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cord injury patients through remyelination of damaged 
axons [1].

After the sudden discontinuation of the clinical trial 
for undisclosed reasons, the safety and efficacy of hESC-
based cell therapy have been actively discussed in a num-
ber of articles [2–5]. Since the recent outstanding clinical 
results of retinal pigment epithelial (RPE) cells derived 
from hESCs used to regenerate vision following age-related 
macular degeneration (AMD) or Stargardt’s disease [6, 7], 
enormous efforts have been made to examine the efficacy 
and safety of this approach in phase I/II trials. At this time, 
ten hESC-based clinical trials are being undertaken world-
wide for treatment of AMD or Stargardt’s disease, type I 
diabetes mellitus, severe heart failure, and spinal cord 
injury [8, 9].

The pluripotency and active cell proliferation capac-
ity (or high clonogenic capacity with telomerase activity) 
are incomparable technical advantages of human pluripo-
tent stem cells (hPSCs, which include hESCs and human 
induced pluripotent stem cells, iPSCs) over adult stem cells 
in terms of not only pluripotent differentiation potential but 
also a theoretically unlimited supply of desirable cell types. 
Therefore, hPSCs have been considered as a promising cell 
source for regenerative medicine. However, two charac-
teristics of hPSCs (i.e., pluripotency and high clonogenic 
capacity with telomerase activity) are responsible for the 
formation of teratomas, benign tumors composed of three 
germ layers, which has been used to determine the ‘pluri-
potency’ of PSCs in vivo [10–12]. Ironically, the teratoma-
forming capacity of the hPSCs that remain undifferentiated 
after the differentiation process (therefore, tumorigenic 
hPSCs) due to these unique characteristics contributes to 
one of the major hurdles to broader clinical implementation 
of hPSC-based cell therapy [5, 13].

Abstract  Despite the recent promising results of clini-
cal trials using human pluripotent stem cell (hPSC)-based 
cell therapies for age-related macular degeneration (AMD), 
the risk of teratoma formation resulting from residual 
undifferentiated hPSCs remains a serious and critical hur-
dle for broader clinical implementation. To mitigate the 
tumorigenic risk of hPSC-based cell therapy, a variety of 
approaches have been examined to ablate the undifferenti-
ated hPSCs based on the unique molecular properties of 
hPSCs. In the present review, we offer a brief overview of 
recent attempts at selective elimination of undifferentiated 
hPSCs to decrease the risk of teratoma formation in hPSC-
based cell therapy.

Keywords  Teratoma · Human pluripotent stem cells · 
Selective cell death · Apoptosis · Safe stem cell therapy

Introduction

The first clinical trial of human embryonic stem cell 
(hESC)-based cell therapy was approved by the FDA on 
January 23, 2009 and was launched by the Geron Corpo-
ration, a biotechnology company in the United States. The 
clinical trial was performed with oligodendrocyte progeni-
tors (GRNOPC1) derived from hESCs to treat acute spinal 
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It is notable that none of the preclinical studies with dif-
ferentiated cells derived from hPSCs in mouse models indi-
cate teratoma formation, although it is generally accepted 
that teratomas frequently develop after transplantation of 
cells derived from mouse ESCs into mouse models, regard-
less of the cell sorting and long-term culture techniques 
used after differentiation to minimize the possible engraft-
ment of residual undifferentiated mESCs [14–16]. This 
difference in tumorigenicity between human and mouse 
PSCs that occurs after the engraftment of the cells derived 
from human or mouse ESCs in a mouse model results from 
host-dependent tumorigenesis. For example, as few as 500 
mESCs can cause a 100% teratoma development rate in a 
mouse model (3 out of 3); however, 80,000 mESCs have 
only a 9% teratoma development rate in a rat model (2 out 
of 22) [17]. Importantly, it was also shown that a mini-
mum of 10,000 hESCs are required to form a teratoma in a 
mouse model [18].

