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Multidrug-resistant cancer cells and cancer stem cells hijack
cellular systems to circumvent systemic therapies, can natural
products reverse this?
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Abstract Chemotherapy is one of the most effective and

broadly used approaches for cancer management and many

modern regimes can eliminate the bulk of the cancer cells.

However, recurrence and metastasis still remain a major

obstacle leading to the failure of systemic cancer treat-

ments. Therefore, to improve the long-term eradication of

cancer, the cellular and molecular pathways that provide

targets which play crucial roles in drug resistance should be

identified and characterised. Multidrug resistance (MDR)

and the existence of tumor-initiating cells, also referred to

as cancer stem cells (CSCs), are two major contributors to

the failure of chemotherapy. MDR describes cancer cells

that become resistant to structurally and functionally

unrelated anti-cancer agents. CSCs are a small population

of cells within cancer cells with the capacity of self-re-

newal, tumor metastasis, and cell differentiation. CSCs are

also believed to be associated with chemoresistance. Thus,

MDR and CSCs are the greatest challenges for cancer

chemotherapy. A significant effort has been made to

identify agents that specifically target MDR cells and

CSCs. Consequently, some agents derived from nature

have been developed with a view that they may overcome

MDR and/or target CSCs. In this review, natural products-

targeting MDR cancer cells and CSCs are summarized and

clustered by their targets in different signaling pathways.
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Introduction

Cancer is a complex array of diseases with a morbidity of

around 7.5 million deaths per year worldwide, and these

numbers are rising, owing partly to aging populations and

environment pollution [1]. Chemotherapy using anti-cancer

agents with structural and functional diversity has been

developed to treat cancers. These drugs have been applied

alone or in combination to prolong life or to alleviate the

symptoms of cancer for decades. However, chemotherapy

has failed to completely eradicate cancers for several rea-

sons. Multidrug resistance (MDR) is one of the major

obstacles for chemotherapy. MDR is a phenomenon, in

which cancer cells become resistant to mechanistically and

structurally unrelated anti-cancer drugs [2]. Various factors

can contribute to MDR, including inappropriate drug

delivery and genetic alterations, that prolong cell surviving

[3]. The overexpression of drug efflux pumps, such as the

ATP-binding cassette (ABC) transporter family of proteins,

is one of the major factors that confer drug resistance [2]. It

is the largest transporter superfamily which exports specific

molecules through cell membranes. For example, the acti-

vation of one of the ABC transporter P-glycoproteins (P-gp),

the product of the MDR1 (also referred to as ABCB1) gene,

can cause active drug release from cells [4]. The overex-

pression of ABC transporters can reduce the cellular

concentration of the drugs, such as the well-known anti-

cancer compounds vinblastine, vincristine, and doxorubicin

(DOX) [5–7]. Therefore, ABC transporters play an impor-

tant role in the development of drug resistance in cancers.
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Cancer stem cells (CSC) are another obstacle for

chemotherapy. A large body of evidence indicates that

there exists a small subset of tumor cells within a cancer

population which are heterogeneous in proliferation rates

and clonogenic potency (reviewed in [8]). This subset of

tumor cells was termed cancer stem cells. It is believed that

this subset of cells has the capacity of self-renewal, dif-

ferentiation, cancer relapse, and tumor metastasis [9].

Subsequently, more and more CSCs were identified in

various tumors, including colorectal cancer [10], breast

cancer [11], prostate cancer [12], colon cancer [13], and

brain cancer [14]. How do CSCs drive the failure of cancer

therapy? CSCs share the capacity of self-renewal and dif-

ferentiation with normal stem cells and can be

characterised by the expression of specific stem-cell

markers. Some cell-surface markers used to identify and

enrich the CSCs are also markers for normal stem cells. For

example, CD133 was characterised as a marker for the

identification of brain CSCs [15] and colorectal carcinoma

[16], but it is also a marker of normal neural stem cells [17]

and probably pancreatic stem cells [18]. Therefore, CSCs

might share properties with normal stem cells, including

the expression of some specific ABC drug transporters,

prosurvival and anti-apoptotic molecules, and other factors.

This review discusses how CSC and chemoresistance may

be correlated. The following sections give a brief outline of

some of the mechanisms utilized by CSC and MDR cells

with a view to highlighting cellular pathways that can be

targeted by natural products and their derivatives in the

fight to halt cancer progression (Fig. 1).

The ABC transporter family

The ABC transporter family acts by pumping drugs to

either the external leaflet of the membrane or the extra-

cellular domain and requires ATP hydrolysis to do so [4].

To date, 49 human ABC genes have been identified and

were clustered in seven subfamilies (ABCA–ABCG)

according to the homology of amino-acid sequences, the

constitution of transmembrane (TM) domains, and ATP-

binding sites [19]. There are three major transporters cor-

related with MDR, including P-glycoprotein (MDR1/

ABCB1), MDR-associated protein (MRP/ABCC1), and

breast cancer resistance protein (BCRP/ABCG2) [3], and

these are discussed in the following sections.

P-glycoprotein in cancer (ABCB1)

P-glycoprotein (P-gp), a 170 kDa TM phosphoglycopro-

tein, is one of the most important ABC transporters and its

overexpression is directly associated with MDR in humans.

Similar to several other ABC transporter members, P-gp

consists of two TM domains, each of which comprises six

helices and two ATP-binding sites. Two paralogs, expres-

sed by the MDR1/ABCB1 andMDR2/3/ABCB4 genes, have

been identified so far. The P-gp expressed from MDR1/

ABCB1 was initially demonstrated to have a protective role

from toxins in susceptible tissues, such as the brain, inner

ear, testis, and mammary tissue [20–22]. When substrates

or drugs enter the binding site, ATP will be hydrolyzed by

ATPase to supply the energy to release the substrates/drugs

to the outer leaflet or the extracellular space. There are

three patterns that modulate the ATPase activity of P-gp by

drug substrates and modulators; many drugs stimulate the

activity of ATPase at low concentrations while inhibiting

activity at higher concentrations, other drugs can only

inhibit the activity of ATPase, whereas some of the drugs

stimulate the ATPase activity. P-gp can transport a large

range of compounds from chemotherapeutics to peptides;

however, priority is given to amphipathic and relatively

hydrophobic drugs, including the large complex drugs,

such as paclitaxel, vinblastine and small molecules, such as

daunorubicin and DOX. Most of the commonly recognized

constitutions of the substrates of P-gp contained planar

aromatic rings and positively charged tertiary N atoms.

Therefore, a therapeutic approach exists which targets

P-gp, so that efflux-driven drug resistance of cancer cells

could be reversed. In a cellular environment, ABCB1

expression can be regulated by both transcriptional regu-

lation and the translation or stability of the mRNA. For

example, P-gp has been shown to bypass translational

silencing [23] in specialized Ribonucleoprotein particles

RNP called stress granules (reviewed in [24]. ABCB1 can

also be regulated via its upstream signaling pathways, such

as protein kinase C and mitogen-activated protein kinase

cascades, fluxion of Ca2?, and NF-jB [25], and some drugs

were developed to regulate these pathways. For instance,

curcumin and capsaicin were used to block NF-jB acti-

vation. With a greater understanding of the mechanisms of

ABCB1 activation, new therapeutics can be developed to

target these pathways.

MDR-associated proteins (ABCC1)

The existence of P-gp by itself cannot explain all the

occurrences of MDR, since the overexpression of P-gp

was not found in all types of MDR cells. Further studies

discovered other efflux pumps, such as multidrug-resis-

tance-associated proteins (MRPs) and breast cancer

resistant protein (BCRP/ABCG2). The MRP family is

comprised of 13 members, 9 of which were associated

with drug resistance. MRP1 and MRP9 played the most

important roles in drug resistance among the MRPs [26].

