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the clock. Under specific conditions, this control disappears 
reactivating the immune response. So, it seems that clock 
gene disruption favors the innate immune response, which 
in turn induces the expression of proinflammatory media-
tors, causing a further alteration of the clock. Here, the clock 
control of the mitochondrial function turns off, leading to a 
bioenergetic decay and formation of reactive oxygen spe-
cies that, in turn, activate the inflammasome. This arm of 
the innate immunity is responsible for the huge increase of 
interleukin-1β and entrance into a vicious cycle that could 
lead to the death of the patient. The broken clock is recov-
ered by melatonin administration, that is accompanied by 
the normalization of the innate immunity and mitochondrial 
homeostasis. Thus, this review emphasizes the connection 
between clock genes, innate immunity and mitochondria 
in health and sepsis, and the role of melatonin to maintain 
clock homeostasis.

Keywords  Clock genes · Innate immunity · Oxidative 
stress · Mitochondria · Melatonin

Introduction

Sepsis is a type of inflammation produced by an exaggerated 
response of the immune system that may lead to septic shock 
and multiorgan failure (MOF) and, eventually, to death [1]. 
A third international consensus definitions have been pro-
posed for sepsis and septic shock [2]. Sepsis is now defined 
as life-threatening organ dysfunction caused by a dysregu-
lated host response to infection. Organ dysfunction should 
be identified as an acute change in total Sequential Organ 
Failure Assessment (SOFA) score ≥2 points consequent to 
the infection. Hospital mortality exceeds 40% in patients 
with septic shock with persisting hypotension requiring 

Abstract  After the characterization of the central pace-
maker in the suprachiasmatic nucleus, the expression of 
clock genes was identified in several peripheral tissues 
including the immune system. The hierarchical control from 
the central clock to peripheral clocks extends to other func-
tions including endocrine, metabolic, immune, and mito-
chondrial responses. Increasing evidence links the disruption 
of the clock genes expression with multiple diseases and 
aging. Chronodisruption is associated with alterations of the 
immune system, immunosenescence, impairment of energy 
metabolism, and reduction of pineal and extrapineal mela-
tonin production. Regarding sepsis, a condition coursing 
with an exaggerated response of innate immunity, experi-
mental and clinical data showed an alteration of circadian 
rhythms that reflects the loss of the normal oscillation of 
the clock. Moreover, recent data point to that some media-
tors of the immune system affects the normal function of 
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vasopressors to maintain mean artrial pressure ≥65 mmHg 
and having a serum lactate level >2 mM despite adequate 
volume resuscitation. As a result, even a modest degree of 
organ dysfunction is associated with an in-hospital mortality 
in excess of 10%. Although rapid intervention is required for 
a better diagnoses and management of sepsis, this disease is 
currently the first cause of death in the ICUs of any hospital 
worldwide [3, 4]. Better understanding the pathophysiology 
of sepsis and search for more effective therapies against this 
disease is, therefore, mandatory.

The initial response in sepsis: the NF‑κB pathway

Sepsis involves the activation of the host innate immunity 
through a wide variety of physiological and pathological 
processes. Activators of the immune response are a series of 
antigenic structures named pathogen-associated molecular 
patterns (PAMPs); they are conserved patterns present in 
different microorganisms that activate specific receptors of 
the innate system [5]. Toll-like receptors (TLRs) play an 
essential role in the initiation of adaptive immune responses 
by recognizing these PAMPs, initiating the activation of 
NF-kappaB and other signaling pathways [6, 7]. TLRs are 
proteins belonging to the family of interleukin-1 (IL-1) 
receptors that play a key role in the recognition of micro-
bial proteins, lipids, and nucleic acids existing in bacteria, 
parasites, and fungi, and other components derived from the 
host cell damage. Specifically, TLR4 is constitutively active 
and represent the main pathway to activate the nuclear factor 
kappa B (NF-κB) that, in turn, induces the transcription of 
a series of proinflammatory cytokines, adhesion molecules, 
and other molecules required for the activation of T cells [8].

