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Structural and functional properties 
of membrane‑targeting cationic antimicrobial 
peptides

It is widely understood that, although chemotherapy and radio-
therapy remain the most common non-surgical cancer treat-
ment options, they present major drawbacks. These include 
adverse side effects such as cardiotoxicity and neurotoxicity 
due to low tumor cell-specificity [1] and multidrug resistance, 
resulting in reduced chemotherapeutic drug efficacy [2]. Whilst 
the development of targeted therapy options such as immuno-
therapy show significant promise with demonstrated improved 
outcomes, they remain expensive and are often not applicable 
to all cancers. Due to advances in available treatment options 
and increased awareness leading to earlier detection, the 5-year 
survival rate across all cancers in Australia reached 66% by 
2010, a 19% increase since the 1980s [3]. Although significant, 
this figure translates to one third of all diagnoses leading to 
death within 5 years and reflects an urgent and ongoing need 
for more effective, targeted cancer treatments.

A novel family of anticancer molecules that has attracted 
significant and increasing interest over the past decade is 
the cationic antimicrobial peptides (CAPs) [4, 5]. CAPs 
are small (typically <50 amino acids), positively charged 
peptides present in all forms of life, that comprise a major 
component of the innate immune system [6]. Either con-
stitutively expressed or produced in response to microbial 
attack, CAPs act as a ‘first line of defense’ against invading 
microbes. CAPs are active against a wide range of patho-
genic organisms including Gram-positive and Gram-nega-
tive bacteria, fungi and viruses, often targeting the plasma 
membrane to form pores, modify ion channels or induce 
membrane rupture [7, 8]. The cationic charge of CAPs suit-
ably targets them to negatively-charged membranes and cell 
walls, such as those present in bacteria or fungi.
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In addition to antimicrobial targeting, many CAPs also 
display membranolytic activity towards mammalian cells. 
The relative increase in anionicity of tumor cell membranes 
compared with healthy cells has been suggested to promote 
the selectivity often observed for tumor cells, making CAPs 
attractive candidates for development of novel cancer thera-
pies [4, 5, 9]. Furthermore, since the ability of CAPs to tar-
get tumor cells is largely charge-based, their efficacy is not 
likely to be influenced by multi-drug resistance, whilst the 
ability of CAPs to target cells that are not actively divid-
ing means they could potentially be used to kill “dormant” 
tumor cells, unlike traditional chemotherapeutics that usu-
ally only work on actively dividing cells. In addition to 
plasma membrane targeting (typically resulting in necrotic 
cell death), a number of CAPs have also demonstrated the 
ability to elicit anticancer activity via mechanisms that are 
not membrane-dependent, in particular via inducing apopto-
sis [10, 11]. Although the wider antimicrobial peptide field 
now encompasses peptides ranging from naturally-occurring 
through to synthetic de novo peptides, this review will focus 
primarily on the different classes of membranolytic CAPs 
found endogenously across species, as well as related deriva-
tives. In particular, this review will examine CAPs that are 
known to exhibit anticancer activity via membrane target-
ing (and via alternative mechanisms, where applicable) and 
address the value and challenges in pursuing the develop-
ment of cationic peptides for therapeutic use.

CAPs are structurally diverse

CAPs are a diverse peptide class, with approximately 2400 
identified or predicted to date [18]. CAPs mediate host 
defense against pathogen infection through a wide range of 
processes, predominantly by the direct killing of microor-
ganisms via plasma membrane disruption and/or targeting 
of intracellular pathways upon CAP internalization [19] 
but also by other mechanisms including immune modula-
tion (e.g. induction of inflammation and enhanced bacte-
rial clearance). CAPs exist in a range of tertiary structures, 
including α-helical, β-sheet (including β-hairpin and a com-
bination of α-helix and β-sheet), extended (neither α-helix 
or β-sheet), and can be cyclical [7]. Defensins, which are the 
most widely distributed class of CAP and are present in all 
forms of life, are typically disulfide-rich and contain β-sheets 
with some also featuring α-helices (Fig. 1). Approximately 
100 CAPs of known tertiary structure from various species 
are listed in the Antimicrobial Peptide Database (ADP3) 
as having activity against cancer cells [18]. Of these, the 
two major structural groups are the α-helical CAPs such 
as cathelicidins, magainins, cecropins and the disulfide-
rich, β-sheet and mixed α-helical/β-sheet peptides such as 

defensins. Other smaller groups include β-hairpin, cyclic and 
extended (unstructured) peptides. This review will focus on 
the α-helical, β-hairpin, β-sheet and mixed peptide classes.

Mechanisms of CAP‑mediated membrane 
disruption

Two common features of membranolytic CAPs are a net 
positive charge and amphipathicity. These properties allow 
CAPs to interact with negatively charged cell wall/mem-
brane components (such as glycoproteins and/or plasma 
membrane phospholipids of bacterial or fungal cells) and 
bury into the bilayer to ultimately induce membrane desta-
bilization and permeabilization or peptide internalization 
[20]. A number of models have been proposed to describe 
the various methods of CAP-mediated membrane interac-
tions, which vary depending on both the physical properties 
of the CAP as well as target cell membrane composition, 
reviewed extensively by Brogden [8] (Fig. 2). It should be 
noted that these models have been devised predominantly 
through studies involving α-helical CAPs with artificial 
bilayers or bacterial membranes. Briefly, the carpet model 
involves parallel accumulation of peptides via electrostatic 
attractions to the anionic cell surface in a carpet-like fashion. 
When a critical concentration threshold is reached, mem-
brane curvature stress induces detergent-like disruption of 
the membrane and the formation of micelles, leading to 
membrane destabilization. The toroidal pore model involves 
the formation of ‘wormhole-like’ pores in the membrane, in 
which phospholipid head-groups of membrane lipids remain 
associated with the hydrophilic portion of the peptides con-
tinuously from the outer to inner leaflets of the membrane. 
The barrel-stave model involves vertical insertion of oligo-
meric α-helical peptides to form a bundle into the bilayer, 
aligned hydrophobically with lipid acyl chains to form ion-
permeable pores in the membrane, also capable of resulting 
in membrane rupture [8]. It is worth noting that these models 
are not mutually exclusive, that is, certain CAPs may adopt 
features of more than one model.