MRP1 shares 15 % identity, at the protein level, with

P-gp, and consists of one membrane-spanning domain
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(MSD) with five TM helices, and two other MSDs with

six TM helices. Subsequently, MRP1 has an overlapping

resistance with P-gp. MRP1 is a 190 kDa protein encoded

by the ABCC1 gene, which is expressed in normal tissues,

such as lung [27], testis [22], kidney [28], placenta [29],

macrophages [30], and skeletal and cardiac muscles [31].

Primarily, the expression of MRP1 can make a contribu-

tion to some drug protection in these tissues of humans.

For example, the defective expression of MRP1 can

enhance the damage caused by etoposide in the mucosa of

the oropharyngeal cavity and the seminiferous tubules of

the testis [32]. In parallel, the diversity of substrates of

MRP1 resulted in decreasing accumulation of drugs,

including certain anti-cancer drugs, such as antharacy-

clines, vinca alkaloids, cisplatin, epipodophyllotoxins,

camptothecins, saquinavir, methotrexate, and mitox-

antrone [26]. MRP9 is another member within the family

which is related to drug resistance and is comprised of

two MSD and 12 helices. The high expression of an

unusual truncated MRP9 mRNA was discovered in breast

cancer, and MRP9 could be a significant target for breast

cancer treatment, because of the relatively low-expression

level in normal breast tissue [26].

Breast cancer resistance protein (ABCG2)

Interestingly, the overexpression of P-gp or MRP cannot be

detected in the drug-resistant cell line, MCF7/AdrVp.

However, a related 2.4 kb mRNA which encodes a 663

amino-acid protein was identified in the cell line and was

termed as the breast cancer resistance protein (BCRP/

ABCG2) [33]. The G subfamily of ABC transporters is

comprised of six half-transporters with a nucleotide-bind-

ing domain (NBD) at the N-terminus and a TM domain at

the C-terminus [34]. The expression level of ABCG2

mRNA in some tissues may shed some light on its potential

function. There were no ABCG2 transcripts detected in

heart, lung, skeletal muscle, kidney, pancreas, spleen,

thymus, and peripheral blood leukocytes, while approxi-

mately 100 times more expression was detected in

placental tissue than that in the brain, prostate, small

intestine, testis, ovary, colon, or liver [35]. It appears to

play a protective role in human stem cells, because ABCG2

has been reported as a potential phenotypic marker for stem

cells in normal lung [36] and breast tissue [37]. Some anti-

cancer therapeutics were identified as the substrates of

ABCG2, including mitoxantrone, topotecan, isrinotecan,

Fig. 1 Depicts the major pathways that are targeted by natural

products in multidrug-resistant cancer cells and cancer stem cells. The

figure depicts natural products (green circles) interacting with their

target cell-surface receptor (labelled rectangles) or protein (labelled

circles) within signaling pathways
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flavopiridol, and methotrexate [38]. In addition, bio-

flavonoid kaempferol is a substrate of ABCG2 and inhibits

ABCG2-mediated quercetin efflux [39]. To overcome the

resistance caused by ABCG2, some inhibitors were

developed. The first reported inhibitor of ABCG2 was

fumitremorgin C (FTC), 5 lM of which reversed cellular

resistance to mitoxantrone, DOX, and topotecan in drug-

selected colon carcinoma cells [40]. However, FTC can

cause severe side effects, such as neurotoxicity, which

precluded its clinical application. Ko143, an analog of

FTC, caused an increase in intracellular drug accumulation

and reversed mouse BCRP1- and human BCRP-mediated

MDR without neurotoxic effects [41]. In recent years, more

and more inhibitors have been discovered to reverse the

effects of BCRP and these will be discussed below.

The Hedgehog receptor, patched, functions
in multidrug resistance

The Hedgehog (Hh) gene was discovered in 1980 in fruit

fly [42], and since then, three Hh genes have been identi-

fied in mammals, including Desert hedgehog (Dhh), Indian

hedgehog (Ihh), and Sonic hedgehog (Shh) [43]. Hedge-

hog-activated signal transduction occurs via its receptor,

patched (Ptch), which is a 12-transmembrane transporter-

like protein [44] that has been implicated in multidrug

transport in some cancer cell lines [45]. The Hh/patched

pathway plays a crucial role in the early embryonic

development as well as the tumor development, progres-

sion, and metastasis. In particular, the dysregulation of the

hedgehog pathway has been observed in a number of

cancers, especially in cells showing drug resistance [46].

The analysis of Ptch revealed sequence and topology

conservation with the resistance-nodulation-division

(RND) family of prokaryotic permeases. Furthermore, the

GXXXD motif in the RND bacterial drug efflux pumps was

highly conserved in the fourth putative transmembrane

segment of human and drosophila Ptch. The RND family

transports a broad range of agents, and therefore, Ptch has

also been proposed to be an efflux transporter. Not sur-

prisingly, yeast-expressing Ptch showed resistance to

certain chemotherapeutics, such as DOX, methotrexate,

temozolomide, and 5-FU [47]. Therefore, the development

of new agents to target Ptch has been considered as a

strategy for the treatment of cancer.

The ABC family in CSCs

The current research trends suggest that several charac-

teristics of CSCs are shared with common features

identified in normal stem cells, including the

overexpression of ABC transporter family members, pro-

tecting the cells from drugs and the toxins. Glioblastoma

CSCs were characterised by the expression level of the

MDR gene BCRP1 [48]. Normal stem cells were believed

to possess drug resistance by the expression of ATP-

binding cassette transporters, DNA-repair systems, and

anti-apoptosis systems to provide protection to these cells.

For example, a high level of ABCG2 expression was

detected in hematopoietic stem cells (HSC) as compared

with most committed progenitor cells and mature blood

cells [49]. RBM3 is a proto-oncogene that encodes for an

RNA-binding protein that promoted a stem-like phenotype

and spheroid formation in the colorectal cancer cell line

HCT116. The overexpression of RBM3 also enhanced drug

resistance to DOX and paclitaxel by upregulating the gene

expression of MRP2 and P-gp [50]. Another ABC trans-

porter member ABCB5, identified in oral squamous

carcinoma cells (OSCC), was associated with tumor for-

mation, metastasis, and a putative CSC compartment

through gene expression studies [51]. In a study of leuke-

mia, leukemia stem cells exhibited MDR by the expression

of ABC transporters, such as P-gp, BCRP, and MRP8. This

resistance was reversed by the agent salinomycin [52]. The

occurrence of ABC expression in CSC and the evidence

which suggests that they can be blocked with drugs make

this family of genes an interesting target for future lead

therapeutics.

Anti-apoptotic pathways in CSCs

Apoptosis can be triggered by the extrinsic and intrinsic

pathways. The extrinsic pathway requires extracellular

ligands, such as TNF-a, FasL, and TNF-related apoptosis-

inducing ligand (TRAIL) binding to the cell-surface

receptor, which is termed the death receptor. The intrinsic

pathway is activated by the stimuli, such as cytotoxic

signals, resulting in cell death. Bcl2 family members

function as important regulators of programmed cell death

pathways by blocking the extrinsic and intrinsic pathways

and inhibiting downstream caspase activity. Bcl2 was a

predicted target of miR-1915 in human colorectal carci-

noma cells. In accordance with this, it was observed that

the increased expression of miR-1915 reduced Bcl2 protein

levels and increased cell sensitivity to some anti-cancer

drugs [53]. The cellular FLICE-like inhibitory protein

(cFLIP) is another regulator of apoptosis and works by

blocking the activated death receptor signals, consequently

inhibiting the activation of caspase 8. Importantly, cFLIP is

not only expressed in many cancer cells but also in CSCs

[54], such as glioblastoma stem cells which overexpress

cFLIP. A study on glioblastoma CSCs demonstrated that

the CD133? cells not only overexpress BCRP1, but also
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the anti-apoptosis genes Bcl2, Bcl-XL, XIAP, and FLIP,

which have been correlated to their chemoresistance [55].