TLR4 is expressed in the cell membrane of macrophages 
and neutrophils and, with CD14 and MD-2, form a recep-
tor complex for bacterial lipopolysaccharides (LPS), which 
are major stimuli for triggering inflammation [9]. Canonical 
signaling of TLR4 depends on MyD88, an adaptor protein 
that connects the TLR4 complex domain Toll/IL-1 Receptor 
(TIR) with the active forms of the IL-1 receptor-associated 
kinases (IRAKs), inducing the activity of IRAK when TLR4 
is activated. The phosphorylating activity of IRAK reduces 
its own affinity to MyD88, increasing that of TNF receptor-
activated factor 6 (TRAF6) [9]. The IRAK/TRAF6 complex 
dissociates from the receptor, IRAK is eliminated through 
proteasomal degradation, and TRAF6 activates NF-κB in 
the cytosol [10]. An MyD88-independent pathway of TLR4 
signaling may release cytosolic responses independent of 
NF-κB through other transcriptional factors and they may 
induce the expression of proinflammatory proteins [11–13].

NF-κB is constitutively present in the cytosol in an inac-
tive form due to its binding to the inhibitor of κB (IκB). So, 
only after specific signals able to release IκB, NF-κB can 

be translocated to the nucleus and exert its transcriptional 
activity. There are five members of NF-κB/Rel family of 
transcription factors, coded by different genes, with a com-
mon N-terminal domain that includes a nuclear localization 
sequence, and different C-terminal domains [14, 15]. These 
features yield different homo- and heterodimers, with the 
p50/p65 heterodimer the most prominent pair of the NF-κB/
Rel family. Whereas p50 facilitates the binding to DNA, p65 
activates the gene transcription [16]. NF-κB activation and 
translocation to the nucleus require the dissociation of the 
NF-κB/IκB complex and inactivation of IκB.

Two pathways, canonical and non-canonical, have been 
described to explain the activation of NF-κB. Canonical 
pathway involves a series of steps after TLR4 activation 
that include the recruitment of serine/threonine specific IL-1 
receptor-associated kinases-1 and 4 (IRAK-1 and IRAK-4, 
respectively). The interaction between MyD88 and these 
kinases induces the phosphorylation of the latter that, in 
subsequential steps, leads to the IκB kinase (IKK) complex 
activation [17]. IKK complex, constituted by IKKα and 
IKKβ, phosphorylates IκB that is further ubiquitinated and 
degraded by the proteasome, releasing NF-κB to the nucleus 
[14, 16, 18]. Once in the nucleus, NF-κB undergoes a series 
of phosphorylations and acetylations that modify the regula-
tory gene activity of the former due to its binding to coacti-
vators such as CREB-binding protein and p300 (CBP/p300). 
Of note, deacetylation of NF-κB by deacetylases including 
histone deacetylase type 3 (HDAC3) and silent mating type 
information regulation 2 homolog (Sirt1) enhances the bind-
ing of NF-κB with IκB, forming again an NF-κB/IκB com-
plex that is now translocated to the cytosol [19].

