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been reported in variety of vertebrates [1, 2]. In mamma-
lians, three HH paralogues, Sonic Hedgehog (sHH), Indian 
Hedgehog (iHH), and Desert Hedgehog (dHH), have been 
reported, and each of them displays unique expression 
patterns and functions [3–5]. For instance, sHH is essen-
tial for correct formation of the limbs, phallus, somites, 
and neural tube in early embryogenesis [6–8], whereas 
iHH is restricted to chondrocyte development and dHH is 
limited to spermatogenesis and nerve sheath formation in 
Schwann cells [9–12]. All the three HH orthologues medi-
ate the HH signaling in primary cilia of mammalian cells in 
a similar way. In the absence of the HH ligands, a 12-span 
transmembrane protein Patched (PTCH) is positioned in 
cilia and catalytically inhibits Smoothened (SMO), pre-
venting SMO accumulation to cilia (Fig.  1). Full-length 
GLI (GLI2/3) proteins are then phosphorylated by protein 
kinase A (PKA), glycogen synthase kinase 3β (GSK3β), 
and casein kinase 1 (CK1), leading to proteolytic process 
to generate repressor GLI  (GLIR) for suppression of the HH 
target gene transcription [13–15] (Fig. 1). However, when 
extracellular HH ligands bind to PTCH, PTCH is displaced 
from cilia and inhibitory influence of PTCH on SMO is 
then removed. Activated SMO subsequently relocates to 
cilia to transduce the downstream signaling (Fig.  1). The 
complex of Suppressor of Fused (SUFU) and GLI is then 
disassociated within cilia, and the activated GLI proteins 
bypass proteolytic processing and translocate into nucleus 
to induce transcription of the HH target genes, including 
GLI1, PTCH1, SNAIL, and HH-interacting protein (HHIP), 
cyclin D1 (CCND1), c-Myc, BMI1 polycomb ring finger 
(BMI1) and B-cell CLL/lymphoma 2 (BCL2), etc [16–18]. 
SUFU is a negative regulator of the HH signaling by 
sequester GLI proteins in the cytoplasm to suppress GLI 
transcriptional activation [19, 20].

Abstract Hedgehog signaling is an evolutionarily con-
served pathway which is essential in embryonic and post-
natal development as well as adult organ homeostasis. 
Abnormal regulation of Hedgehog signaling is implicated 
in many diseases including cancer. Consequently, substan-
tial efforts have made in the past to develop potential thera-
peutic agents that specifically target the Hedgehog signal-
ing for cancer treatment. Here, we review the therapeutic 
agents for inhibition of the Hedgehog signaling and their 
clinical advances in cancer treatment.
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Introduction

Hedgehog (HH) signaling is an evolutionarily conserved 
pathway that is indispensable for developmental pattern-
ing and adult tissue homeostasis. HH signaling was first 
identified in Drosophila Melanogaster for its essential 
role in early embryo patterning, and subsequently has 
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Abnormal activation of HH signaling is implicated in 
many types of cancer [21]. In addition, increasing evidence 
supports that the HH signaling also plays a critical role in 
maintaining “stemness” of cancer stem cells (CSCs), a sub-
population of tumor cells that are believed to account for 
tumor initiation, growth, and recurrence as well as drug 
resistance [22–27]. Thus, eradication of CSCs by targeting 
the HH signaling represents a potential effective therapeutic 
strategy for cancer, and significant efforts have been made 
in the past decades to develop HH signaling inhibitors. In 
this article, we review development of therapeutic agents 
targeting the HH pathway and their clinical advances in 
cancer treatment.

Hedgehog signaling pathway in cancer and cancer 
stem cells

Implication of HH signaling in cancer was first suggested in 
malignant glioma by identification of overexpression of HH 
target gene GLI1 [28]. Further studies have led to proposal 
of three primary HH signaling models in cancer: ligand-
independent mutation-driven signaling, ligand-depend-
ent autocrine/juxtacrine signaling, and ligand-dependent 