NF-jB has been the most extensively examined tran-

scription factors. It controls the expression of more than

500 different products that are relevant to inflammation,

cellular transformation, tumor cell survival, proliferation,

apoptosis suppression, invasion, and metastasis [56]. NF-

jB signaling is multifunctional in many cells depending on

its signaling context. In the immune system, NF-jB-me-

diated activation has been potent to inhibit tumor growth,

in part through the production of growth inhibitory

cytokines [57]. NF-jB is constitutively active in a wide

range of cancers, including acute lymphocyte leukemia

[58], chronic myelogenous leukemia [59], prostate [60],

and breast cancers [61]. The previous study suggested that

the activation of NF-jB could potentiate the expression

level of anti-apoptosis genes, including Bcl2, Bcl-XL, XIAP,

cFLIP, suvivin, cIAP-1, and cIAP-2 [62]. A study on the

breast CSCs indicated that blocking NF-jB signaling by

parthenolide (PTL), pyrrolidinedithiocarbamate (PDTC),

and its analog diethyldithiocarbamate (DETC) resulted in

the inhibition of the proliferation of sphere cells [63]. The

examples described above are only a snapshot of the roles

that anti-apoptotic systems play in cancer CSC survival but

provide us with some of the scope of survival mechanisms

available to CSC.

Prosurvival signaling in CSCs

In addition to the expression of efflux pumps and anti-

apoptotic genes, drug resistance in cancer is also mediated

by signaling cascades that control self-renewal, differenti-

ation, and survival, such as the Notch, Wnt, and Hedgehog

pathways. Notch induces the high expression of the anti-

apoptotic gene BIRC5 (survivin) as well as the upregula-

tion of the cyclin D1 protein [64]. It has been shown that

Notch might be involved in the resistance to antitumor

agents, such as trastuzumab, a HER2 inhibitor, that was

used for the treatment of ErbB-2-positive breast cancer.

The resistance to trastuzumab could be prevented and

reversed by the inhibition of the Notch pathway [65]. The

blockage of Notch by c-secretase inhibitors (GSIs) in

glioblastoma-derived neurospheres reduced tumor growth

and expression of CSC markers, including CD133, NES-

TIN, BMI1, and OLIG2. Therefore, a high level of Notch

expression maintained the CSC properties in CSCs and

promoted proliferation, decreased apoptosis, and caused

chemoresistance.

Wnt/b-catenin proteins play an important role in

embryonic development and the maintenance of stem-cell

properties. Not surprisingly, the b-catenin signaling cas-

cade was also described as an essential pathway for

sustaining the CSC phenotype in cutaneous cancer. In

contrast, the depletion of the b-catenin gene led to the loss

of CSCs and tumor regression [66]. Furthermore, it was

reported that Wnt signaling played an important role in

spheroidal CSC cultures that contained heterogeneity [67].

In haematopoietic stem cells, proliferation and self-renewal

can be promoted by the overexpression of the b-catenin or

stimulation with Wnt protein in vitro [68]. In addition, the

expression of Wnt in CSCs derived from the intestine and

mammary gland was also essential for their maintenance,

which subsequently gave rise to the drug resistance [69].

Thus, the Wnt signaling pathway could be an important

target to overcoming drug resistance.

The Hedgehog (Hh) signaling pathway is also critical

for the embryonic development, regulating cell prolifera-

tion, metastasis, and differentiation in a tightly controlled

mechanism. Emerging evidence based on the study of

human cancers, such as glioblastoma, breast cancer, pan-

creatic adenocarcinoma, multiple myeloma, and chronic

myeloid leukemia indicated that Hh signaling pathway was

involved in the regulation of CSCs undergoing self-renewal

and differentiation. Hh-Gli signaling affected stem-like

gene expression and self-renewal in glioma CSCs, sus-

taining glioma proliferation, and survival [70]. The

inhibition of the Hh signaling pathway by cyclopamine

resulted in the ablation of stem-like cancer cells in

glioblastoma [71]. A recent study demonstrated that Hh-

Gli1 drove the UDP glucuronosyltransferase (GUT1A)-

dependent glucuronidation of ribavirin and Ara-C, leading

to the drug resistance [72]. On the other hand, the stimu-

lation of the Hh pathway produced chemoresistance partly

due to the upregulation of drug efflux by ABC transporters,

including P-gp and BCRP [73]. In addition, the expression

of the transcription factor Oct4 in CSCs played an impor-

tant role in the maintenance of the survival of CSCs, and in

drug resistance in prostate and liver cancer through the

Oct4-AKT-ABCG2 signaling pathway [74, 75].

Aldehyde dehydrogenases in CSCs

Aldehyde dehydrogenases (ALDHs) are a family of intra-

cellular enzymes, which can be used as molecular markers to

identify normal stem cells and CSCs, such as the ovarian

CSCs [76]. This superfamily consists of 19 genes in humans,

including 11 families and four subfamilies. The most com-

mon studied members in normal stem cells and CSCs include

ALDH1, ALDH2, and ALDH3A1. ALDH1 is commonly

used to identify and enrich CSCs from many cancers,

including liver cancer [77], head and neck cancer [78], breast

cancer [79], colon cancer [80], and bladder cancer [81].

In CSCs, ALDHs are crucial for the maintenance of

stemness. Treating lung adenoma stem cells with
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ALDH1A1 siRNA resulted in a lower capacity of clono-

genicity, which suggested that ALDH1A1 was involved in

the maintenance of stem-like properties by inhibiting the

Notch/CDK2/CCNE pathway [82]. Blockage of ALDH in

breast CSCs inhibited cell growth. Furthermore, the ALDH

inhibitor, diethylaminobenzaldehyde (DEAB) obstructs

tumor metastasis to the lung. In conclusion, a high level of

ALDH expression promotes stemness features in breast

cancer [83]. In addition, ALDHs play a detoxifying role,

functioned in self-protection and conferred drug resistance

to alkylating agents by metabolic inactivation [84].

Malignant pleural mesothelioma (MPM) cells with resis-

tance to cisplatin and DEAB exhibited the overexpression

of ALDH1A2, ALDH1A3 isozymes, and CD44, which

suggest that ALDHhighCD44? cells were implicated in

conferring drug resistance [85]. ALDH inhibition and

CD44 knockdown resulted in decreased stem-like gene

expression and the enhancement of sensitivity to

chemotherapeutics in lung cancer [86]. In accordance,

stem-like ALDHhighCD44? human breast cancer cells

exhibited chemotherapy and radiation resistance, which

was reversed by the inhibition of ALDH [87]. In these

cases, ALDHs can be used as therapeutic targets, and

subsequently, some ALDH inhibitors were developed to

kill CSCs. For example, one of the inhibitors, copper (Cu)-

dependent disulfiram (DS), was toxic to glioblastoma

multiforme (GBM) stem-like cells by inhibiting the ALDH

and NF-jB pathways, and enhanced the antitumor activity

of gemcitabine (dFdC) in a synergistic manner [88].

Another CSC killer, salinomycin, also used for the reversal

of MDR in cancer, was identified and found to be specif-

ically toxic on the ALDHhigh population of stem-like cells

in gastric cancer [89].