NF-κB transcriptional activity involves the regula-
tion of more than 200 genes [20], yielding the expression 
of proinflammatory cytokines, adhesion molecules, and 
antioxidant enzymes. NF-κB also controls the expression 
of the NLRP3, a protein related to the activation of the 
inflammasome in sepsis and other inflammatory diseases. 
A variety of signals may trigger the inflammatory response 
to sepsis and, so, products from Gram− and Gram+ bac-
teria are able to interact with TLR4 (and also other TLRs 
such as TLR2) leading to a rapid NF-κB translocation 
to the nucleus and activation of gene transcription [21]. 
Greater levels of NF-κB in the nucleus are associated with 
higher rates of mortality in sepsis and a worse clinical out-
come. The products of gene regulation by NF-κB involved 
in sepsis include cytokines (IL-1α, IL-1β, TNFα, IG-CSF, 
GM-CSF, etc.); chemokines (MIP-1α, MIP-2, IL-8, etc.); 
adhesion molecules (ICAM-I, VCAM-1, etc.); coagula-
tion factors (tissue factor, etc.); proinflammatory and pro-
oxidant enzymes (iNOS, COX-2, LOX, etc.); and antioxi-
dant enzymes (SOD, GPx, etc.), among others [21, 22]. 
Some of these products positively feedback and activate 
the NF-κB pathway, enhancing the inflammatory response 
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in sepsis. Among them, coagulation factors, which induce 
the formation of inflammatory mediators, IL-1β, and 
TNFα, participate in the amplification of the inflamma-
tory response [23].

Consistent with the inflammatory response, there is 
an increase in the production of reactive oxygen (ROS) 
and nitrogen (RNS) species leading to a crosstalk of these 
molecules and NF-κB signaling [24]. On the one hand, 
activated leukocytes during the inflammatory response 
enhance the production of ROS, mainly superoxide anion 
(O2

·−), which is dismutated to hydrogen peroxide (H2O2) 
by superoxide dismutases (SODs) [25], whereas TNFα 
further enhances the production of ROS [26]. Mitochon-
dria are the greatest source of ROS, mainly O2

·− and H2O2 
produced by electron leak during electron transfer system 
activity. The ROS produced suppress NF-κB activation, 
reducing NF-κB-dependent survival signaling and favor-
ing the ROS-dependent cell death [26]. On the other hand, 
it was shown that mitochondrial ROS can promote, rather 
than inhibit, TNF-mediated NF-κB activation [24, 27, 28]. 
Although these ROS are controlled by the antioxidant sys-
tem, mainly SOD and the glutathione cycle [29], H2O2 
has important functions as an intracellular messenger [30]. 
An impaired mitochondrial function and an exaggerate 
response of the immune cells lead to an accumulation of 
ROS able to activate NF-κB in a dose-dependent manner 
[31, 32].

The production of RNS, mainly nitric oxide (NO·) and 
peroxynitrites (ONOO−), is formed by the activation of both 
cytosolic (iNOS) and mitochondrial (i-mtNOS) inducible 
nitric oxide synthases under the control of NF-κB. Whereas 
NO· is the primary product of these enzymes, it causes del-
eterious effects because it produces a systemic vasodilata-
tion and hypotension, and increased cell damage [33, 34]. 
But NO· rapidly reacts with O2

·− yielding the highly toxic 
ONOO− [35]. This reaction is specially significant in the 
mitochondria, where ONOO− irreversibly inhibits the mito-
chondrial ETS complexes and the ATP synthase, reducing 
ATP formation [36–38] and favoring cell death.

Although the excess of ROS produced during sepsis trig-
gers both apoptotic and necrotic cell death, depending on the 
severity of the oxidative stress [39], NF-κB targeted genes 
may promote cell survival. In fact, whereas ROS modu-
late NF-κB that also induces the expression of antioxidant 
genes, a crosstalk between NF-κB, TNFα, and JNK modu-
lates the expression of ROS, promoting cell survival [40]. 
Collectively, the data support a main role of NF-κB in the 
inflammatory response to sepsis. However, the inhibition of 
NF-κB only may probably not be beneficial, because of its 
intervention at the same time in pro-survival pathways and 
in promoting cell death, depending on the mitochondrial 
involvement in the response. So, mitochondria may play a 
central role in the cell survival in sepsis.