β-Sheet-rich CAPs adopt more diverse tertiary structures, 
including two-stranded anti-parallel β-hairpin, such as prote-
grins, or triple-stranded antiparallel β-sheet that may or may 
not also contain an α-helix, such as defensins. Less molecu-
lar detail has been elucidated with regard to how β-sheet 
CAPs interact with the plasma membrane of target cells, 
although there is considerable emerging evidence for the role 
of specific membrane lipids such as sphingolipids and phos-
phatidylinositols, as well as the ability to form dimers and/or 
higher order oligomers, to facilitate membrane disruption by 
these peptides. In the next section, the tumour cell-specific 
targeting mechanisms of CAPs will be discussed.
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Fig. 1   Structural classes of 
CAPs. Representative struc-
tures of the six main classes are 
shown. a The African clawed 
frog peptide, magainin, is 
α-helical (PDB code: 2LSA). b 
The bovine neutrophil peptide, 
indolicidin, does not contain 
β-strands or α-helices [12] 
(PDB code: 1QXQ). c The 
porcine leukocyte peptide, 
protegrin-1 adopts a β-hairpin 
structure stabilized by two 
disulfide bonds [13] (PDB code: 
1PG1). d The synthetic human 
θ-defensin, HTD-2, is similar 
to a β-hairpin but pseudo-
cyclized by a third, connecting 
disulfide bond [14] (PDB code: 
2LZI). e The human β-defensin, 
HBD-2, contains a disulfide-
bonded, triple-stranded β-sheet 
[15] (PDB code: 1FD4). f The 
ornamental tobacco defen-
sin, NaD1, is comprised of a 
triple-stranded β-sheet with 
one α-helix. This pseudocyclic 
peptide is stabilized by four 
disulfide bonds [16] (PDB code: 
1MR4). Images generated using 
Pymol [17]

Fig. 2   Key examples of CAP-membrane interactions. Initial electro-
static interactions between CAP and negatively charged membrane 
components are followed by accumulation of CAP molecules on the 
plasma membrane leading to transient pore formation. Alternatively, 

insertion of CAPs into the membrane resulting in membrane disrup-
tion and/or internalization may occur as depicted in classic models 
of CAP-mediated membrane permeabilization including ‘carpeting’, 
‘toroidal pore’ (or wormhole) and ‘barrel-stave’ models
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What makes tumor cells susceptible to CAPs?

As mentioned above, a key feature of tumor cells that 
increases their susceptibility to CAP-mediated cytotoxicity 
is a higher overall net negative charge relative to their non-
tumor counterparts, resulting from a number of key factors.

Increased exposure of anionic phospholipids 
in the plasma membrane

Changed conditions within the tumor microenvironment 
including elevated reactive oxygen species (ROS)  and 
hypoxia can lead to dysregulation of phospholipid transport-
ers that are responsible for maintaining plasma membrane 
phospholipid asymmetry under normal conditions [21]. 
In particular, the maintenance of the higher concentration 
of the anionic phospholipids phosphatidylserine (PS) and 
phosphatidylethanolamine (PE) in the inner membrane 
can be lost, leading to their elevated presence in the outer 
membrane [22, 23]. This phenomenon is seen both in the 
tumor vascular endothelium as well as in epithelial and other 
cells of the tumor microenvironment and has been associ-
ated with increased cell survival and cancer progression, 
such as through activation of the blood coagulation cascade 
that can trigger pro-survival signalling [24]. The notion 
that CAPs may target cancer cells with increased anionic 
phospholipid exposure has been investigated, predominantly 
through experiments involving both liposomes of different 
phospholipid compositions, as well as tumor cell lines with 
known PS exposure. The requirement for PS (or other ani-
onic phospholipids) to induce lysis or cytotoxicity has been 
demonstrated in this context for several CAPs [25–29].

Increased expression of anionic cell surface 
glycoproteins

In addition to anionic membrane phospholipids, various 
anionic glycoproteins are commonly overexpressed in can-
cers, contributing to the overall negative charge on the outer 
tumor cell surface. One example are mucins, glycoproteins 
present on the apical surface of epithelial cells that con-
tain repeated regions of O-glycosylation, giving them a net 
negative charge [30]. Over expression of transmembrane 
mucins has been reported in carcinomas of the breast, pros-
tate, lung and pancreas [30]. Similarly, heparan sulfate pro-
teoglycans (HSPGs) are negatively-charged molecules pre-
sent at the cell surface that interact with numerous ligands 
including growth factors, cytokines and enzymes and are 
overexpressed in breast, lung, brain, pancreatic, skin, and 
colorectal cancers [31]. The negative charge of both mucins 
and HSPGs has been suggested to electrostatically enhance 
CAP interactions at the surface of tumor cells to promote 
binding [5, 9].

Other factors

Alterations in the physical properties of tumor cell mem-
branes have also been suggested to increase their susceptibil-
ity to CAP-mediated interactions. For example, an increase 
in membrane fluidity (e.g. due to lowered cholesterol con-
centrations), has been commonly reported in malignant cell 
types [32–35] and may facilitate penetration of CAPs into 
the lipid bilayer. In addition, increased levels of microvilli, 
thereby leading to an increase in the overall surface area of 
the tumor cell plasma membrane, could draw a higher con-
centration of CAP molecules to the cell surface to facilitate 
destabilization [36–38].