DNA repair and quiescence in CSCs

Genotoxic damage in mammalian cells, caused by

endogenous and exogenous chemical, physical, and

biological mutagens, results in DNA degradation and

cell apoptosis. Under the normal conditions, the cellular

integrity of genomic material is repaired to maintain the

normal functions of the cells. This is especially true in

the stem cells, as they have the capacity of self-renewal

and give rise to a daughter cell that must retain an

identical genome, and the potential to differentiate into

tissue-specific cells. Thus, to ensure the original stem-

ness properties, stem cells are endowed with multiple

DNA-repair mechanisms, such as nucleotide excision

repair, base excision repair, mismatch repair, direct

repair, and the double-strand break recombinational

repair [90].

The malignant counterpart of stem cells, CSCs, exhibits

similar protective mechanisms. Accumulating evidence has

demonstrated that CSCs show radioresistance and

chemoresistance which were mediated by the DNA-repair

mechanisms. Chronic myelogenous leukemia is mainly

caused by the acquisition of BCR/ABL in HSCs. BCR/

ABL expression increased reactive oxygen species (ROS)

expression, which subsequently promoted oxidative stress

and DNA damage. When DNA damage occurs, the inhi-

bition of apoptosis can also be mediated by BCR/ABL,

which subsequently induces the acquisition of radioresis-

tance and chemoresistance [91]. In the breast CSCs, high

levels of gene expression are observed for genes involved

in DNA damage response and repair, such as Nek1, Brac1,

Chek1, Hus1, Ung, Xrcc5, Sfpq, and Uhrf1, suggesting that

breast CSCs are also resistant to chemotherapy and radio-

therapy [92]. Compared with normal glioblastoma

multiform cells, glioblastoma multiform CSCs were more

radioresistant to cell death by the down-regulation of DNA

damage checkpoint proteins, including ATM, Chk1, and

Chk2 [93]. In recent research, prostate CSCs (PCSCs)

exhibited chemoresistance in response to etoposide and

docetaxel, the most commonly used chemotherapeutic

drugs. This was achieved through the elevated expression

of cH2AX (a marker for DNA double-strand breaks and

genomic instability) and G2/M arrest. This study demon-

strated that the upregulation of DNA damage responses

made a contribution to chemoresistance in PCSCs [94].

Another mechanism to prevent apoptosis is for a cell to

remain quiescent. Leukemia CSCs, transplanted into

immunodeficient mice, conferred chemoresistance by qui-

escence as a defensive mechanism [95]. Esophageal CSCs

(ECSCs) also remain in quiescence and, as a result, are

more resistant to DNA damage agents. ECSCs demon-

strated a low-expression level of EGFR, phosphorylated

STAT3, and c-Myc, but elevated expression of p27. These

factors appear to maintain quiescence and attenuate DNA

damage responses and contributed to cell survival [96].

The studies described above highlighted a few of the

mechanisms, such as the expression of DNA damage

response and repair genes, as well as quiescence, that are

utilized by cells to achieve chemoresistance which helped

cells avoid apoptosis.

In conclusion, CSCs acts as one of the major obstacles

to chemotherapy mainly due to their highly tumorigenic

and chemoresistance properties. Understanding the mech-

anisms to achieve chemoresistance in CSCs has been

exploited for the development of novel anti-cancer drugs.

Therefore, the development of the new ABC inhibitors,

anti-apoptotic antagonists, prosurvival pathway inhibitors,

ALDH inhibitors, and the agents that target DNA-repair

pathways holds promise for effective treatment of CSCs.
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Natural products as MDR-reversing agents

MDR in cancer is a major obstacle for cancer therapy. To

reverse MDR in cancer cells, researchers have developed

antisense therapies, such as MDR1-antisense RNA [97],

TAT-conjugated mesoporous silica nanoparticle drug

delivery systems [98], and adjuvant therapy (i.e., fluoxetine

synergies). Chemotherapeutics have also been developed to

directly inhibit the activity of P-gp, MRPs, and BCRPs. For

example, vinblastine and azidopine bound to the transport

sites of P-gp, leading to the intracellular accumulation of

the substrates [99–101], while amoxapene and Ioxapine

non-competitively bound at the allosteric modulatory sites

of P-gp, resulting in a 3.5-fold reduction of the DOX GI50
in K562Dox cells [102]. To date, a number of natural

products have been identified to reverse drug resistance by

modulating ABC transporters, including P-gp, MRP1, and

BCRP.

P-gp inhibitors

A number of flavonoids have shown to be MDR reversal

agents by inhibiting P-gp. Baicalein (Table 1, 1), a flavo-

noid from Scutellariae radix, was shown to exert strong

anti-cancer activity against ovarian cancer with LD50 val-

ues ranging from 25 to 40 lM [103]. It induced G0/G1

phase arrest in hepatocellular carcinoma cells and

obstructed H22 xenograft tumor growth. It has been shown

that baicalein can inhibit tumor growth and apoptosis by

affecting the phosphatidylinositol 3-kinase-AKT, Bcl-2,

Bax, NF-jB, and p53 pathways [104]. Baicalein can also

enhance the cytotoxicity of other anti-cancer chemothera-

peutics, such as cisplatin, by increasing gap junction

intercellular communication [105]. Hypoxia-induced

5-fluorouracil resistance in gastric cancer AGS cells can be

reversed by baicalein via the suppression of glycolysis

through the regulation of the PTEN/Akt/HIF-1a signaling

pathway [106]. Baicalein increased nimodipine bioavail-

ability by inhibiting cytochrome P450 3 A4 (CYP3A4)-

mediated metabolism of nimodipine in the small intestine

and/or in the liver. Baicalein also elevated intracellular

rhodamine-123 (the substrate of P-gp, RH123) concentra-

tion in P-gp overexpressed MCF7/ADR cells in a dose-

dependent manner [107]. Icaritin (Table 1, 2), a flavonoid

isolated from Herba epimedii, exhibited a broad range of

pharmacological and biological activities, including anti-

cancer activity in hepatoma cells SMMC-7721 with an IC50

of 9.6 lM [108]. Icaritin can reduce renal cell carcinoma

(RCC) by reducing the activation of the protein, signal

transducer, and transcription-3 (STAT3), which is critical

for tumor survival, proliferation, and angiogenesis [109].

Further studies indicated that icaritin can also reverse MDR

in HepG2/adriamycin (HepG2/ADR) human hepatoma

cells by down-regulating the expression of MDR1. Icaritin

reversed the resistance to ADR by more than 7-folds at the

concentration of 30 lM [110]. Icariin (Table 1, 3), a fla-

vonoid glycoside, isolated from the same plant, is

commonly prescribed for the treatment of cardiovascular

diseases, osteoporosis, and cancer in China [111, 112]. The

MDR reversal activity study revealed that icariin enhanced

the sensitivity of MCF7/ADR cells to ADR by about

twofold at the concentration of 25 lM [113]. Recent study

suggested that icariin inhibited P-gp-mediated efflux pump

by competitively binding at the P-gp drug-binding site

[114]. Other flavonoids, including quercetin (Table 1, 4),

biochanin A (Table 1, 5), phloretin (Table 1, 6), silymarin

(Table 1, 7), and morin (Table 1, 8), also showed activity

in reversing the drug resistance by inhibiting P-gp-medi-

ated drug efflux [115, 116].

Sesquiterpenes from the plant family Celastraceae have

also been used for the treatment of MDR cells in cancers.

Sesquiterpene ester 1 (Table 1, 9), celafolin A-1 (Table 1,

10), and celorbicol ester (Table 1, 11) all showed drug-

resistance reversal activities with an IC50 value of 61.91,

14.00, and 14.36 lM against MCF7/ADR, respectively

[117]. Munoz-Martinez et al. investigated the MDR

reversal potency of 28 dihydro-b-agarofuran sesquiterpe-

nes in human MDR1-transfected NIH-3T3 cells in vitro.