For hPSC-based cell therapy in human subjects, of 
which the tumorigenic effect cannot be determined using 
different species (such as mouse or rat), the risk of tera-
toma formation remains an important technical issue that 
must be fully resolved before the expansion of its clinical 
application [5]. Therefore, a variety of approaches using 
antibodies, suicide genes, stem cell-killing agents (defined 
as ‘stemotoxic agents’), and hypothetical ‘stem cells with-
out tumorigenicity’ (stem cells that do not form a tumor 
in  vivo) have been previously proposed to overcome this 
hurdle [19]. Since then, diverse approaches to this end have 
been actively studied, and one ‘stem cell-killing agent’ is 
even well defined for practical use [20]. Although there 
are already a few excellent review articles that summa-
rize the strategies used to inhibit teratoma formation [21, 
22], we aim to accentuate the important safety concerns of 
hPSC-based cell therapy and summarize the wide range of 
recent advances in preventing teratoma formation, such as 
the use of (1) small molecule-based selective elimination 
(2) genetic approach to introduce a suicide gene or miRNA 
switch, (3) antibodies targeting a surface-specific antigen 
(or antibody-guided toxins), (4) phototoxic approach, and 
(5) live detection and quantification of the residual hPSCs.

High mitochondrial priming in hPSCs

One of the distinct characteristics of hPSCs is their high 
susceptibility to DNA damage [23]. When differentiated 
somatic cells are challenged with genotoxic stimuli, such 
as ultraviolet light, ionizing radiation, or chemotherapeutic 
reagents, the cell cycle is arrested at G1/S to allow DNA 
damage repair before entering the S phase, unless the DNA 
damage is too severe to be repaired and triggers cell death 
[24]. The cell cycle checkpoint and DNA damage repair 

system are important for ensuring the genomic integrity of 
somatic cells. However, unlike in somatic cells, cell cycle 
checkpoints are absent or attenuated in mouse and human 
ESCs [25, 26]. Instead of activating cell cycle arrest, hESCs 
commit cell death even under low genotoxic stress [27]. 
High sensitivity to DNA damage and rapid apoptosis after 
even low-damage insults is some of the unique features of 
hESCs that allow them to avoid deleterious genomic muta-
tions in their differentiated progeny [23].

Recent studies demonstrate that the high sensitivity to 
DNA damage in hESCs results from high induction of the 
mitochondrial cell death mechanism (referred to as ‘high 
mitochondrial priming’), which is mediated by cytoplasmic 
p53 [28] or prompt mitochondrial translocation of consti-
tutively active BAX localized at the Golgi complex [29]. 
The details of mitochondria-dependent cell death in hESCs 
were extensively reviewed recently [30]. The high suscepti-
bility of hPSCs to mitochondrial cell death compared with 
differentiated somatic cells is closely associated with the 
induction of selective cell death of hPSCs by a variety of 
small molecule-based approaches.

Small molecule‑based selective elimination

Small molecules that induce selective cell death of hESCs 
to inhibit teratoma formation were first reported in 2004. 
The ceramide analog N-oleoyl serinol (S18) was shown to 
eliminate mouse and human ESCs through apoptosis and 
promote neural differentiation [31]. Since then, a vari-
ety of small molecules have been demonstrated to induce 
ESC-specific cell death and inhibit (or reduce) teratoma 
formation.

Activating ‘high mitochondrial priming’ for selective 
cell death of hESCs

As mentioned above, the high susceptibility of hESCs to 
cell death is due to the active mitochondria-dependent cell 
death mechanism that results from cytoplasmic p53 [28] 
(or mitochondrial translocation of p53 [32]) or rapid mito-
chondrial translocation of constitutively active BAX [29]. 
Additionally, pro-apoptotic proteins are highly upregulated, 
while a few anti-apoptotic proteins such as baculoviral 
IAP repeat-containing 5 (BIRC5) [32, 33] and B-cell CLL/
lymphoma 10 (BCL10) [32] are expressed to maintain bal-
ance (or promote survival) [34]. Therefore, suppression or 
inhibition of hESC-specific anti-apoptotic proteins, such as 
BIRC5, with YM155 or quercetin (QC) was able to induce 
selective cell death of hPSCs while sparing differentiated 
smooth muscle cells and dopaminergic neurons [32]. Later, 
YM155 treatment was found to be more highly selective 
in eradicating teratoma formation by human iPSCs while 
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sparing CD34+ hematopoietic stem cells (HSCs) in mouse 
models than other genetic approaches using a chemically 
inducible suicide gene system [35].

