow MSCs 
from healthy donors, even at very low MSC to neutrophil 
ratios, significantly suppressed the apoptosis of resting or 
IL-8-activated neutrophils, a process largely dependent 
on IL-6 secretion [159]. Similarly, MSCs pre-treated with 
TLR3 stimulator Poly (I:C) exerted potent anti-apoptotic 
effects on neutrophils, primarily mediated by the combined 
action of IL-6, IFN-β, and GM-CSF [160]. In addition to 
their anti-apoptotic functions, MSCs also secreted IL-8 and 
macrophage migration inhibitory factor (MIF) to recruit 
neutrophils in  vitro [161]. These findings were corrobo-
rated by several in vivo assays [162–164]. It was reported 
that neutrophils were effectively recruited by subcutane-
ously injected LPS-stimulated MSCs [162]. In addition, 

TNF-α-stimulated or gastric cancer-derived MSCs strik-
ingly recruited neutrophils into the tumor, fostering tumor 
metastasis, and angiogenesis [163]. Through these mecha-
nisms, it is speculated that MSCs may help preserve the 
storage pool of neutrophils in the bone marrow, and can 
also facilitate neutrophil migration to inflammatory sites, 
contributing to the resolution of infection and inflamma-
tion [165]. Nevertheless, conflicting findings also exist. In 
a murine vasculitis model, MSCs inhibited neutrophil acti-
vation, prevented neutrophil extracellular trap formation 
and excessive spillage of tissue-damaging proteases, thus 
dampening unrestrained inflammation and attenuating tis-
sue damage. In this model, the therapeutic effect of MSCs 
was mediated by the constitutive release of superoxide dis-
mutase-3 [166]. In another model of neutrophil recruitment 
induced by cytokine-stimulated endothelial cells, MSCs 
from various origins suppressed neutrophil recruitment 
effectively [167]. Moreover, MSC-derived EVs were also 
shown to inhibit the influx of neutrophils to the lung in an 
endotoxin-induced lung injury model [168]. It would be of 
interest to explore why these discrepancies exist, whether 
this is model-specific or is due to a different MSC dose or 
other aspects.

Mast cells

Mast cells are generally considered as the major effector 
cells in allergic reactions [169]. Several lines of evidence 
also implicated their role in inflammatory diseases, where 
they are activated by non-allergic triggers to contribute to 
hose defense or autoimmunity [170, 171].

When mast cells were co-cultured with bone-marrow-
derived MSCs, their degranulation, inflammatory cytokine 
secretion, and chemotaxis abilities were suppressed, an 
effect dependent on the upregulation of COX2 in MSCs. 
This finding was confirmed in vivo as MSC administration 
significantly hindered mast cell degranulation in mouse 
skin and the peritoneal cavity [172]. In a murine model of 
atopic dermatitis, administration of MSCs suppressed both 
the infiltration and degranulation of mast cells, which was 
mediated by the production of PGE2 and TGF-β1 from the 
MSCs [173]. Similar findings were noted in several other 
studies [174–176]. MSC-produced PGE2 also suppressed 
mast cell infiltration and de novo synthesis of inflamma-
tory cytokines in a murine contact hypersensitivity model 
[177]. Interestingly, MSCs could also in turn be activated 
by IgE-stimulated mast cells, thus releasing thymic stromal 
lymphopoietin and hematopoietic growth factors, regulat-
ing the lineage commitment and proliferation of CD34+ 
precursor cells [178]. In addition, mast cells also affected 
MSCs by promoting their proliferation and accumulation 
while inhibiting their differentiation via the activation of 
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platelet-derived growth factor, which may play a role in 
improving the process of cardiac regeneration [179].

Conclusions and future perspectives

We have discussed our current understanding of the inter-
actions between MSCs and the immune system and the 
underlying mechanisms (Fig.  3; Table  1). MSCs possess 
potent immunomodulatory properties, which is dependent 
on the types and intensities of inflammatory stimulus pre-
sent in the microenvironment. However, human and murine 
MSCs may utilize distinct effector molecules to exert their 
functions (see Table 2 for a detailed comparison of human 
and murine MSCs). Through the immunomodulatory prop-
erties, MSCs are capable of interacting with cells of both 
the innate and adaptive immune systems and can affect the 
progression of various inflammatory diseases.

The immunomodulatory capabilities of MSCs have 
provided considerable possibilities to improve tis-
sue regeneration and to treat immune disorders. In fact, 
the clinical virtues of MSC therapy have been tested in 
a variety of clinical trials for diseases, such as GVHD, 
SLE, rheumatoid arthritis, Type 1 diabetes, and Crohn’s 
disease, as reviewed by Paul S. et  al. and Hafsa et  al. 
[18, 19], with effective outcomes in several cases [41, 

181–184]. Moreover, MSC-based products, such as 
Prochymal and Cupistem, have also been commercially 
used for treatment of various diseases [185, 186]. Nev-
ertheless, there are still challenges in the application of 
MSC therapy, as the clinical outcome varies between 
trials and reports exist that show the therapeutic effects 
of MSCs cannot be obtained in some cases [187, 188]. 
However, given the potent plasticity nature of MSCs, 
these discrepancies may result from the timing, dose, 
infusion route, and pretreatment of MSCs in different tri-
als. Thus, establishing standardized methods is necessary 
to avoid such discrepancies and guarantee the efficacy of 
MSC therapy.