The results suggested that the agarofuran sesquiterpenes

reversed the MDR phenotype by interacting with the TM

domain of P-gp and modulating P-gp ATPase activity

[118].

Curcumin (diferuloylmethane, Table 1, 12) is a

polyphenol natural product isolated from the rhizomes of

Curcuma longa. The compound is known to regulate sig-

naling pathways related to cell growth, differentiation, and

apoptosis [119, 120], and has widely been used as

antioxidant, anti-inflammatory, anti-cancer, and antimeta-

static agent. It was reported that curcumin inhibited NF-jB
signaling pathway activated by TNF, TPA, and hydrogen

peroxide in human myelomonoblastic leukemia cell line

ML-1a [121]. In a different study, treatment of human

cervical carcinoma cells, KB-V1, with low concentrations

(1, 5, and 10 lM) of curcumin reduced the expression of

MDR1 gene. Curcumin also increased the accumulation of

RH123 by inhibiting P-gp [122]. Demethoxycurcumin

(Table 1, 13) and bisdemethoxycurcumin (Table 1, 14)

from C. longa also modulated the MDR1 gene expression

in human cervical carcinoma cells. Bisdemethoxycurcumin

reduced P-gp expression by 88 % at 5 lM for three days

[123].

Ecteinascidin 743 (Et-743, Table 1, 15), a marine nat-

ural product from Caribbean sea squirt Ecteinascidia

turbinate, was used for the treatment of several cancers,
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Table 1 Natural products that have been implicated in the reversal of multidrug resistance in cancers

No. Compound Structure Source Biological 
mechanisms

Cancer type

1 Baicalein S. radix

phosphatidylinositol 
3-kinase-Akt

Bcl-2

Bax

NF-κB

p53

PTEN/Akt/HIF-1α

P-gp

Ovarian cancer [103]

Hepatocellular 
carcinoma [104]

Gastric cancer [106]

Breast cancer [107]

2 Icaritin H. epimedii
STAT3

P-gp

Hepatocellular 
carcinoma [108]

Renal cell carcinoma
[109]

3 Icariin H. epimedii
P-gp

Breast cancer [114]

4 Quercetin A. aequalis P-gp

Leukemic cells [200]

Prostate cancer [201]

Gastric carcinoma cells
[202]

Breast cancer [203]

Pancreatic tumor [204]

5 Biochanin A C. fistula P-gp

Breast cancer [116]
6 Phloretin P. mandshurica P-gp

7 Silymarin S. marianum P-gp
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Table 1 continued

8 Morin M. alba P-gp

9 Sesquiterpene ester 1

C. orbiculatus

P-gp

Cervical carcinoma and 
breast cancer [117]

10 Celafolin A-1 C. orbiculatus P-gp

11 Celorbicol ester C. orbiculatus P-gp

12 Curcumin C. longa
NF-κB

P-gp

Cervical carcinoma
[122]

13 Demethoxycurcumin C. longa P-gp

Cervical carcinoma
[123]

14
Bisdemethoxycurcumin

C. longa P-gp

15 Ecteinascidin 743 E. turbinata P-gp

Cervix carcinoma [127]

Colon cancer, ovarian 
cancer, breast cancer, 
renal cancer and lung 
cancer [124]
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Table 1 continued

16 (-)-Epigallocatechin-3-
gallate C. sinensis

NF-κB

P-gp

Cervix carcinoma [124, 
125]

17 (-)-epigallocatechin C. sinensis P-gp

18 (-)-epicatechin-3-gallate C. sinensis P-gp

19 (-)-epicatechin C. sinensis P-gp

20 Euphomelliferine E. mellifera P-gp

Mouse lymphoma and 
colon adenocarcinoma
[134]

21 Euphomelliferine A E. mellifera P-gp

22 Euphodendroidin D E. dendroides P-gp

Leukemic cells [135]

23 Pepluanin A E. peplus P-gp

24 Sipholenol A C. siphonella P-gp
Cervix carcinoma [136]
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Table 1 continued

25 Sipholenone E C. siphonella P-gp

Cervix carcinoma [137]26 Sipholenol L C. siphonella P-gp

27 Siphonellinol D C. siphonella P-gp

28 GUT-70 C. brasiliense
P-gp

Apoptosis
Leukemic cells [138]

29 Lamellarin I D. cactos P-gp
Colon adenocarcinoma
and murine leukaemia
[139]

30 Wogonin S. baicalensis

Cycle-cycle 
associated proteins

Wnt/β-catenin

Nrf2

P-gp

MRP1

Breast cancer [140]

Myelogenous leukemia
[141]

31 Aposterol A Spongia sp.
P-gp

MRP1
Cervix carcinoma [143]

32 Fumitremorgin C A. fumigatus BCRP
Colon cancer [40]

Breast cancer [144]
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Table 1 continued

33 Tryprostatin A A. fumigatus BCPR Gastric carcinoma and 
breast cancer [145]

34 Genistein H. sibthorpioides

BCRP

NF-κB

Akt

Breast cancer [147]

35 Terrein A. terreus

G2/M phase arrest

ABCG2

Caspase-7 pathway

Akt pathway

Breast cancer [149]

Ovarian cancer [150]

36 Harmine P. harmala
BCRP

Cyclooxygenase-2

Breast cancer and 
gastric cancer [152]

37 Lamellarin O Ianthella sp.
BCRP

P-gp

Colon cancer and non-
small lung cancer [154]

38 Tangeretin Citrus
P-gp

BCRP

Myelogenous leukemia
[156]

Colon cancer [157]

39 Secalonic acid D P. oxalicum

ABCG2

P-gp

MRP1

Oral epidermoid 
carcinoma, breast cancer 
[160]

40 Panicein A 
hydroquinone

H. mucosa Ptch Melanoma [45]

The table lists the compound, its structure, the natural source of the compound, the biological mechanism or signaling pathway targeted by the

compound, and the types of cancers that have been targeted by the compound
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including ovarian, breast, non-small lung, and renal cancers

[124–126]. It has been shown that Et-734 can down-regu-

late P-gp expression at a concentration of 0.1 nM. In

addition, Et-743 increased the cellular accumulation of

DOX/VCR in P-gp-overexpressed cervix cells [127].

Polyphenolic catechins, such as (-)-epigallo catechin-3-

gallate (EGCG, Table 1, 16), (-)-epigallocatechin (EGC,

Table 1, 17), (-)-epicatechin-3-gallate (ECG, Table 1, 18),

and (-)-epicatechin (EC, Table 1, 19), from tea, can be used

for the treatment of cancers, including skin, lung, oral cavity,

esophagus, breast, stomach, small intestine, colon, liver,

pancreas, and mammary glands [128]. EGCG, one of the

major water-soluble compounds in green tea (Camellia

sinensis), has been shown to have the chemopreventive, anti-

carcinogenic, anti-atherogenic, and antioxidant effects [129].

EGCG was used as the chemopreventive agent by inducing

apoptosis and increasing cell growth arrest via regulating the

expression of cell-cycle regulation proteins. The previous

studies have shown that EGCG inhibited carcinogenesis by

regulating a wide range of signaling pathways. It can activate

NF-jB, and then induce the expressionofmore than200genes

that inhibited apoptosis, and promoted cell proliferation,

invasion, metastasis, and chemoresistance [130]. It was also

reported that EGCG inhibited NF-jB signaling pathway by

blocking TPA- and UV-induced phosphorylation of IjB
[131, 132]. In a study, catechins, including EGC, ECG, and

EGCG, enhanced the cellular accumulation of P-gp sub-

strates, RH123, and daunorubicin, in P-gp overexpressed KB-

C2 cells. Therefore, the catechins played an important role in

reversing drug resistance by inhibiting the activity of P-gp.