Similarly, a combination of purvalanol A (Cdk1 inhibi-
tor) and Taxol was used to suppress the expression of sur-
vivin (the protein encoded by BIRC5) to induce cell death 
of hESCs [33]. However, inhibition of survivin, whose 
expression is normally high in a variety of cancers [32, 33], 
for selective cell death of hPSCs could not be used to iso-
late HSCs because survivin is required for HSC survival 
[36].

A recent study also demonstrated that QC treatment pro-
duces reactive oxygen species (ROS) in hESCs but not in 
human dermal fibroblasts (hDFs), leading to activation of 
the mitochondrial cell death pathway through cyclophilin 
D, which is highly expressed in the mitochondria of hESCs 
[37].

Alternatively, etoposide treatment, which leads to DNA 
damage and activates ‘high mitochondrial priming’ [29], 
was sufficient to ‘purge the teratoma risk’ of mouse ESCs 
[38]. Recent studies from Hurskey N. E. et  al. revealed 
that inhibition of CDK1 with small molecules, such as 
purvalanol A, Ro-3306, or dinaciclib, induces DNA dam-
age and achieves selective cell death of mouse and human 
ESCs by inhibiting the anti-apoptotic molecule MCL1 in 
ESCs [39]. Likewise, PluriSIn#2, one of 15 pluripotent 
cell-specific inhibitors (PluriSIns), which were identified 
by Dr. Nissim Benvenisty’s group through high-throughput 
screening [40], induced selective cell death by suppress-
ing the expression of topoisomerase II, which is important 
for maintaining DNA integrity [41]. It is also noteworthy 
that YM155, a known BIRC5 suppressant [42], which was 
used to induce hPSC cell death [32], was shown to induce 
DNA damage in cancer cells expressing high levels of sol-
ute carrier family 35 member F2 (SLC35F2) [43]. In line 
with this, SLC35F2 was previously shown to be a specific 
surface marker of hESCs [44], suggesting that the high 
sensitivity of hPSCs to YM155-dependent cell death [32] 
may result from the DNA damage-mediated mitochondrial 
priming occurring in hPSCs. If so, the use of YM155 to 
selectively eliminate hPSCs would be only applicable when 
the differentiated cells had low levels of SLC35F2.

Inhibiting the specific metabolism of hPSCs

PluriSIn#1, identified as the most selective compound 
for achieving hPSC-specific cell death among the other 
15 PluriSIns identified via high-throughput screening, 
induces ER stress and apoptosis in hPSCs by inhibit-
ing stearoyl-coA desaturase (SCD1) [40]. Later, Pluri-
SIn#1 was found to be effective for isolating cardiomy-
ocytes derived from iPSCs by selectively eliminating 

Nanog-positive cells [45]. Importantly, oleic acid biosyn-
thesis via SCD1 is important for mouse embryonic devel-
opment, suggesting that the unique metabolic processes 
of hPSCs would be a plausible target for purging resid-
ual hPSCs [40]. Similarly, an inhibitor of Erv1 oxidase 
(MitoBloCK-6, a mitochondrial protein import blocker 
from the laboratory of Carla Koehler), which is important 
in the mitochondrial disulfide relay system, was identified 
through chemical screening and selectively induces apop-
totic cell death via cytochrome c release (a key event in 
mitochondrial cell death) in hESCs [46]. Similarly, dif-
ferences in the glucose metabolism of hPSCs (e.g., high 
dependence on glutamine) were also used to selectively 
ablate residual hPSCs after cardiomyocyte differentiation 
using glucose- and glutamine-depleted culture medium 
supplemented with lactate [47].