paracrine signaling [18, 21]. In the ligand-independent 
mutation-driven signaling model, PTCH inactivating muta-
tions were identified in patients with basal cell nevus syn-
drome, a rare autosomal dominant disorder with a high risk 
of basal cell carcinoma, medulloblastoma and rhabdomyo-
sarcoma [29–33]. Moreover, activating mutations in SMO 
or inactivating mutations in SuFu that can constitutively 
activate the HH signaling in the absence of HH ligands 
were also reported in sporadic basal cell carcinoma, chon-
drosarcoma, and medulloblastoma [34–38]. However, in 
the ligand-dependent autocrine/juxtacrine signaling model, 
elevated HH ligand expression in the tumor cells con-
stitutively activates the HH pathway in themselves or the 
adjacent tumor cells to support tumor growth and survival 
[39–41]. This signaling model has been observed in many 
cancers, including lung cancer, esophagus cancer, digestive 
tract cancer, pancreas cancer, prostate cancer, breast cancer, 
and liver and brain cancer [23, 39–44]. In contrast, in the 
ligand-dependent paracrine signaling, tumor-produced HH 
ligands activate the HH signaling in the stromal microen-
vironment which then feeds back and contributes to tumor 
progression [45–47].

Recently, increasing evidence supports that CSCs, a 
small subset of cancer cells with capability of self-renewal 
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Fig. 1  Schematic representation of the HH signaling pathway and 
the oncology-indication drug candidates discussed in the paper. 
a In the absence of HH ligands, PTCH positioned in cilia prevents 
SMO accumulation in cilia and inhibits SMO activity. PKA, CK1 
and GSK3β phosphorylate GLI2/3, which subsequently is proteolyti-
cally processed to an NH2-terminal truncated GLI2/3 repressor form 

for suppression of the HH signaling target gene expression. b In the 
presence of HH ligands, HH ligands bind and inactivate PTCH, and 
activated SMO then translocates to cilia, leading to disassociation of 
SUFU-GLI complex. The activated GLI 2/3 then translocates into the 
nucleus to induce the HH signaling target gene transcription
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and differentiation into heterogeneous tumor cells, are 
responsible for tumor initiation, growth, and recurrence as 
well as drug resistance [48–50]. Further studies have sup-
ported that abnormal activation of HH signaling plays an 
essential role in CSC regulation and maintenance in vari-
ous cancers including glioblastoma, lung squamous cell 
carcinoma, breast cancer, pancreatic adenocarcinoma, 
myeloma, and chronic myeloid leukemia (CML) [22–27]. 
For instance, activation of HH signaling enhanced mul-
tiple myeloma CSC expansion, whereas inhibition of the 
HH pathway effectively attenuated multiple myeloma CSC 
clonal expansion [51].

In summary, abnormal activation of HH signaling plays 
a critical role in tumorigenesis and CSC maintenance, and 
targeting the HH signaling pathway represents an important 
therapeutic strategy to treat cancer, and potentially disrupt 
CSCs’ stemness and functions to improve overall cancer 
treatment outcomes.

Therapeutic agents targeting Hedgehog signaling

Given the critical roles of abnormal activation of the HH 
signaling in various types of cancer and CSCs, substantial 
efforts have been made to develop therapeutic agents to 
inhibit HH signaling by targeting various key components 
in the pathway cascade.

Target HH ligands

As the ligand-depend HH signaling activation is associ-
ated with various cancers, therapeutic reagents targeting 
HH ligands to inhibit dysregulated HH signaling activation 
have been highly sought after for cancer treatments. Mon-
oclonal antibody 5E1, which blocks binding of all three 
mammalian HH orthologues to PTCH for HH signaling 
inhibition, was generated with mouse hybridoma using the 
rat SHH N-terminal domain as the antigen [52, 53]. In the 
preclinical studies, 5E1 has been shown to suppress growth 
of medulloblastoma and pancreatic tumors in mouse mod-
els, respectively [54, 55]. In addition to the biological anti-
body, a small molecule RUSKI-43 has also been developed 
to specifically target the hedgehog acyltransferase [56] 
(Table 1). Hedgehog acyltransferase is an essential enzyme 
for the SHH palmitoylation, a critical step to significantly 
enhance sHH ligand potency during sHH processing before 
it binds to the PCTH receptor [56–59]. RUSKI-43 was 
shown to reduce proliferation and anchorage-independent 
growth of breast cancer cells as well as inhibit pancre-
atic tumor growth in animal models [60, 61]. Neverthe-
less, a recent study has indicated that RUSKI-43 possesses 
cytotoxic activity unrelated to canonical sHH signaling 
and the authors also reported a preferred small molecule 

RUSKI-201 which selectively inhibits catalytic function of 
Hedgehog acyltransferase [62]. To date, no clinical trials of 
5E1, RUSKI-43, or RUSKI-201 have taken place yet.