Three macrocyclic jatrophane diterpenes and one tetra-

cyclic triterpene were isolated from Euphorbia mellifera.

Their ability to reverse drug resistance was evaluated

through the RH123 accumulation test on humanMDR1gene-

transfected mouse lymphoma cells (L5178Y MDR) and

multidrug-resistant human colon adenocarcinoma cells

(COLO 320). Macrocyclic jatrophane diterpenes,

euphomelliferine (Table 1, 20), and euphomelliferine A

(Table 1, 21) exhibited high MDR reversal activity with the

fluorescence activity ratio (FAR) values of 72.9 and 82.2 at

60 lM, respectively [133]. Two other compounds, eupho-

dendroidin D (Table 1, 22) and pepluanin A (Table 1, 23),

isolated from genus Euphorbia were also studies. At the

concentration of 5 lM, euphodendroidin D inhibited

daunomycin-efflux activity twofold (183 ± 17 %) more

than cyclosporine A, a conventional modulator, by specifi-

cally modulating P-gp activity. Pepluanin A also showed

higher inhibition (207 ± 17 %) [134].

Sipholenol A (Table 1, 24), one of the sipholane triter-

penes isolated from the Red Sea sponge Callyspongia

siphonella, reversed MDR in P-gp overexpressed cervix

carcinoma cells. At the concentration of 2.5, 5, and 10 lM,

sipolenol A potentiated the toxicity of P-gp substrates,

colchicine, vinblastine, and paclitaxel in a dose-dependent

manner [135]. Three other triterpenoids isolated from the

same sponge, sipholenone E (Table 1, 25), sipholenol L

(Table 1, 26), and siphonellinol D (Table 1, 27) also

enhanced the inhibitory effect of colchicine, vinblastine, and

paclitaxel, and reversed the MDR in P-gp-overexpressing

MDR cancer cell line KB-C2 at 1, 3 and 10 lM [136].

A tricyclic coumarin, GUT-70 (Table 1, 28), derived

from the stem bark of Brazilian plant Calophyllum brasi-

liense, exhibited the inhibitory effect on six human

leukemic cell lines, including P-gp overexpressed cells in a

concentration- and time-dependent manner. GUT-70

induced caspase-mediated and p53-independent apoptosis

to overcome MDR [137]. Anti-cancer effects of several

lamellarins isolated from genus Didemnum were also

studied on P-gp-mediated MDR cancer cell lines. Lamel-

larin I (Table 1, 29) reversed MDR by inhibiting P-gp

efflux. This compound completely reversed resistance of

DOX, vinblastine, and daunorubicin at 2 lM in multidrug-

resistant P388/Shabel cells [138].

P-gp and MRP1 inhibitors

Wogonin (Table 1, 30), a flavonoid isolated from Scutel-

laria baicalensis, reversed DOX resistance in MCF7/DOX

cells by inhibiting nuclear factor erythroid 2-related factor

2 (Nrf2), which played a vital role in cell survival and

MDR. Wogonin increased the sensitivity of MCF7/DOX

cells to DOX by 1.24-, 1.93-, and 3.24-fold at 20, 40, and

60 lM, respectively [139]. A recent study implicated that

wogonin can reverse MDR in human myelogenous leuke-

mia K562/A02 cells. Wogonin promoted the sensitivity of

K562/A02 cells to ADR by 1.22-, 2.31-, and 3.85-fold at

the concentrations of 10, 20, and 40 lM, respectively. It

also repressed the Nrf2 signaling pathway, resulting in the

down-regulation of MRP1 expression [140]. In addition,

wogonin showed P-gp inhibitory activity and suppressed

excretion of calcein-AM, a substrate of P-gp, in Jurkat

cells, and A549 cells at a concentration of 10 lM [141].

Aposterol A (Table 1, 31), a polyhydroxylated sterol

acetate, was isolated from a marine sponge Spongia sp.

[142]. Aposterol A increased the vincristine accumulation

in both P-gp-mediated MDR cells (KB-C2) and MRP1-

mediated MDR cells (KB-CV60) at 3 lM and showed

reversal effect on P-gp and MRP1 [142].

BCRP inhibitors

Fumitremorgin C (FTC, Table 1, 32), a prenylated indole

alkaloid isolated from Aspergillus fumigatus, was the first

reported BCRP inhibitor. FTC significantly potentiated the
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sensitivity of S1-M1-3.2, a BCRP-overexpressed colon car-

cinoma cell line, to mitoxantrone (93-fold), DOX (26-fold),

and topotecan (24-fold) at the concentration of 5 lM [40]. At

the same concentration, FTC sensitized BCRP-overexpressed

MCF7 cells to DOX (6.6-fold), mitoxantrone (29.4-fold), and

topotecan (6.5-fold) [143]. However, FTC can cause severe

side effects, such as neurotoxicity, which limited its clinical

application. In recent years, FTC analogs have been devel-

oped and showed inhibitory activity against BCRP.One of the

natural analogs, tryprostatin A (Table 1, 33), reversed

mitoxantrone-resistant gastric carcinoma cell line EPG85-

257RNOV, breast cancer cell line MCF7/AdrVp, and BCRP

cDNA-transfected breast cancer cell line MCF7/BCRP at the

concentrations of 10–50 lM [144]. An isoflavone, genistein

(Table 1, 34) isolated fromHydrocotyle sibthorpioides [145],

competitively inhibited BCRP-mediated drug efflux. Genis-

tein potentiated cytotoxicity of SN-38 (7.23-fold) and

mitoxantrone (6.28-fold) at the concentration of 3 lM [146].

The marine sponge-derived fungal metabolite, terrain

(Table 1, 35), was isolated from Aspergillus terreus [147].

Terrein significantly decreased ABCG2-expressed MCF7

cells at the concentrations of 1 or 10 nM. It induced apoptosis

by potentiating the caspase-7 signaling pathway and repress-

ing the Akt signaling pathway. Terrein showed 100-foldmore

toxicity againstMCF7cells thanpaclitaxel. The IC50 values of

terrain against breast cancer MCF7 cells, pancreatic cancer

PANC-1 cells, and liver cancer HepG2 cells were 1.1 nM,

9.8 lM, and 66.8 nM, respectively [148]. A later study sug-

gested that terrein can also be used in the treatment of ovarian

cancer, since the compound induced G2/M phase cell cycle

arrest in the ovarian CSCs [149]. The b-carboline alkaloid,

harmine (Table 1, 36), was isolated from Peganum harmala

[150], and was identified as a BCRP inhibitor in a BCRP-

overexpressed breast cancer cell line MDA-MB-231. The

anti-cancer activity of harminewas evaluated in gastric cancer

and it induced apoptosis and inhibited cell proliferation,

migration, and invasion [151]. Harmine showed some side

effects, such as neurotoxicity and cytotoxicity; however, it

could be used as a lead compound for the development of

BCRP inhibitors [152].

P-gp and BCRP inhibitors

Lamellarin O (Table 1, 37), isolated from an Australian

marine sponge Ianthella sp., showed growth inhibition

against P-gp overexpressed colon cancer cell line SW620

Ad300 with an IC50 of 22.3 lM. Treatment with lamel-

larin O increased sensitivity towards DOX, a P-gp

substrate by 4.8-fold. Calcein-AM accumulation- and cell

flow cytometry-based assays indicated that lamellarin O

acted as a potent and selective BCRP inhibitor in non-

small lung cancer with an IC50 of 4.7 lM [153].