However, considering the diverse molecular charac-
teristics of desirable cells differentiated from hPSCs, this 
approach, targeting key metabolic enzymes or depleting 
a nutrient essential for hPSCs survival, would be lim-
ited to differentiated cells with low dependency on these 
enzymes or nutrients for their survival.

Other classes of small molecule‑based selective 
elimination

In addition, through in-house compound library screen-
ing under hESCs and mouse embryonic fibroblast (MEF) 
co-culture conditions, JC011 was identified as a selec-
tive cell death inducer of hESCs to inhibit teratoma 
formation [48]. In a similar approach, screening of an 
in-house chemical library of cytotoxic small molecules, 
a derivative of okadaic acid, identified as 27-deoxy-
27-oxookadaate, was found to have selective cytotoxicity 
to hESCs due to the low expression of ATP-binding cas-
sette (ABC) transporters ABCB1 and ABCG2 in hESCs, 
leading to the accumulation of 27-deoxy-27-oxookadaate 
until the cytotoxic concentration was reached [49]. In this 
case, ABCB1 and ABCG2 expression in a certain type of 
differentiated cell would be an important indicator for 
the cytotoxicity of this compound to the differentiated 
cells, such as astrocytes, which are moderately sensitive 
to this compound [49]. Additionally, metformin treat-
ment in vivo was shown to decrease teratoma size in an 
apoptosis-independent manner, although the mechanism 
of this finding was not clearly addressed [50].

Although the approach with small molecules would be 
highly effective and relatively simple, it would be diffi-
cult to guarantee the functional safety of all types of cells 
that differentiate from hPSCs considering their individual 
biological properties.
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Genetic approach to introduce suicide genes 
and miRNA switches

The typical suicide gene approach, which uses selective 
expression of the thymidine kinase gene of the herpes 
simplex virus (HSVtk) in undifferentiated PSCs in com-
bination with the guanosine analog prodrug ganciclovir 
(GCV) [51], was extensively applied to achieve selec-
tive cell death by GCV treatment [52–57]. To prevent the 
undesirable cytotoxicity of GCV treatment from activat-
ing the suicide gene system in the differentiated cells, 
which may cause cytotoxicity to a normal cell type, such 
as lymphoblastoid [58] or corneal endothelial cells [59], 
visual light (540–560 nm of green light) was used instead 
to activate a novel photosensitizer suicide gene system, 
inducing selective cell death of mouse and human ESCs 
but not endothelial cells derived from PSCs. This selec-
tive cell death in mouse ESCs is sufficient to completely 
inhibit teratoma formation in the mouse model [60]. Such 
high phototoxic selectivity was achieved by introducing 
the KillerRed (KR) gene (a genetically encoded photo-
sensitizer) [61] to the EOS [early transposon promoter 
and Oct-4 (Pou5f1) and Sox2 enhancers] promoter, an 
artificial promoter initially designed to select fully repro-
grammed iPSCs [62] and allow KR to be specifically 
expressed only in undifferentiated PSCs [60]. Impor-
tantly, endothelial cells derived from KR-expressing 
mESCs remained fully functional even in vivo and were 
able to repair the ischemic damage from the visual light 
exposure used to purge the undifferentiated mESCs [60].

Alternatively, inducible caspase-9 (iCasp9: iC9), which 
becomes an active dimer upon treatment with a synthetic 
chemical inducer of dimerization (CID) and which was 
initially developed as a safeguard system for T-cell ther-
apy [63], was applied to PSCs for teratoma inhibition not 
only in vitro but also in vivo [64, 65]. This suicide system 
was also used to reduce the size of the teratoma and ablate 
iPSC-derived rejuvenated cytotoxic T lymphocytes, serv-
ing as a possible safeguard system in  vivo [66]. A recent 
study reported that chemical inducers (e.g., CID) for acti-
vating the iCasp9 suicide systems were cytotoxic to CD34+ 
HSCs, while GCV itself showed a bystander effect on nor-
mal iPSCs [35]. Therefore, a chemical inducer to activate 
the suicide system should be carefully selected based on 
the differentiated cells to ensure the safety of the differenti-
ated cells.