CAPs with anticancer activity

As mentioned, many CAPs display anticancer activity, as 
assessed by a number of approaches ranging from in vitro 
cell viability assays through to in vivo tumor regression tri-
als using xenograft models of cancer. In addition to CAPs 
isolated directly from natural sources, many de novo pep-
tides have been designed and synthesized through modifica-
tion of specific residues or regions of the native peptide to 
enhance function, increase selectivity and reduce off-target 
effects. The following are selected examples of membrano-
lytic CAPs from various species and their optimized deriva-
tives that have demonstrated the ability to kill cancer cells. 
Tables 1, 2 and 3 contain extended lists of anticancer CAPs 
with Tables 1 and 2 describing in vitro anticancer activ-
ity of α-helical CAPs and β-sheet/β-hairpin CAPs, respec-
tively. Table 3 describes in vivo anticancer activity of both 
α-helical and β-sheet/β-hairpin CAPs.

α‑Helical peptides

Several α-helical CAPs from mammals, amphibians and 
insects have exhibited membranolytic activity towards tumor 
cells, with some of these also demonstrating the ability to 
target intracellular pathways, thereby inducing apoptosis or 
other forms of cell death (Tables 1, 3).

Mammalian α‑helical peptides

Cathelicidins are a major class of mammalian CAP, found 
in the lysosomes of macrophages and polymorphonuclear 
leukocytes (PMNs). LL-37 is the only known human catheli-
cidin, and has diverse roles in innate and adaptive immunity, 
including microbial membrane permeabilization and growth 
inhibition [39, 40], chemotaxis [41] and wound healing [42]. 
The propensity of LL-37 to form oligomers in vitro has also 
been demonstrated [43] (Box 1) and this has been suggested 
to contribute to the formation of toroidal pores to induce 
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membrane destabilization [44] (Fig. 3a). In terms of anti-
cancer activity, LL-37 has been reported to induce mem-
brane permeabilization of U937 cells at low micromolar 
concentrations whilst displaying only low-level haemolytic 
activity, indicating selectivity towards the neoplastic cell line 
[43]. LL-37 was also reported to induce calpain-mediated, 
caspase-independent apoptosis in Jurkat cells [45]. The 
bovine homologs of LL-37, BMAP-27 and BMAP-28, dis-
play membrane permeabilizing activity towards a range of 
myeloid and lymphoid leukemia cells lines at low micromo-
lar concentrations, with minimal effect on normal human 
lymphocytes at these concentrations [46]. Interestingly, 
treating U937 cells with neuraminidase to cleave sialylated 
glycoproteins, significantly reduced the activity of both pep-
tides in this study, suggesting mucins may play a role in their 
anticancer activity. BMAP-28 was subsequently shown to 
induce mitochondrial permeability transition pore opening 
and cytochrome c release, lending further support that this 
peptide can activate apoptosis [47] (Fig. 3b).

Amphibian and fish α‑helical CAPs

Several CAPs isolated from fish and amphibian species 
exhibit anticancer activity via membrane targeting (Tables 1, 
3). The α-helical CAP isolated from the African clawed frog, 
magainin 2 (MG2) and a number of synthetic derivatives 
of this peptide, exhibit anticancer activity on a range of 
mammalian cancer cell lines. Human lung A549 cells and 
murine Ehlrich ascites tumor cells displayed reduced cell 
viability in vitro following treatment with MG2 [48], whilst 
a synthetic analog of magainin known as Pexiganan MSI-78 
displayed growth inhibition as well as membrane disruption 
of U937 cells accompanied by the release of TNF-α [49]. 
Significantly increased cytotoxic activity was observed with 
MSI-136, a synthetic MG2 homolog with enhanced amphi-
pathic α-helical structure, when compared with wildtype 
MG2. Similarly, an all d-amino acid version of MSI-136, 
MSI-238, designed for improved protection from proteolytic 
cleavage [50, 51], displayed even greater efficacy [48].

The ability of MG2-based peptides to more efficiently 
target the membranes of tumor cells was later investigated by 
designing a MG2 conjugate with bombesin, a 14-amino acid 
peptide from frog skin, which binds a range of tumor cells 
with high affinity [52]. The resultant MG2-bombesin conju-
gate (MG2B) displayed potent cytotoxicity, with IC50 values 
reduced by up to 16-fold on MCF-7 (breast) and A357 (mel-
anoma) tumor cell lines, compared with MG2 alone [52]. It 
was further shown in the same study that MG2B induced 
caspase-dependent cell death in a proportion of MCF7 cells. 
This indicated that, in addition to inducing necrosis via 
membrane permeabilization, MG2B can also induce apop-
tosis, possibly via internalizing and causing mitochondrial 
damage. In addition, a xenograft mouse model of cancer Ta
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e 

1  
(c

on
tin

ue
d)

Pe
pt

id
e 

cl
as

s
Sp

ec
ie

s/
sp

ec
ie

s d
er

iv
ed

 fr
om

Pe
pt

id
e 

na
m

e
Tu

m
or

 c
el

ls
 te

ste
d

Pr
op

os
ed

 m
ec

ha
ni

sm
Re

fe
re

nc
e[

s]

In
se

ct
s

 C
ec

ro
pi

n
C

ec
ro

pi
a 

m
ot

h 
(H

ua
lo

ph
or

ia
 c

ec
ro

pi
a)

C
ec

ro
pi

n 
A

H
L-

60
C

as
pa

se
-in

de
pe

nd
en

t a
po

pt
os

is
[1

14
]

C
hi

ne
se

 o
ak

 si
lk

m
ot

h 
(A

nt
he

ra
ea

 
pe

rn
yi

)
C

ec
ro

pi
n 

B
, C

ec
ro

pi
n 

B
-1

 a
nd

 B
2 

(C
ec

ro
pi

n 
B

 d
er

iv
at

iv
es

)
H

L-
60

, K
-5

62
, J

ur
ka

t, 
C

C
R

F-
C

EM
G

ro
w

th
 in

hi
bi

tio
n,

 m
em

br
an

e 
pe

rm
ea

-
bi

liz
at

io
n

[3
6]