Target SMO

SMO has been a primary target in development of the HH 
signaling inhibitors for decades. To date, numerous SMO 
inhibitors have been developed and two of them (Vismod-
egib and Sonidegib) have been approved by FDA for basal 
cell carcinoma (BCC) treatment (Table 1).

Cyclopamine and its derivatives

Cyclopamine isolated from lily Veratrum Californicum 
is an alkaloid targeting SMO for HH signaling inhibition 
[63, 64] (Table 1). Intensive preclinical studies have dem-
onstrated that cyclopamine effectively inhibits growth of 
tumors, including human glioma, melanoma, colon, pan-
creatic, prostate cancers, small cell lung cancer, and medul-
loblastoma [40, 43, 65–67]. In addition, a topical cream 
containing cyclopamine was shown to regress human basal 
cell carcinomas [68]. Nevertheless, therapeutic potential of 
cyclopamine as an HH signaling inhibitor for human can-
cers was limited by its side effects, low solubility in normal 
saline, and other physiological solutions as well as instabil-
ity under acidic conditions (human stomach environment) 
[69, 70]. To overcome these issues, several cyclopamine 
derivatives that display more-drug like properties have been 
developed, including KAAD-cyclopamine and IPI-926 
(Saridegib) [64, 71, 72] (Table 1). Particularly, IPI-926 dis-
plays improved metabolic stability, pharmacokinetics, and 
potency over cyclopamine [73]. In  vivo studies in animal 
models further demonstrated that IPI-926 effectively atten-
uated tumor growth in medulloblastoma, chondrosarcoma, 
and pancreatic cancer [71, 72, 74]. Subsequently, IPI-926 
entered into clinical trials for various cancers, and it was 
shown well tolerated in clinical trials [75]. However, fur-
ther Phase 2 trials of IPI-926 were terminated for patients 
with pancreatic cancer or myelofibrosis for their safety and 
poor clinical benefit.

Vismodegib (GDC‑0449) and Sonidegib (LDE‑225)

The SMO inhibitor, Vismodegib, is the first HH pathway 
inhibitor approved by FDA for treatment of metastatic 
BCC, or patients with recurrent, locally advanced BCC 
who are not candidates for surgery or radiation therapy 
[76, 77] (Table 1). Currently, clinical trials of vismodegib 
as a monotherapy or in combination with other therapeutic 
drugs are ongoing for various cancers, including medul-
loblastoma, metastatic pancreatic cancer, metastatic pros-
tate cancer, intracranial meningioma, advanced head/neck 
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Table 1  Selected small molecules that inhibit the HH signaling

Structure Name Target References

RUSKI-43 SHH ligand [56]

RUSKI-201 SHH ligand [62]

Cyclopamine SMO [63]

KAAD-cyclopamine SMO [64]

IPI-926 (Saridegib) SMO [71]
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Table 1  (continued)

Structure Name Target References

Vismodegib (GDC-0449) SMO [76]
[77]

PF-04449913 (Glasdegib) SMO [81]

LY2940680 (Taladegib) SMO [86]
[87]

Sonidegib (LDE-225) SMO [76]
[77]

GANT58 GLI [92]

GANT61 GLI [92]



2778 X. Zhang et al.

1 3

basal cell carcinoma, recurrent glioblastoma, and acute 
myeloid leukemia [78]. In 2015, Sonidegib became the sec-
ond SMO inhibitor approved by FDA to treat patients with 
locally recurrent advanced BCC following surgery or radia-
tion therapy and those who are not candidates for surgery 
or radiation therapy (Table 1). Both Vismodegib and Son-
idegib have displayed positive initial response in patients 
with BCC. In addition, clinical Phase I/II trials of Vismo-
degib and Sonidegib to treat solid tumors and hematologi-
cal malignancies have been conducted or are underway [78, 
79]. For instance, clinical Phase I study of Sonidegib dem-
onstrated its acceptable safety profile and antitumor activity 
in patients with various malignancies, including medullo-
blastoma, lung cancer BCC and advanced solid tumor [80].