Furthermore, genetic approaches using a suicide gene 
have been largely criticized due to the additional risk 
of random insertion of the foreign gene into the hPSCs, 
which may cause unexpected genetic aberration, unless 
the insertion of the foreign gene is tightly controlled 
by new genetic editing technologies to the genomic 
safe harbor sites, such as AAVS1, ROSA26, or CCR5, as 

previously proposed [54, 60, 66]. Until then, this genetic 
approach with an inducible suicide system may remain at 
the ‘proof of concept’ level.

Alternatively, micro-RNA (miRNA) switch technol-
ogy, a transgene-free genetic approach targeting cell-
specific miRNA, which was originally developed for the 
purification of desirable cells [67], was applied to selec-
tively eliminate undifferentiated hPSCs with puromycin 
resistance using an miR-302a switch [68].

Targeting the specific surface markers of hPSCs 
with antibodies or proteins

Cell sorting using antibodies for surface proteins specific 
to the differentiated cell types has been primarily used for 
isolating desirable cell types after differentiation. How-
ever, certain types of cells, such as ventricular cardiomy-
ocytes, lack a specific surface protein, making pure iso-
lation technically challenging after differentiation [69]. 
Alternatively, molecular beacons (MBs), oligonucleotide 
hybridization probes that specifically bind to intracellu-
lar mRNAs, have been developed to isolate or enrich a 
desired cell type that lacks surface markers [69–72].

On the other hand, considering the unique surface 
marker expression profile of hPSCs [44], a set of anti-
bodies recognizing the unique surface proteins of hPSCs 
has been produced [73, 74]. Antibodies against stage-
specific embryonic antigens (SSEAs), such as SSEA-3 
and SSEA-4, and tumor-related antigen (TRA)-1-60 and 
TRA-1-81 were used not only to identify but also to sort 
out the undifferentiated PSCs [75].

Therefore, separation based on an antibody against a 
specific surface protein (e.g., SSEA-5) through fluores-
cence-activated cell sorting (FACS) [76] or selective cell 
death with a cytotoxic antibody (e.g., against claudin-6 
[77] or podocalyxin-like protein-1 (PODXL) [74]) would 
be a valid approach to reduce the potential for teratoma 
formation in heterogeneously differentiated cultures.

Similar to the antibody approach, rBC2LCN (recom-
binant N-terminal domain of the BC2L-C lectin derived 
from Burkholderia cenocepacia) was identified as a lec-
tin probe that specifically binds to hyperglycosylated 
podocalyxin as a cell surface ligand in hPSCs [78]. 
Therefore, strategies involving the addition of a recom-
binant toxin protein (catalytic domain of Pseudomonas 
aeruginosa exotoxin A) conjugated to the lectin probe 
(rBC2LCN-PE23) were found to be effective at selec-
tively eliminating undifferentiated hPSCs [79]. Impor-
tantly, rBC2LCN-PE23 has been recently commercial-
ized as an ‘undifferentiated hPSCs elimination reagent’ 
(http://www.wako-chem.co.jp).

http://www.wako-chem.co.jp
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Phototoxic approach

An antibody conjugated with a gold nanoparticle, which 
absorbs the energy from laser pulses to produce heat, 
was previously developed to induce lethal membrane 
damage exclusively to the labeled cells [80]. Using an 
antibody against TRA-1-60 and TRA-1-81, a surface 
antigen specific to hPSCs, laser exposure and subsequent 
photothermolysis were sufficient to induce selective cell 
death and inhibit teratoma formation [81]. Alternatively, 
a fluorescence rhodamine compound (rosamine, a com-
pound designated yellow1: CDy1), which was found to 
specifically interact with a protein in the mitochondria 
of PSCs [82], was used to induce selective cell death of 
both mouse and human PSCs [83]. Of note, exposure to 
green light at 532 nm produces ROS and selectively kills 
CDy1-stained PSCs but not the endothelial cells derived 
from PSCs. Importantly, teratoma formation after trans-
plantation of mouse ESCs in the mouse model was com-
pletely blocked by CDy1 staining and light exposure 
[83].