Tangeretin (Table 1, 38) is a natural Citrus flavonoid

known with antiproliferative activity [154]. Tangeretin

was previously identified as MDR reversal agent by

inhibiting P-gp in K562/ADM human myelogenous leu-

kemia with an EC25 of 12.84 lM [155]. Tangeretin

induced apoptosis by caspase-3 activation, and reversed

multidrug resistance in colon cancer by inhibiting P-gp

[156]. A recent study suggested that tangeretin showed

potent inhibitory effect on BCRP with an EC50 of

1.19 lM against human BCRP transfected MDCK-II

cells. Tangeretin also significantly enhanced dasatinib

intracellular accumulation (341 % in mean value) by

inhibiting P-gp at 50 lM [157].

P-gp, MRP1, and BCRP inhibitors

Secalonic acid D (SAD, Table 1, 39) was isolated from

Penicillium oxalicum [158]. It showed potent inhibitory

effect against P-gp-, MRP1-, and BCRP-overexpressed

MDR cells and their parental cells, with an IC50 value of

0.27, 1.20, 0.13, and 1.04 lM against ABCB1-overex-

pressed oral epidermoid carcinoma cell line KBv200,

ABCB1-overexpressed breast cancer cell line MCF7/Adr,

ABCC1-overexpressed epidermoid carcinoma cell line

CA120, and ABCG2-overexpressed colon carcinoma cell

line S1-M1-80, respectively. Particularly, SAD suppressed

the expression of ABCG2 and shortened the half-life of

ABCG2 protein via the activation of calpain 1. Therefore,

SAD was implicated in the treatment of cancer as a MDR

inhibitor [159].

Ptch inhibitors

Four natural products, panicein A hydroquinone, panicein

B2, panicein B3, and panicein C, were isolated from

Haliclona (Soestella) mucosa. These four compounds

inhibited the growth of yeast-expressing Ptch in the pres-

ence of DOX with IC50 values of 1, 2, 0.8, and 4.9 lM,

respectively. Treatment with Panicein A hydroquinone

significantly increased cell death 5–8-fold after treatment

by DOX in melanoma MEWO cells and caused a 2–3-fold

increase in A375 cells. Further studies indicated that Pan-

icein A hydroquinone inhibited 40 % of the DOX efflux

activity of Ptch [45].

Natural products-targeting CSCs

The past few decades have seen many achievements in

cancer prevention and therapy. Our better understanding of

the CSCs and the mechanisms of chemoresistance have
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helped researchers to explore new strategies for cancer

treatment. Many natural products have shown biological

activities against CSCs by interacting with apoptotic genes,

survival genes, and cell cycles.

Berberine from Berberis aristata or Coptis
chinensis

Berberine (Table 2, 1) from the roots and bark of Berberis

aristata or Coptis chinensis [160] has been shown to have

antitumor activity. In an early study, berberine was shown

to inhibit cell proliferation of human tumor U937 and

murine melanoma B16 cell lines, inducing apoptosis in the

U937 cells with an IC100 of 100 lg/mL and causing

cytoplasmic membrane damage on the B16 cells with an

IC100 of 1 lg/mL [161]. Recent studies on CSCs suggested

that berberine was an effective inhibitor of CSCs; it sup-

pressed cancer invasion and metastasis in A549 lung

cancer with an IC50 of 56.15 lM, up-regulated epithelial

phenotype marker E-cadherin, down-regulated the expres-

sion of mesenchymal phenotype marker Vimentin, and

suppressed TGF-b1-induced epithelial-to-mesenchymal

(EMT) cell transition [162]. Berberine decreased the pro-

portion of pancreatic CSCs from 9.7 to 5.7 % at the

concentration of 15 lM. Stem-cell-associated genes

(SOX2, POU5F1, and NANOG) were down-regulated by

the treatment of berberine [163]. In contrast, berberine

increased the side-population fraction, referred to as CSCs,

by 7.6 % in H460 lung cancer cells [164].

Curcumin from Curcuma longa

More and more evidence suggested that curcumin (Table 2,

2) can target CSCs by regulating self-renewal pathways,

such as Wnt/b-catenin, Notch and sonic hedgehog, and

specific microRNAs [165]. Curcumin inhibited the mam-

mosphere formation in breast cancer cells by 50 % at the

concentration of 5 lM and reduced the proportion of

ALDH1A1-expressing cells by 5.8 % at the concentration

of 10 lM [166]. Another study suggested that curcumin

dramatically decreased the percentage of CD44?/CD24-

expressing cells after 6-h treatment at the concentration of

50 lM [167]. Studies of curcumin on breast CSCs sug-

gested that curcumin caused the apoptotic effects on

mammospheres of MCF7 and T47D cells at the concen-

tration of 15 lM. Curcumin suppressed b-catenin nuclear

translocation, subsequently increased E-cadherin/b-catenin
complex formation, down-regulated EMT-promoting target

gene expression, and, thus, inhibited the migration of breast

CSCs [168]. The combinational application of curcumin

and EGCG reduced CSC population in breast cancer by

targeting STAT3 and NF-jB signaling pathways [169]. To

improve the bioavailability of curcumin, analogs, and

combinational therapy were developed. For example,

difluoro-curcumin (CDF), in combination with 5-FU and

oxaliplatin (Ox), inhibited cell growth, yet promoted

apoptosis and disintegration of colon CSCs by down-reg-

ulating ABCG2 and attenuating EGFR, IGF-IR, and NF-

jB signaling pathways [170].

Quercetin from Quercetum (oak forest)

Quercetin (Table 2, 3) was a ubiquitous flavonoid that was

originally identified from Quercetum (forest oak). It was

also isolated from a wide range of fruits and vegetables. It

showed inhibitory effects on various cancers. For example,

quercetin down-regulated the expression of survivin and

anti-apoptotic proteins in human glioma cells, resulting in

caspase-dependent apoptosis [171]. The mechanism of

action study suggested that quercetin inhibited cell prolif-

eration by regulating Bcl2 and Bax expression [172].

Quercetin also affected CSC properties. Using an in vitro

and in vivo pancreatic CSC model, quercetin reduced the

capacity of self-renewal, ALDH1 activity, and apoptosis

resistance. Quercetin, together with sulforaphane, had

synergistic effects on the prevention of EMT [173].

Quercetin was an effective inhibitor of CSCs in head and

neck cancers with the concentrations ranging from 25 to

100 lM. Further studies suggested that quercetin sup-

pressed ALDH1 activity, and reduced self-renewal and

migration ability of CSCs [174]. Other studies on tongue

cancer-derived stem cells showed that quercetin promoted

cell apoptosis by inhibiting p-Hsp27 expression, which led

to the reversal of drug resistance triggered by the activation

of p38 MAPK signaling pathway [175]. Recent study on

CD133? cancer stem cells derived from human colorectal

HT29 cancer cells suggested that quercetin increased

cytotoxicity and apoptosis induction of DOX with an IC50

concentration of 75 lM. Quercetin, in combination with

DOX, induced G2/M cell cycle arrest in HT29 cells [176].

Resveratrol from Polygonum cuspidatum

Resveratrol (Table 2, 4) is a polyphenol molecule present

in various fruits and foods, such as grape skins. The

compound can also be found in Polygonum cuspidatum and

is used in oriental folk medicine [177]. Grape seed extract,

in combination with resveratrol, potentiated the cell

apoptosis and suppressed the proliferation of human colon

CSCs via the activation of p53-dependent pathway [178].