Other SMO inhibitors and clinical challenges of the SMO 
inhibitors

In addition, a number of other SMO inhibitors have 
been developed and entered to clinical trials including 
PF-04449913 (Glasdegib) and LY2940680 (Taladegib) 
(Table 1). For instance, Munchhof et al. reported an SMO 
inhibitor PF-04449913 which displays excellent potency 
and drug properties [81], and PF-04449913 was shown to 
attenuate the leukemia-initiation potential of acute myeloid 
leukemia cells in a serial transplantation mouse model 
[82]. The initial Phase I study of PF-04449913 supported 
its safety, tolerance, and potential efficacy in acute mye-
loid leukemia, myelodysplastic syndrome, myelofibrosis, 

Table 1  (continued)

Structure Name Target References

HPI-1 GLI [97]

HPI-2 GLI [97]

HPI-3 GLI [97]

HPI-4 Ciliogenesis [97]

Arsenic trioxide GLI [98]
[99]
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chronic myelomonocytic leukemia, and advanced solid 
tumors [83–85]. Subsequent phase II trials of PF-04449913 
are underway for acute myeloid leukemia, high-risk mye-
lodysplastic syndrome (NCT01546038), myelofibrosis 
previously treated with ruxolitinib (NCT02226172), and 
refractory/relapsed myelodysplastic syndrome or chronic 
myelomonocytic leukemia (NCT01842646). Moreover, 
LY2940680, another SMO inhibitor which binds to the 
extracellular end of the transmembrane-helix bundle of 
SMO for HH signaling inhibition, has been developed [86, 
87]. Currently, LY2940680 is being tested in Phase I and 
Phase II trials for advanced solid tumors and esophageal 
cancers (NCT02530437).

Although development of SMO inhibitor-based drugs 
represents a great breakthrough in cancer treatments, they 
are also facing some formidable challenges. Other than 
their common clinical side effects, including fatigue, nau-
sea, muscle cramps, and dysgeusia, therapeutic SMO inhib-
itors are often associated with the critical drug resistant 
problem [88–90]. For instance, Yauch et  al. reported that 
medulloblastomas had a dramatic initial response to vismo-
degib, but subsequently acquired drug resistance through 
a new SMO mutation which can bypass the drug inhibi-
tion [88]. Similarly, two additional new SMO mutations 
that mediate resistance to vismodegib in BCC’s patients 
have also been detected [89]. The fact that SMO quickly 
acquires oncogenic mutations for the drug resistance argues 
long-term benefits of SMO inhibitor-based drugs, support-
ing the idea that targeting downstream components of the 
HH signaling cascade may overcome drug resistance asso-
ciated with the SMO inhibitors in cancer treatment [91].

Target GLI

GLI is a critical transcription factor positioned in very 
downstream of the HH signaling, and targeting GLI there-
fore represents an effective therapeutics to overcome the 
acquired drug resistance for the SMO inhibitors (Fig.  1). 
Consequently, efforts have been made to develop reagents 
targeting GLI for the HH pathway inhibition. For instance, 
Lauth and colleagues have identified two small molecule 
GLI inhibitors, GANT58 and GANT61 in a cell-based 
screen [92] (Table 1). Both GANT58 and GANT61 block 
GLI1 expressions, and particularly GANT61 appears to pre-
vent DNA binding to GLI1 or destabilize the GLI1–DNA 
complex. In an in vivo xenograft studies, GANT61 showed 
strong attenuation for the growth of prostate cancer and 
rhabdomyosarcoma [92, 93]. Further studies also demon-
strated that GANT61 robustly suppressed proliferation of 
colon cancer cells, ovarian cancer cells, and canine osteo-
sarcoma cells [94–96]. Moreover, Hyman and colleagues 
identified a new class of HH pathway inhibitors termed 
HPI-1, HPI-2, HPI-3, and HPI-4 in a high-throughput 