It is also noteworthy that the amount of green light 
used to induce hPSC death with a photosensitizing gene 
(e.g., KR) [60] or fluorescence probe [83] while ensur-
ing the functional safety of endothelial cells would not 
be suitable for RPE cells considering the high photosen-
sitivity of RPE cells [84].

Detecting and evaluating residual hPSCs

After differentiation, the residual undifferentiated hPSCs 
should be carefully quantified to determine whether an 
additional step is required to eliminate the undifferentiated 
hPSCs with the aforementioned techniques. Furthermore, 
even after the treatment, further validation to specifically 
quantify the residual hPSCs as a safeguard to ensure com-
plete ablation can also be performed, as shown in Fig. 1.

Invasive approaches

Conventionally, semi quantitative real-time PCR or flow 
cytometry has been widely used to monitor the residual 
undifferentiated PSCs [85]. Dr. Yoji Sato’s group recently 
developed highly sensitive real-time PCR [86, 87] or drop-
let digital PCR [88] with a PSC-specific gene (e.g., Lin28) 
to examine the possible contamination of undifferentiated 
hPSCs at the single-cell level following their differentiation 
into RPE cells or cardiomyocytes. Although flow cytom-
etry using mostly PSC-specific surface antibodies has 
been widely employed to monitor undifferentiated PSCs 
after differentiation, the proportion of the marker-positive 
population is markedly affected by the gating technique 
[86]. Therefore, several strict controls should be prepared 
to define the desirable population by flow cytometry. How-
ever, despite their high sensitivity, both real-time PCR and 
flow cytometry techniques are invasive approaches that 
irreversibly consume a large quantity of the differentiated 

Fig. 1   An example of the 
procedure of human pluripotent 
stem cell-based cell therapy 
for assuring teratoma-free cell 
therapy. After differentiation 
to the desirable cell type, an 
assay should be performed to 
check for possible contamina-
tion of tumorigenic hPSCs, even 
after enriching the desirable 
cell types. Likewise, even after 
additional steps have been 
taken for ablating residual 
tumorigenic hPSCs, cell therapy 
should only be conducted after a 
highly sensitive assay has been 
performed that validates that no 
tumorigenic hPSCs remain in 
order to guarantee teratoma-free 
cell therapy
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cells (more than 10,000 cells). Because considerable time 
and resources are required to differentiate desirable cell 
types from hPSCs (for example, 30–50 days for differen-
tiation of RPE cells from hESCs [89]), unrecoverable con-
sumption of differentiated cells to ensure safety should be 
reconsidered.

Non‑invasive approaches

Recently, a hPSC-specific glycoprotein was identified [90], 
and rBC2LCN, a recombinant lectin probe, was identified 
as a specific probe [91] for podocalyxin, a heavily glyco-
sylated type 1 transmembrane protein prominent in hPSCs 
[92]. Specific interaction with rBC2LCN was sufficient 
for live-cell imaging of hPSCs in a cost-effective manner 
[93]. Furthermore, it was also demonstrated that hypergly-
cosylated podocalyxin is secreted into the hPSC culture 
medium. Therefore, simple determination of the concen-
tration of hyperglycosylated podocalyxin in the culture 
medium using the rBC2LCN-based sandwich assay system 
(named the Glycostem test) can selectively quantify the 
teratoma-forming (or tumorigenic) undifferentiated hPSCs 
present after differentiation [78].