Choosing the most appropriate type of MSC is also 
important for positive clinical effects. Even though human 
MSCs are primarily isolated from bone marrow [54, 63, 
182, 188, 189], there are increasing publications highlight-
ing the function of MSCs from other tissues, such as the 
umbilical cord [130, 173], gingiva [121, 189], or adipose 
tissues [37, 86]. How these MSCs differ in terms of repair 
capacities and immunomodulatory properties are largely 
unknown, and whether MSCs from certain source(s) are 
more efficient in treating specific diseases remains unex-
plored. Thus, we suggest that future efforts should be made 
to fully define the range of sources from which human 
MSCs can be isolated and suggest further works to identify 
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Fig. 3   Mechanisms of immunomodulatory functions of MSCs. 
MSCs possess broad immunomodulatory properties. After activation, 
MSCs can secrete a variety of soluble factors, such as NO (mice) 
or IDO (humans), PGE2, TGF-β, HLA-G5, TSG-6, CCL2, IL-1Ra, 
and IL-10. Production of these factors can suppress the differentia-
tion, proliferation, activation of various immune cell subsets, includ-

ing T cells, B cells, DCs, macrophages, NK cells, neutrophils, and 
mast cells. In addition, Tregs may be generated in response to TGF-β 
and IL-10 production from MSCs. As a result, the immune response 
will be inhibited and local inflammation is suppressed by MSCs (also 
refer to Table 1 for more detailed information regarding the mecha-
nisms of immunomodulatory functions of MSCs)
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the most appropriate types of MSCs for specific disease 
treatment.

Naturally, there are concerns from the scientific com-
munity about the efficacy and safety of MSC-based thera-
pies. However, MSC-based therapy still merits further 
investigation due to the advantages discussed above. 
Undoubtedly, we are now bridging the translational gap 
between the basic research of MSCs and their clini-
cal applications for disease treatment. With the increas-
ing explorations in MSCs, we may expect that all these 

concerns will be addressed over time once a better under-
standing of the immunomodulatory properties of MSCs 
is achieved and when MSCs can be exploited appropri-
ately to optimize their therapeutic effects.
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Table 1   The functions of MSCs in regulating different immune cells and the related mechanisms

Immune cell type MSC function Mechanism References

T cell Suppressing T cell differentiation, pro-
liferation, activation, and survival

TGF-β, HGF, IDO, NO, PGE2, HLA-
G5, TSG6, IL-10, EVs

[30, 31, 34, 35, 43, 62–66, 69–71, 180]

Cell–cell contact: Fas/FasL signaling [33]
Promoting T cell recruitment CXCR3 ligands, CCR5 ligands, ICAM-

1, VCAM-1
[17, 43, 44, 46]

B cell Suppressing B cell differentiation, pro-
liferation, activation, and chemotaxis; 
Breg induction

CCL2, IL-1Ra, IDO, PGE2, comple-
ment C3, EVs

[60, 78, 81–84, 87, 90, 180]

Cell–cell contact: PD-1/PD-L1 [85]
Promoting B cell differentiation, prolif-

eration, and activation
VEGF [93, 94]

DC Suppressing DC differentiation, activa-
tion, endocytosis, migration, and 
maturation

IL-6, IL-10, M-CSF, PGE2, EVs [36, 65, 99, 101–103, 107–109, 113, 114]
Cell–cell contact: notch pathway activa-

tion
[100]

Macrophage Suppressing M1 while inducing M2 
polarization

PGE2, IDO, IL-1Ra, IL-10, TSG-6, 
TGF-β, exosomes

[68, 83, 123, 125, 126, 131, 135, 136]

NK cell Suppressing NK cell proliferation, 
migration, and activation

IDO, PGE2, HLA5, EVs [35, 60, 142–147]
Cell–cell contact: CD73, TLR4 [147, 149–151]

Promoting NK cell progenitor prolifera-
tion and NK activation

CCL2 [152–154]

Neutrophil Suppressing neutrophil activation, 
recruitment, neutrophil extracellular 
trap formation, and protease secretion

Superoxide dismutase-3, EVs [166–168]

Promoting survival and recruitment IL-6, IL-8, MIF, IFN-β, and GM-CSF [159–162]
Mast cell Suppressing mast cell degranulation, 

inflammatory cytokine secretion, and 
chemotaxis

PGE2 and TGF-β1 [172–177]

Table 2   Comparison of human and murine MSCs

Items Human MSCs Murine MSCs

Differences in specific markers Stro-1, CD146, alkaline phosphatase, CD49a, 
CD271, and HLA-DR [3, 8]

Nestin, CD105, vascular cell 
adhesion protein, CD90, MHCII 
[5, 19, 46]

Common markers Positive: Sca-1, CD105, CD73, CD29, and CD44
Negative: CD45, CD34, CD11b, CD31, and MHCII [3, 5, 8, 19, 46]

Differences in effector molecules for immune regula-
tion

IDO, HLA-G5 [35, 47, 50] NO [47, 50]

Common effector molecules for immune regulation PGE2, IL-6, IL-10, TGFβ, TSG-6, CCL2, IL-1Ra [30, 39, 69–71, 80, 82, 83]
Key cytokines for induction of immunosuppressive 

capacity
IFN-γ and TNF-α [43, 47] IFN-γ [43]
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