Resveratrol also suppressed the self-renewal ability of
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Table 2 Natural products that have shown inhibition of cancer stem cells

No. Compound Structure Source Biological 
mechanisms CSC type

1 Berberine
B. aristata or 

C. chinensis

ROS

G2/M arrest

Apoptosis

NF-κB

STAT3

E-cadherin

Vimentin

ABC transporters

EMT

SOX2 

POU5F1

NANOG

Myeloma leukemia and 
murine melanoma cancer
[162]

Lung cancer [163,165]

Pancreatic cancer [164]

2 Curcumin C. longa

Wnt/ -catenin

Notch

Sonic hedgehog

E-cadherin/ -catenin

EMT

Breast cancer [167]

Colon cancer [171]

STAT3

NF-κB

micro-RNAs

3 Quercetin Quercetum

Apoptosis

ALDH1

EMT

p-Hsp27

Cell proliferation

Bcl2

Bax

Self-renewal

Migration

Glioma cells [172]

Pancreatic cancer [174]

Head and neck cancers
[175]

Colorectal cancer [177]

β

β
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Table 2 continued

4 Resveratrol P. cuspidatum

Apoptosis

Notch1

Wnt/ -catenin MDR1

ABCG2

EMT

Colon cancer [179]

Pancreatic cancer [176]

Nasopharyngal 
carcinoma [181]

Ovarian cancer [182]

Self-renewal

Metastasis

Breast cancer [183]

5 Salinomycin S. albus

Autophagy-lysosomal 
pathway

Wnt

Apoptosis

ALDH

Breast cancer [185]

Gastric, glioma and 
pancreatic cancer [187]

Osteosarcoma [190]

6 Mithramycin S. argillaceus
ABCG2 Lung cancer and 

esophageal cancer [192]

7 Eriocalyxin B I. eriocalyx
NF-κB signaling

Apoptosis
Ovarian cancer [193]

8 Galiellalactone G. rufa STAT3 pathway Prostate cancer [194,195]

9 Guggulsterone C. mukkul

MUC4

JAK/STAT 

Src/FAK

Pancreatic cancer [196]

Glioma [197]

10 Telomestatin S. anulatus
Telomere

c-Myb
Glioma [198]

β

The table lists the compound, its structure, the natural source of the compound, the biological mechanism or signaling pathway targeted by the

compound, and the types of cancer stem cells that have been targeted by the compound
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pancreatic CSCs which derived from human tumor and

Notch1, MDR1 and ABCG2 overexpressed KrasG12D mice

[179]. In addition, resveratrol hampered stem-cell proper-

ties, including drug resistance, self-renewal ability, tumor

initiation ability and metastasis potency, and EMT through

the activation of p53 in nasopharyngeal carcinoma CSCs

[180]. A recent study suggested that resveratrol, at 60 lM,

also inhibited EMT, induced by CDDP treatment in ovarian

cancer cell lines. It caused cell death in an apoptotic-in-

dependent manner [181]. Resveratrol also dramatically

inhibited the proliferation of breast CSCs and induced the

autophagy through the suppression of Wnt/b-catenin sig-

naling pathway [182].

Salinomycin from Streptomyces albus

Salinomycin (Table 2, 5) was recently isolated from

Streptomyces albus [183]. It selectively inhibited the cell

growth of CD44?/CD24- breast CSCs by 20-fold relative

to vehicle control. In addition, salinomycin reduced the

tumor-seeding, tumor formation, and metastatic ability

[184]. Salinomycin was found to suppress the autophagy-

lysosomal pathway, which was crucial for the tumori-

genicity of breast CSCs [185]. It was also proven that

salinomycin was not only effective on breast CSCs, but

also on gastric, pancreatic, and glioma CSCs in different

ways [186]. In the gastric and pancreatic CSCs, salino-

mycin inhibited the proliferation of the CSC population by

suppressing the Wnt signaling pathway, which was essen-

tial for the self-renewal capacity of gastric and pancreatic

CSCs [187, 188]. Salinomycin killed glioma CSCs with an

IC50 value of 0.06 lM [186]. In a recent study on

osteosarcoma stem cells, salinomycin selectively killed

tumor stem cells with an IC50 value of\5 lM. This inhi-

bition effects also involved Wnt/b-catenin signaling

pathway [189].

Other CSC inhibitors

Mithramycin (Table 2, 6), a major product from Strepto-

cyces argillaceus, exhibited remarkable cytotoxicity

against various cancers [190]. It inhibited stem-cell sig-

naling in lung and esophageal cancer cells and suppressed

ABCG2 expression [191]. An ent-daurene diterpenoid from

Isodon eriocalyx var. Laxiflora, eriocalyxin B (EriB,

Table 2, 7), was shown to target p50 by inducing apoptosis

via NF-jB signaling inhibition. The compound was also an

effective inhibitor of ovarian CSCs with a GI50 of

0.5–1 lM [192]. A secondary metabolite from fungus

Galeilla rufa, galiellalactone (Table 2, 8), was a promising

therapeutic agent for both prostate cancer cells and prostate

CSCs by targeting the STAT3 pathway [193, 194]. Gug-

gulsterone (GS, Table 2, 9), isolated from the plant

Commiphora mukkul, showed anti-proliferation activity

against various cancers. In a study on pancreatic cancer

cells, GS inhibited cell growth and metastasis by down-

regulating MUC4 expression involved in cancer cell fate,

invasion, and drug resistance [195]. Meanwhile, GS, in the

cooperation with SANT-1, a novel inhibitor on glioma

cells, can target stem and non-stem glioma cells [196].

Telomestatin (Table 2, 10), a macrocyclic compound from

Streptomyces anulatus 3533-SV4, exhibited strong inhibi-

tion against glioma CSCs via telomere disruption and c-

Myb inhibition [197].

Prospects

Natural products derived from microbes, plants, and mar-

ine organisms have played a dominate role in cancer drug

discovery. The membrane transporters, a major contributor

to MDR in cancer, have been demonstrated as one of the

most important targets in cancer therapy. A growing

number of natural products have been discovered to reverse

MDR in cancers; however, problems with these com-

pounds still remain. In the reversal of MDR in cancer, the

effects on the normal cells, especially the cells expressing

ABC transporter family, should be considered. High

cytotoxicity from these compounds also limits their

potential application in clinical practice. For example,

cyclosporine A (CsA), a well-known P-gp inhibitor,

reduced the efflux of DOX in tumor cells. However, it

cannot be administrated for long period, because of the side

effects it caused, including immunosuppression and severe

nephrotoxicity. Therefore, searching for the drugs with

specific activity against MDR is still a major barrier to the

success of chemotherapy. Hunting for new therapeutics

from nature, which hosts a vast resource of natural products

that target MDR cells, is a potential strategy for cancer

treatments. In the future, to overcome the MDR in cancer,

the targets can be concentrated on ABC transporters, as

they are widely expressed in cancers, but this does not

exclude other targets that may be expressed in specific

cancer cell types.

The existence of CSCs is another prominent challenge

for cancer therapy. More and more evidence suggests that

CSCs play a critical role in the aetiology of metastasis, the

main cause of the mortality of cancer patients. A better

understanding of the origins of CSCs and their molecular

mechanisms will make important contribution to the

treatment of CSCs. Though many products from nature

were discovered to eliminate CSCs, they still displayed

high toxicity against normal cells. For example, salino-

mycin was effective on many cancers, but it displayed
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neurotoxic effects [198]. On the other hand, some of the

drugs have physical and chemical property limitations,

resulting in the failure of bioavailability. Curcumin had

prominent anti-cancer properties, but was limited in clini-

cal applications due to its insolubility in water and

instability.

In this review, the cellular mechanisms of MDR and

CSCs and the developed natural products against MDR

cancer cells and CSCs were discussed with a view that we

can obtain a better understanding of the mechanisms which

will ultimately help in the development of new targets in

the battle against cancer. To overcome these hurdles, a

significant effort has to be devoted to the discovery of new

agents that eliminate MDR cancer cells and CSCs.
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