C
hi

ne
se

 o
ak

 si
lk

m
ot

h 
(A

. p
er

ny
i),

 
C

ec
ro

pi
a 

m
ot

h 
(H

. c
ec

ro
pi

a)
C

ec
ro

pi
n 

A
, C

ec
ro

pi
n 

B
48

6P
, R

T4
, 6

47
V,

 J8
2

G
ro

w
th

 in
hi

bi
tio

n,
 m

em
br

an
e 

pe
rm

ea
-

bi
liz

at
io

n
[5

5]

H
ou

se
fly

 (M
us

ca
 d

om
es

tic
a)

C
ec

ro
pi

n
B

EL
-7

40
2

C
as

pa
se

-d
ep

en
de

nt
 a

po
pt

os
is

[1
15

]
 M

el
itt

in
H

on
ey

 b
ee

 (A
pi

s m
el

lifi
ca

)
M

el
itt

in
H

L6
0,

 l1
21

0
M

em
br

an
e 

pe
rm

ea
bi

liz
at

io
n

[5
8,

 5
9]

H
on

ey
 b

ee
 (A

. m
el

lifi
ca

), 
pi

tv
ip

er
 (G

ly
‑

di
us

 u
ss

ur
ie

ns
is

)
D

LM
 (M

el
itt

in
-d

is
in

te
gr

in
 c

on
ju

ga
te

)
B

T-
54

9,
 M

D
A

-M
B

-2
31

, M
C

F-
7,

 
SK

O
V-

3,
 S

M
M

C
-7

72
1

G
ro

w
th

 in
hi

bi
tio

n,
 m

em
br

an
e 

di
sr

up
-

tio
n

[6
2]



3815Tumor cell membrane‑targeting cationic antimicrobial peptides: novel insights into mechanisms…

1 3

Table 2   In vitro anticancer activity of β-sheet and β-hairpin cationic antimicrobial peptides

Peptide class Species/species derived 
from

Peptide name Tumor cells tested Proposed mechanism Reference[s]

Mammals
 Neutrophil peptides Human (H. sapiens) HNP-1, HNP-2, HNP-3 Raji, U937, K562, IM-9, 

WIL-2
Membrane permeabili-

zation
[72]

Human (H. sapiens) HNP-1 Oral squamous cell 
carcinoma

Growth inhibition [116]

Human (H. sapiens) HNP-1 NMB-7, LAN-5, LAN-1 Membrane permeabili-
zation

[117]

Rabbit (Lepus curpae‑
ums)

NP-1, NP-2, NP-3a, 
NP-3b

Raji, U937, K562, IM-9, 
WIL-2

Membrane permeabili-
zation

[72]

 Lactoferricin Cow (B. taurus) Lactoferricin B (LfcinB) A range of leukemia, 
breast, colon and ovar-
ian cancers

Apoptosis, mitochondrial 
membrane damage

[63]

Cow (B. taurus) Lactoferricin B (LfcinB) Jurkat Membrane permeabiliza-
tion, apoptosis

[11]

Cow (B. taurus) Lactoferricin B (LfcinB) Kelly, SK-N-DZ, IMR-
32, 1640, SHEP-1

Plasma and mitochon-
drial membrane 
permeabilization

[66]

Cow (B. taurus) Lactoferricin B (LfcinB) MDA-MB-435 (used 
synergistically with 
tamoxifen)

Apoptosis [118]

Cow (B. taurus) Lactoferricin B (LfcinB) Jurkat, CCRF-CEM Ceramide-enhanced 
apoptosis

[119]

Cow (B. taurus) Lactoferricin B (LfcinB) AGS Apoptosis, late-stage 
inhibition of autophagy

[64]

Human (H. sapiens) LF11-322, 6-MO-
LF11-322, R-DIM-
P-LF11-322 (Human 
lactoferricin deriva-
tives)

SBcl-2 Phosphatidylserine-
dependent membrane 
permeabilization, 
apoptosis

[26, 29]

 Protegrin Pig (Sus scrofa) Protegrin-1 U937 Membrane permeabiliza-
tion, growth inhibition

[49]

 Human β-defensin Human (H. sapiens) HBD-3 U937, Jurkat, HL-60, 
HeLa, PC3

PIP2-mediated mem-
brane permeabilization, 
growth inhibition

[88]

Other
 Gomesin Brazilian tarantula 

(Acanthoscurria gome‑
siana)

Gomesin B16F10, SKBr3, LS180, 
HeLa, SKMel 19, 
A2058

Membrane permeabili-
zation

[69]

Brazilian tarantula (A. 
gomesiana)

Gomesin SH-5YSY Membrane permeabiliza-
tion/necrotic cell death

[68]

 Tachyplesin Horseshoe crab (Tachy‑
pleus tridentatus)

Tachyplesin-RGD TSU, B16 Growth inhibition, 
apoptosis

[70]

Horseshoe crab (T. 
tridentatus)

Tachyplesin TSU Activation of com-
plement pathway, 
proteoglycan-mediated 
membrane permeabi-
lization

[71]
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using MCF-7 cells revealed that MG2B could significantly 
reduce tumor growth in vivo, compared with MG2 alone, 
further highlighting the value in modifying native CAPs 
such as magainin to achieve optimized hybrid peptides with 
superior function [52].

Anticancer CAPs isolated from a small number of fish 
species have also been reported. Of note is epinecidin-1, a 
CAP synthesized from cDNA isolated from the grouper fish 
(Epinephelus coioides), predicted to be α-helical in struc-
ture [53]. Epinecidin-1 displayed growth inhibitory activity 
towards a range of human and mouse tumor and non-tumor 
cell lines, with HT1080 (fibrosarcoma) and U937 cells dis-
playing the greatest sensitivity [54]. The apoptosis-inducing 
effects of epinecidin-1 were also reported, revealing that epi-
necidin-1 induced DNA fragmentation and caspase activa-
tion in U937 cells [10].