Alternatively, a few fluorescent chemical probes, such 
as the Kyoto probe 1 (KP1) [94] and the aforementioned 
CDy1, were demonstrated to be highly specific to hPSCs 
[82]. In particular, CDy1 was later applied to quantify or 
isolate the undifferentiated hPSCs using FACS [95] and to 
selectively kill the stained, undifferentiated PSCs using vis-
ible light [83].

On the other hand, dual fluorescence resonance energy 
transfer (FRET) MBs that specifically bind to Oct-4, origi-
nally developed for identification and isolation of hESCs 
[96], could also be used to quantify and even sort out the 
residual hPSCs. The efficiency of this approach has not yet 
been experimentally determined.

Due to recent advances in bioengineering techniques, 
a cell-chip system has been widely applied to monitor the 
cellular response, including differentiation, of the stem 
cells [97]. Similarly, a cell-chip system detecting the unique 
electrochemical potential of hPSCs has been designed. The 
intensity of the electrochemical potential generated from 
the live hPSCs without any labeling demonstrated a clear 
linear relationship with cell number, even in mixed cell 
conditions with differentiated progeny, allowing the extrap-
olation of the exact number of residual hPSCs in the mixed 
condition [98]. Very recently, a surface-enhanced Raman 
scattering (SERS) assay based on nanoparticles conjugated 
with the hPSC surface markers SSEA-5 and TRA-1-60 
was demonstrated to trace as few as a single hPSC in 106 
cells [99]. Therefore, when such an assay system allowing 
live detection of hPSCs is optimized and further improved, 

it would be highly useful for monitoring the presence 
of residual hPSCs after differentiation and for deciding 
whether an additional step to ablate the residual hPSCs 
in the mixture is necessary for safety assurance. Finally, 
immediately prior to cell transplantation, the differentiated 
cell population would be again used for final validation of 
safety for teratoma-free cell therapy (Fig. 1).

Concluding remarks

As mentioned above, a variety of strategies, summarized 
in Table 1, have been examined to selectively ablate undif-
ferentiated PSCs from differentiated cells for teratoma-free 
hPSC-based cell therapy with no or low cytotoxicity of the 
differentiated cells for quality assurance as well. However, 
considering the diversity of desirable cell types for future 
hPSC-based cell therapy, it would be hardly possible to 
presume that one methodology may selectively eliminate 
residual hPSCs without damaging the diverse types of dif-
ferentiated cell type, of which properties would be varied. 
In this line, each methodology should be carefully selected 
depending on the molecular characteristics of desirable 
cells. Besides, not only low cytotoxicity of the differenti-
ated cells, as listed in Table 1, but also the functional safety 
of each methodology to the differentiated cells in vivo, as 
shown previously [60, 100], should be intensively exam-
ined to apply each method to practical use. Accordingly, 
continuous effort should be applied further to develop novel 
strategies to ensure the safety of the differentiated cells 
as well as the efficacy of eliminating the undifferentiated 
hPSCs for future teratoma-free hPSC-based cell therapy.

In addition, it is also important to develop an approach 
to selectively eliminate the hPSCs in vivo after accidental 
transplantation into patients. To this end, the iCasp9 suicide 
system was shown to reduce the teratoma size in vivo [64], 
and subsequent treatment with metformin lowered teratoma 
formation after the transplantation of mouse iPSCs [50]. 
Such a methodology to limit the teratoma formation in vivo 
should be more intensively verified to minimize unexpected 
side effects in human patients.