screening [97] (Table  1). It has been shown that HPI-1 
inhibits HH signaling through a mechanism that is poten-
tiated by GLI phosphorylation, whereas both HPI-2 and 
HPI-3 block the conversion of full-length GLI 2 proteins 
into its active form for the HH signaling. Different from the 
rest of HIPs (HIP-1, HIP-2, and HIP-3), HPI-4 was shown 
to inhibit the HH signaling by disrupting ciliogenesis, an 
essential ciliary processes for GLI function in mamma-
lians [97]. Finally, arsenic trioxide (ATO) is another GLI 
inhibitor which directly binds to GLI1 and GLI2 to inhibit 
GLI transcriptional activity, thus decreasing expression 
of endogenous GLI target genes [98, 99] (Table  1). ATO 
showed inhibitory activity in models of medulloblastoma 
and Ewing’s sarcoma, osteosarcoma, acute promyelocytic 
leukemia, rhabdosarcoma, malignant pleural mesotheli-
oma, prostate, and colon cancer cells [98–103]. In addition, 
ATO has been approved for treatment of acute promyelo-
cytic leukemia [104], and currently, a few of clinical trials 
of ATO are underway for solid tumors and hematological 
malignancies.

Target phosphodiesterase‑4 (PDE4)

PDE4 is an enzyme that specifically hydrolyzes cyclic 
AMP (cAMP), and PDE4 inhibitor-based dugs have pre-
viously been used to treat non-malignant diseases, such 
as depression, asthma, and pulmonary hypertension 
[105–107]. In addition, increasing evidence supports that 
PDE4 activation is also implicated in breast tumor, brain 
tumor, lung cancer and colorectal cancer, etc [108–111]. 
Nevertheless, the important role of PDE4 in the HH sign-
aling was not recognized until very recently. In 2015, two 
groups demonstrated that PDE4 inhibition down-regulated 
the HH pathway to suppress the tumor growth [112, 113], 
suggesting that PDE4 may play a key role in the HH signal-
ing. Subsequently, we elucidated mechanism of PDE4 inhi-
bition for the HH signaling suppression by identification 
of Eggmanone (EGM), an extraordinarily selective PDE4 
inhibitor in fibroblast cells and zebrafish models [114]. 
We showed that EGM specifically increases cAMP levels, 
resulting in activation of protein kinase K (PKA) which 
disrupts a process downstream of GLI ciliary trafficking 
for HH inhibition (Fig.  1) [114]. To date, despite some 
PDE4 inhibitor drugs have been approved by FDA, they 
are typically used for non-cancer treatments. For instance, 
Roflumilast was approved for treatment of severe chronic 
obstructive pulmonary disease and Otezla (apremilast) is 
used for treatments of active psoriatic arthritis and mod-
erate-to-severe plaque psoriasis [115, 116]. Whether those 
PDE4 inhibitor drugs can benefit cancer patients remain 
unknown, and further clinical investigations are warranted. 
However, caution needs to be taken to target PDE4 for can-
cer treatment as PDE4 has four subtypes (PDE4A, PDE4B, 
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PDE4C, and PDE4D), and understanding the critical 
roles of PDE4 subtypes in cancer progression is essential 
to develop selective subtype-specific therapies in cancer 
treatments.

Conclusion

Abnormal activation of the HH signaling is involved in var-
ious types of cancer and CSCs. Therefore, targeting the key 
components of the HH pathway has become an important 
therapeutic strategy for cancer treatment. In the past few 
years, numerous HH signaling inhibitors, particularly by 
targeting SMO, have been developed, and two SMO inhibi-
tors (Vismodegib and Sonidegib) have been approved by 
FDA for treatment of advanced or metastatic BCC. Despite 
their initial efficacies in cancer treatment, those SMO 
inhibitors are often associated with the drug resistant prob-
lem as cancer exposed to those SMO inhibitors can quickly 
acquire new SMO mutations to circumvent the drug inhibi-
tion for the HH signaling. Therefore, it has been proposed 
that targeting the downstream SMO in the HH signaling 
cascade may represent a valid anticancer therapeutic strat-
egy. Consequently, a number of small molecules targeting 
GLI have been developed, and some of them have showed 
promising outcomes in both preclinical and clinical studies. 
In addition, the important role of PDE4 in the HH signaling 
pathway has recently been recognized, and the PDE4 may 
represent a promising new target to inhibit the HH signal-
ing for cancer treatment.
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