Insect α‑helical CAPs

Cecropins are a group of α-helical insect CAPs first identi-
fied in the Cecropia moth (Hyalpohoria cecropia). Several 
cecropins and their derivatives have demonstrated anticancer 
activity, including growth inhibition, membrane permeabili-
zation and induction of apoptosis [36, 55, 56]. Cecropin B, 
isolated from the Chinese oak silk moth (Antheraea pernyi) 
as well as two synthetically designed derivatives with 
increased cationicity, Cecropin B-1 and B-2, were tested on 
a range of human leukemic and normal fibroblast cell lines. 
Membrane lysis of leukemic cells was observed for all three 
peptides with greater potency observed for the derivatives 
with higher positive charge [36]. A more recent in vivo study 
investigating the effects of the Musca domestica (house fly) 
cecropin on a BEL-7402 human hepatocellular carcinoma 
xenograft mouse model, demonstrated that this cecropin 
could successfully suppress tumor growth [56].

The European honey bee CAP, melittin, which consti-
tutes up to 50% dry weight of bee venom, has been widely 
described as possessing anticancer properties including 

growth inhibition, apoptosis and membrane permeabiliza-
tion [57–59]. However, the comparable haemolytic effects 
of melittin [59] have posed challenges in further develop-
ing this peptide as an anticancer therapeutic. One approach 
to overcome this poor selectivity for tumor cells has been 
the design of hybrid peptides comprised of the N-terminal 
regions of melittin with other lytic peptides such as cecropin 
[60, 61]. Indeed, fusion of the Gloydius ussuriensis pitviper 
peptide, disintegrin, via a cleavable linker with melittin to 
form DLM (disintegrin–linker–melittin) resulted in selec-
tive growth inhibition and membrane disruption of human 
breast and ovarian cancer cell lines whilst displaying mini-
mal haemolytic activity [62].

β‑Sheet‑rich CAPs

In addition to the numerous α-helical CAPs investigated for 
anticancer properties, a number of β-sheet-rich CAPs that 
are active against tumor cells have also been characterized, 
including those with β-hairpin, larger β-sheet, and mixed 
β-sheet/α-helix tertiary structures (Table 2, 3).

β‑Hairpin CAPs

A handful of β-hairpin CAPs from mammalian and inverte-
brate species have demonstrated anticancer activity. Lacto-
ferricin is an antimicrobial peptide resulting from trypsin 
cleavage of the 80 kDa milk glycoprotein lactoferrin, present 
in humans and cows. Bovine lactoferricin (LfcinB) has been 
widely shown to induce apoptosis in tumor cells. Mader and 
colleagues reported caspase-dependent DNA fragmentation, 
mitochondrial association and cytochrome c release follow-
ing LfcinB treatment [11, 63] (Fig. 3c). The selectivity of 
LfcinB for tumor cell lines over primary cells was deter-
mined with a range of leukemia, breast, colon and ovarian 
tumor cell lines displaying between 20 and 90% increases in 
growth inhibition compared with untransformed cell types 
[63]. Another study reported that induction of apoptosis 

Table 2   (continued)

Peptide class Species/species derived 
from

Peptide name Tumor cells tested Proposed mechanism Reference[s]

 Plant defensins Ornamental tobacco 
(Nicotiana alata)

NaD1 U937, HeLa, PC3, Jurkat PIP2-mediated mem-
brane permeabilization, 
growth inhibition

[16]

Tomato (Solanum lyco‑
persicum)

TPP3 U937, HeLa, Jurkat, PC3 PIP2-mediated mem-
brane permeabilization

[83]

Yardlong bean (Vigna 
sesquinpedalis)

Sesquin M1 (leukemia), MCF-7 Growth inhibition [79]

String bean (Phaseolus 
vulgaris)

Spotted bean defensin L1210, MBL2 Growth inhibition [81]

Lima bean (Phaseolus 
lutanus)

Lunatusin MCF-7 Growth inhibition [80]
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by LfcinB in gastric carcinoma cells was shown to involve 
late-stage inhibition of autophagy, as determined by cas-
pase cleavage of the autophagy-associated protein, beclin-1 
[64]. The in vivo anticancer effects of LfcinB have also 
been demonstrated in rodents. Significant inhibition of both 
metastasis and angiogenesis was observed in a lymphoma 
xenograft model of liver, spleen and lung metastasis and in a 
B16-BL6 model of angiogenesis in mice [65], whilst a neu-
roblastoma xenograft model in rats demonstrated significant 
LfcinB-mediated tumor growth inhibition compared with 
controls [66]. More recently, modification of LcfinB to a 
tetrameric peptide comprised of the active ‘core sequence’ 
known as LfcinB(20–25)4 has also been investigated for its 
anticancer effects in vivo. Intratumoral administration of the 
peptide in an oral squamous cell carcinoma golden Syrian 
hamster model of disease demonstrated significant antitumor 
effects compared with control peptides, proposed to be via 
an enhanced cytotoxic effect of the peptide [67]. Investiga-
tions into the anticancer properties of human lactoferricin 
have also been reported. Riedl and colleagues showed that 

R-DIM-P-LF11-322, a human lactoferricin-derived peptide 
was able to induce apoptosis via the specific targeting of 
exposed PS in the outer membrane of melanoma and glio-
blastoma cells as well as in PS-containing liposomes [26, 
29].