As with drugs, safety should be considered to be of a 
similarly high priority as efficacy in hPSC-based stem cell 
therapy for future clinical outcomes. Therefore, after seri-
ous assessment of the risk–benefit ratio, hPSC-based ther-
apy should be performed when the benefit to the human 
patient is considered to be greater than the potential risks. 
From this point of view, continuous attempts to lower the 
risk of teratoma formation may improve the clinical appli-
cation of hPSC-based therapy by increasing the therapeutic 
index in the future.
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Table 1   Strategies to selectively eliminate the tumorigenic hPSCs

PSCs pluripotent stem cells, ESCs embryonic stem cells, EB embryonic body, EC embryonic carcinoma, DFs dermal fibroblasts, ASMCs aortic 
smooth muscle cells, NSCs neural stem cells, MSCs mesenchymal stem cells, MRC-5 human lung fibroblasts, NHDF normal human dermal 
fibroblasts, MEFs mouse embryonic fibroblasts, ADSCs adipose-derived mesenchymal stem cells, RA retinoic acid

Strategies Name Mode of action or target Cell model Refs.

Small molecules Quercetin BIRC5 repression, CypD 
interaction

hPSCs vs hDFs, hASMCs, 
hiPSC-derived

SMCs, hESC-derived dopamin-
ergic neurons

[32, 37]

YM155 BIRC5 repression or DNA dam-
age (?)

hPSCs vs hDFs, hASMCs, 
hiPSC-derived

SMCs, hESC-derived dopamin-
ergic neurons

[32]

Taxol and purvalanol A BIRC5 repression hESC-derived teratoma [33]
Purvalanol A, Ro-3306, Dinaci-

clib
CDK inhibition Human and mouse ESCs vs 

mES-diff, hESC-derived pan-
creatic progenitor cells

[39]

Etoposide DNA damage mPSCs vs MEFs [38]
PluriSIn#2 Suppression of Topoisomerase 

II alpha
hPSCs vs hPSC-derived various 

cell types, fibroblasts
[41]

Metformin Unknown miPSCs vs MEFs [50]
JC011 Unknown hPSCs vs MRC-5, human neo-

natal cardiomyocytes
[48]

S18 (N-oleoyl serinol) Ceramide analog, PKC delta 
inhibition

Human and mouse ESCs [31]

27-deoxy-27-oxookadaate ABCB1 and ABCG2 hiPSCs vs adrenal gland, liver, 
bronchia and prostate cells

[49]

Targeting hPSCs’ specific 
metabolism

PluriSIn#1 Oleate synthesis inhibitor to 
inhibit stearoyl-coA desatu-
rase (SCD1)

hPSCs vs fibroblasts, hepato-
cytes, cardiomyoctes, NSCs, 
MSCs

[40]

MitoBloCK-6 Erv1 oxidase hESCs vs hDFs [46]
Glucose and glutamine free 

medium with lactate supple-
ment

High dependency of glucose 
and glutamine metabolism

hPSCs vs hPSC-derived cardio-
myocytes

[47]

HSVtk and GCV Inhibition of DNA elongation hPSCs vs MRC-5 [52–57]
Introducing suicide gene and 

miRNA switch
KillerRed with visual light Oxidative damage hESCs, mPSCs vs mESC-

derived endothelial cells
[60]

Inducible caspase 9 Apoptosis induction hiPSCs [64, 65]
miR-302a switch micro-RNA-302a hiPSCs vs NHDF, hiPSC-

derived dopaminergic-like 
neuronal cells

[68]

SSEA-5 mAb SSEA-5 hPSCs vs RA-induced differen-
tiated cell mixtures

[76]

Targeting hPSCs’ specific 
surface markers with antibody 
or protein

Claudin-6 mAb Claudin-6 hPSCs vs ectodermal and meso-
dermal cell types

[77]

mAb 84 Podocalyxin-like Protein 1 hESCs, hECs vs hEBs, mESC, 
mouse fibroblasts

[74]

rBC2LCN-PE23 Hyperglycosylated podocalyxin hPSCs vs Human fibroblasts, 
hADSCs

[79]

Antibody conjugated gold nano-
particle with laser exposure

Photothermolysis hESCs vs hESC-derived neural 
precursors

[81]

Phototoxic approach CDy1 with visual light Oxidative damage Human and mouse PSCs vs 
hESC-derived endothelial 
cells

[82]
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