Other β-hairpin CAPs of note include protegrin, gomesin 
and tachyplesin. Protegrin-1, isolated from pig leukocytes, 
displayed both growth inhibitory and membrane permeabi-
lizing activity towards U937 cells [49]. Gomesin, isolated 
from the Brazilian tarantula spider (Acanthoscurria gomesi‑
ana) induced necrotic cell death in SH-5YSY neuroblastoma 
cells, involving l-type calcium channel-mediated intracel-
lular calcium flux, ROS production and MAPK/ERK, PKC 
and PI3K signalling [68] (Fig. 3d). In vivo, topical treatment 
of gomesin on mice with B16F10 melanomas resulted in sig-
nificantly increased survival times compared with controls 
[69]. Lastly, the horseshoe crab (Tachypleus tridentatus) 
peptide, tachyplesin, has also demonstrated both in vitro and 
in vivo anticancer activity. A synthetic conjugate of tachy-
plesin, RGD-tachyplesin, that contains an integrin binding 

Fig. 3   Mechanisms of CAP-mediated tumor cell killing. a The 
human cathelicidin, LL-37, induces membrane permeabilization of 
tumor cells possibly via forming oligomeric membrane pores of up 
to seven peptides. b Bovine cathelicidins BMAP 27/28 activate apop-
totic pathways in tumor cells, demonstrated via DNA fragmentation 
and cytochrome c release, possibly dependent on an interaction with 
cell-surface mucins. c The bovine β-haripin peptide, lactoferricin 
B (LfcinB) induces mitochondrial membrane permeabilization, 
cytochrome c release and DNA fragmentation, with phosphatidylser-
ine-mediated plasma membrane permeabilization demonstrated for 

the synthetic derivative of human lactoferricin, R-DIM-P-LF11-322. 
d The β-hairpin tarantula peptide, gomesin, induces necrotic cell 
death via l-type calcium channel activation, ROS production and 
activation of the MAPK/ERK signalling pathway. e The apoptosis-
inducing activity of the horseshoe crab peptide, tachyplesin, has been 
suggested to involve an interaction with glycosaminoglycans at the 
tumor cell membrane. f Human neutrophil peptide 3 (HNP-3) dimer-
izes and may form higher oligomers to destabilize target membranes. 
g The plant defensin, NaD1, oligomerizes at the inner membrane of 
tumor cells with PIP2, inducing membrane blebbing and lysis
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motif proposed to facilitate internalization, displayed selec-
tive membrane permeabilization and caspase activation [70]. 
Interestingly, tachyplesin (unconjugated to RGD) interacted 
with C1q, a component of the complement pathway in vitro, 
which was proposed to facilitate its anticancer activity. The 
authors suggested that glycosaminoglycans such as hyalu-
ronan may play a role in the interaction between tachyplesin 
and the tumor cell membrane [71] (Fig. 3e).

Neutrophil peptides (α‑defensins)

Early studies describe the membranolytic effects of neutro-
phil peptides, also known as α-defensins, from humans and 
rabbits [72]. Human neutrophil peptides HNP-1, HNP-2 and 
HNP-3 as well as a range of rabbit neutrophil peptides dis-
played cytolytic activity towards Raji, U937, K562, IM-9 
and WIL-2 tumor cell lines, with varying degrees of lysis 
reported [72]. It is currently unknown how α-defensins, 
which are structurally comprised of a triple-stranded antipar-
allel β-sheet, interact with the plasma membrane of target 
cells, although crystal structures of HNP-3, HNP-4, HD-5 
and HD-6 have been solved, revealing that these defensins 
form dimers (or tetramers, in the case of HD-6) which may 
facilitate membrane lysis [73, 74] (Fig. 3f, Box 1). More 
recently, the intracellular effects of HNP-1 were investigated 
by expressing HNP-1 in A549 lung adenocarcinoma cells, 
which resulted in apoptosis induction over 48 h. The in vivo 
activity of HNP-1 was also examined in a xenograft mouse 
model of lung cancer, in which intracellular expression of 
HNP-1 in A549 cells resulted in significant tumor shrink-
age compared with controls, proposed to be via apoptosis 
induction. [75].

Plant defensins, β‑defensins and related CAPs

Plant defensins, previously known as γ-thionins before 
being recognized as a distinct class of peptides [76], adopt 
a tertiary structure that is highly conserved across species 
and consists of a triple-stranded antiparallel β-sheet with an 
α-helix, stabilized by four (or five) disulfide bridges, folded 
into a “cysteine-stabilized alpha–beta” (CSαβ) configuration 
[77, 78]. Whilst a number of plant defensins and defensin-
like peptides derived from legume species have been shown 
to exhibit growth inhibitory activity on various tumor cell 
lines in vitro [79–82], no further investigations into the 
specific mechanism of action has been reported in these 
examples. However, insights into the molecular interactions 
between defensins and the plasma membrane of target cells 
have recently been described for two related defensins from 
the Solanaceae plant family, demonstrating selective mem-
brane permeabilizing anticancer activity towards a range of 
mammalian tumor cell lines [16, 83]. The first, the orna-
mental tobacco defensin, NaD1, displayed cytotoxic activity 

toward U937, Jurkat, Hela and PC3 cells at low micromolar 
concentrations (~10 μM) via rapid membrane lysis, accom-
panied by large plasma membrane blebs, suggesting the 
induction of necrotic cell death [16]. The activity of NaD1, 
not only against mammalian tumor cells but also filamentous 
fungi and yeast cells, was shown to involve the presence of 
the negatively-charged plasma membrane phosphatidylino-
sitol 4,5-bisphosphate (PIP2) [16, 84]. Importantly, through 
solving the crystal structure of NaD1 in complex with PIP2, 
valuable molecular information was gained regarding the 
peptide–lipid interaction and how this may contribute to 
membrane destabilization. The formation of an arch-shaped 
oligomer was revealed, comprised of seven NaD1 dimers in 
a configuration termed the ‘cationic grip’, interacting with 
14 PIP2 molecules within the inner cationic groove of the 
arch (Box 1). A number of biophysical and cell-based analy-
ses presented within this study supported the hypothesis that 
in a cellular context, this oligomeric interaction could facili-
tate NaD1-mediated membrane lysis upon contact with PIP2 
molecules in the tumor cell membrane [16] (Fig. 3g). NaD1 
was subsequently investigated for its potential to induce 
apoptosis in mammalian tumor cells across a broad range 
of time frames and concentrations, revealing NaD1 does 
not induce apoptosis and is solely a necrosis-inducing pep-
tide that acts via a PIP2-dependent membranolytic pathway 
[85]. More recently, the anticancer activity of the related 
tomato defensin, TPP3, was also investigated [83]. TPP3 
displayed comparable cytolytic activity towards tumor cells 
as seen with NaD1. The activity of TPP3 was also shown to 
be dependent on plasma membrane PIP2, whilst the solved 
crystal structure of TPP3 revealed the formation of a dimer 
highly homologous to the ‘cationic grip’ dimer previously 
observed for NaD1, capable of binding PIP2 and highlight-
ing a conserved mechanism of action for these two solana-
ceous defensins (Box 1) [83]. Significantly, these were the 
first reports of lipid-mediated oligomerization to induce tar-
get cell death by a CAP and the first examples of PIP2 being 
identified as the target lipid of a CAP in its membranolytic 
mechanism of tumor cell-killing. Such findings highlight the 
value in structural exploration of CAP-mediated membrane 
interactions (e.g. via X-ray crystallography), through which 
specific interactions with membrane targets can be revealed 
(Box 1).

Power in numbers: molecular structures 
of peptides provide insights into dimer‑driven 
membrane interactions

The ability of CAPs to dimerize has been implicated in 
the process of target membrane disruption for a num-
ber of peptides. The related solanaceous plant defensins, 
NaD1 and TPP3, both form a ‘cationic grip’ dimer, which 
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has been implicated in the process of tumor cell lysis 
by these defensins [16, 83]. For NaD1, X-ray crystal-
lography revealed that seven NaD1 dimers each bound 
to two PIP2 molecules interact to form a large oligomer, 
suggesting that in vivo, NaD1 dimers may interact with 
membrane PIP2 to form lipid–peptide oligomeric com-
plexes that disrupt both fungal and mammalian tumor cell 
membranes [16]. Whilst the crystal structure of the TPP3 
dimer was solved in the absence of PIP2, site-directed 
mutagenesis studies revealed that, as with NaD1, both 
PIP2 binding and oligomerization were important for 
tumor cell lysis by this peptide. Interestingly, tetramers 
of this peptide were observed in the crystal unit, further 
suggesting that higher-order oligomers may form in vivo 
[83] (Fig. 4a).

In addition to elucidating specific molecular inter-
actions at the peptide–membrane interface, structural 
investigations can also reveal how dimerization of pep-
tides leads to the formation of polar or uncharged sur-
face regions that can facilitate membrane penetration. For 
example, the human α-defensin HNP-3 can form dimers 
in solution [73], with analysis of the crystal structure 
of HNP-3 providing insights into how this peptide may 
interact with anionic lipid bilayers [73, 74]. It has been 
suggested that two or more HNP-3 dimers may disrupt 

the bilayer via interactions between cationic residues and 
anionic phospholipid head groups, as well as via hydro-
phobic patches on the dimer, to enable the formation of 
membrane pores [73] (Fig. 4b). Likewise, the human 
cathelicidin, LL-37, has been proposed to dimerize at 
the membrane of target cells to facilitate membrane dis-
ruption. It has been suggested that LL-37 dimers form by 
masking their hydrophobic faces towards each other and 
away from the membrane to allow electrostatic membrane 
interactions and the subsequent formation of oligomeric 
membrane pores [44] (Fig. 4c). Whilst models of dimer-
mediated membrane interactions for both HNP-3 and 
LL-37 have only been studied in bacterial membranes 
thus far, an increase in anionicity on the tumor cell sur-
face could facilitate this process in the context of mam-
malian tumor cells, for both of these peptides. Thus, the 
propensity of CAPs to form dimers or higher oligomers 
can contribute to their membrane-lytic abilities.

Fig. 4   Dimer formation of different CAPs, which may contribute to 
CAP-mediated tumor cell membrane lysis. a NaD1 and TPP3 form 
cationic grip dimers that oligomerize with PIP2 in the membrane of 
tumor cells, leading to cell lysis. b HNP-3 forms dimers in solution 
and may form tetramers or higher oligomers at target membranes. 

The hydrophobic dimer faces have been suggested to point into the 
bilayer to form membrane pores. c The proposed dimerization of 
LL-37 masks the hydrophobic face of the peptide to enable electro-
static membrane interaction and subsequent formation of membrane 
pores. Images were generated using Pymol

Since these initial findings, the ability of another closely 
related defensin from Nicotiana suaveolens, NsD7, to form 
oligomers with the membrane phospholipid, phosphatidic 
acid (PA), has been demonstrated, suggesting that these 
peptides may have evolved to target a range of membrane 
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lipids to facilitate membrane disruption [86]. It is worth not-
ing, however, that recent investigations into the antifungal 
mechanism of NaD1 by Bleackley and colleagues indicate a 
multi-faceted process in which cell wall binding, membrane 
lysis and cell entry by NaD1 are required to elicit fungal cell 
death [87]. In this setting, PIP2 is implicated as just one of 
several cellular ligands involved in the antifungal mechanism 
of NaD1.

Stemming from these investigations into the lipid-bind-
ing activity of plant defensins has been the discovery that a 
human defensin also mediates tumor cell membrane permea-
bilization via PIP2-binding [88]. The triple-stranded β-sheet 
peptide, human β-defensin 3 (HBD-3), which is structurally 
very similar to NaD1 and TPP3, displays selective antican-
cer activity against a range of mammalian tumor cell types 
through membrane lysis which is dependent on the presence 
of plasma membrane PIP2 [88]. It remains to be determined 
whether HBD-3 also undergoes oligomerization in its PIP2-
binding mechanism of membrane lysis. Despite adopting 
a similar fold and a similar mechanism of PIP2-mediated 
membrane targeting, human β-defensins including HBD-3 
have been recently described as evolutionarily unrelated to 
plant defensins [89, 90]. Thus, the ability of defensins across 
species and kingdoms to elicit cytotoxic activity via a com-
mon lipid ligand, suggests that PIP2-binding may remark-
ably be a convergent evolutionary trait of these peptides with 
potential for further development therapeutically.

Prospects for CAPs as anticancer therapeutics

Identification and characterization of the numerous CAPs 
that display anticancer properties, as well as the de novo 
synthesis of optimized derivatives, provides a rich source 
of knowledge from which a potentially valuable class of 
novel anticancer drugs may evolve. Although the major-
ity of reports on CAP-mediated anticancer activity are 
still based on in vitro findings, much of the in vivo data 
available illustrates that many CAPs, including both those 
of α-helical and β-sheet structure, can effectively suppress 
tumor growth in mouse models. However, major challenges 
are faced in determining the therapeutic efficacy of CAPs, 
such as maintaining peptide stability in serum and overcom-
ing toxicity within therapeutic windows. To date, there have 
been no CAPs that have reached human clinical trial status 
as anticancer drugs, further highlighting the progress yet to 
be made in this field.

Overcoming poor stability in serum

Poor stability of CAPs in human serum due to the pres-
ence of serum proteases can cause peptide degradation and 
therefore reduce bioavailability [91]. In addition, anionic 

serum proteins may interfere with charge-based peptide 
activity, leading to reduced efficacy. One approach to over-
come this has been vector-mediated gene delivery of anti-
cancer peptides in vivo [75]. Based on previous evidence 
that HNP-1 displayed immunomodulatory effects towards 
renal cell carcinoma and cervical cancer, Xu and colleagues 
intratumorally delivered HNP-1 in the form of plasmid DNA 
in an A549 xenograft model in mice. They demonstrated 
that vector-mediated expression of HNP-1 could effectively 
inhibit tumor growth via the induction of apoptosis, increase 
lymphocyte infiltration and inhibit angiogenesis [75]. For 
some amphipathic α-helical CAPs, the development of all-d 
amino acid derivatives has demonstrated improved stabil-
ity in serum [48, 92, 93]. In the case of both the magainin 
derivative, MSI-238 and the pleurocidin-like [d]-NRC03, 
it was proposed that the observed increase in in vivo anti-
cancer efficacy was owing to this stability [48, 93]. Other 
CAPs such as the antimicrobial, CSαβ-configured defensin 
from the Pesudoplectania nigrella fungus, plectasin, dis-
play natural stability in serum [94]. Whilst plectasin has not 
been investigated for its anticancer properties, it exhibits 
promising in vivo activity as an antibacterial agent against 
Staphlococcus aureus in combination with other commercial 
antibiotics [95]. This supports the notion that other peptides 
possessing the CSαβ architecture (such as NaD1 or TPP3) 
may also be suitably stable in serum for use in vivo as anti-
cancer agents.

Overcoming toxicity, improving specificity

Some CAPs are effective against cancer cells but also dis-
play toxicity towards healthy cells or only demonstrate a 
low level of specificity for tumor cells. In vivo, this may 
translate to significant negative off-target effects and, for 
this reason, may not prove viable for therapeutic use. There-
fore, where applicable, improving tumor cell specificity, 
or the possibility of specific tumor targeting, must also be 
considered. For example, in addition to the use of vector-
mediated gene delivery of CAPs as a means of overcoming 
serum instability, this method has also been employed for 
its potential to reduce toxicity towards healthy cells and/or 
improving target cell specificity in vivo [96–98]. Intratu-
moral expression of HNP-1 used in combination with doxo-
rubicin showed improved efficacy in tumor shrinkage and 
reduced lung metastasis in a 4T1 mouse model of breast 
cancer compared with single agent treatment [96]. More 
recently, an inducible adenovirus–melittin transgene vec-
tor designed to specifically target hepatocellular carcinoma 
cells in a xenograft mouse model, was able to significantly 
shrink tumor volume in mice and prolong lifespans, com-
pared with controls [98]. An alternative approach to improve 
specificity with α-helical CAPs has been to develop hybrid 
peptides combining active regions of multiple peptides to 
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improve specificity, such as the MG2-bombesin peptide 
and the cecropin–melittin hybrids, described above [52, 60, 
61]. In addition, based on the discovery that all-d amino 
acid α-helical peptides increase stability in serum, the de 
novo design of diastereomeric peptides, that is, membrano-
lytic peptides bearing a combination of both d- and l-amino 
acids, has also been investigated. In such studies, improved 
tumor cell specificity in vivo was observed due to optimized 
helical charge distribution [99, 100]. For example, the dias-
tereomeric peptide l3,10,13k7,8K4R2L9 designed by Shai et al., 
when administered intravenously to tumor-bearing mice, dis-
played the ability to shrink tumor growth of both lung car-
cinoma and melanoma tumors, with minimal negative side 
effects in mice [99]. More recently, Khono et al. targeted 
EGFR-overexpressing tumor cells by designing a diastere-
omeric hybrid peptide consisting of EGFP binding peptide 
conjugated to an arginine-rich lytic peptide, called ‘EGFR-
lytic’. This peptide was reported to successfully arrest tumor 
growth in athymic nude mouse xenograft models of human 
pancreatic and breast cancer, also with minimal side effects 
[101]. Rationally-designed novel peptides such as these con-
tinue to be developed for their potential both as anticancer 
and other therapeutic agents and are reviewed extensively 
elsewhere [102].

In summary, in addition to those CAPs that display potent 
in vivo activity in their native forms, the design of modified 
or novel peptides that can enhance activity or reduce nega-
tive side effects is proving a worthy pursuit for the future 
prospect of CAPs reaching the clinic as anticancer agents. 
Importantly, at the heart of successfully developing CAPs as 
cancer therapeutics is the need to fully uncover the molec-
ular basis of their anticancer activity, both at the plasma 
membrane level as well as through determining their intra-
cellular targets. Therefore, continued efforts are required to 
fully define the molecular mechanisms of CAP-mediated cell 
killing that will provide such insights in the future.
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