The complementary response in sepsis: 
the NLRP3 inflammasome pathway

During the activation of the NF-κB pathway during sep-
sis, the subsequent damage to the cell releases a series of 
molecules or danger signals, named damage-associated 
molecular patterns (DAMPs) that, different from PAMPs, 
are recognized by a family of NLRs cytosolic receptors 
(nucleotide-binding domain and leucine-rich repeat con-
taining receptors) [41]. Twenty-three members of this fam-
ily of receptors have been identified in humans, and they 
share a structure composed by a leucine-rich repeat (LRR) 
C-terminal domain, which are repetitive enriched leucine 
sequences involved in the recognition of the ligand; a cen-
tral NACHT domain, which is common to the NLRs with 
an ATPase activity required for protein oligomerization and 
formation of the active complexes named inflammasomes, 
and an effector N-terminal domain, related to the activa-
tion of caspases [42, 43]. NLRs have been classified into 
three main subfamilies: NALPs/NLRPs subfamily, which 
contains 14 proteins (NLRP1–14), all with a pyrin (PYR) 
domain N-terminal and involved in the formation of inflam-
masomes and in caspase-1 activation; IPAF subfamily, 
including a member with a caspase activation and recruit-
ment domain (CARD) N-terminal domain, and the NOD 
subfamily including NOD1–4 proteins with an N-terminal 
CARD domain also [43]. NOD is a cytosolic receptor able 
to sense peptidoglycans after bacterial phagocytosis. NOD1 
and NOD2 trigger a response involving in last instance the 
phosphorylation of IκBα by IKKs and its ubiquitination and 
proteasomal degradation, releasing NF-κB to the nucleus 
[44, 45].

One of the inflammasomes directly related with the 
inflammatory response during sepsis depends on the 
NLRP3 protein. The NLRP3 inflammasome complex is 
activated upon signs of cellular ‘danger’ that triggers innate 
immune defenses through the maturation of proinflamma-
tory cytokines such as IL-1β. Some mutations of the nlrp3 
gene yield huge amounts of this cytokine typical of the so-
called autoinflammatory diseases or cryopyrinopathies [45, 
46]. The NLRP3 inflammasome is a multiproteic complex 
constituted by the member of the NLR family, NLRP3 pro-
tein, the apoptosis-associated speck-like protein containing 
a caspase recruitment domain (ASC), and a pro-caspase-1, 
which results in caspase-1 activation and cleavage of pro-
inflammatory cytokines pro-IL-1β, pro-IL-18, and pro-
IL33 to their mature forms [47]. NLRP3 protein is con-
stitutively expressed in the cytosol under an inactive form 
due to the interaction between its NACHT-NAD and LRR 
domains, but a variety of danger signals can activate it to 
the inflammasome.

NLRP3 inflammasome activation occurs through molecu-
lar modifications that allow the oligomerization and further 
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interaction of the NLRP3 with ASC through a PYR domain. 
Moreover, ASC has a CARD domain that interacts with the 
CARD domain of a pro-caspase-1, yielding an active cas-
pase-1 [47]. The signals that trigger the inflammasome are, 
among other PAMPs and DAMPs, uric-acid crystals, ROS 
and mtDNA released from damaged mitochondria, and ATP 
from extracellular sources, [47, 48]. Extracellular ATP is 
associated with cell damage and necrosis, and it acts through 
the ATP-operated ion channels (P2X7) [43]. Although ROS 
produced by NADPH oxidases were initially related to the 
inflammasome activation [49], the mitochondria, as the main 
source of cellular ROS, were soon after identified as the 
main inducers of the inflammasome [50]. In parallel, it was 
shown that autophagy, which induces elimination of dam-
aged mitochondria, prevents from ROS and mtDNA release 
and, thus, prevents inflammasome activation [51].

Physiology of mitochondrial function

From the data reported here, the connection between the 
NLRP3 inflammasome activation and mitochondrial dys-
function emerges as the main mechanism involved in the 
activation of this pathway of the innate immunity.

Mitochondria are the major providers of energy to the 
cell, and they make it in form of ATP through the basic 
process of respiration that is controlled by the availability 
of ATP itself, calcium, oxygen, nitric oxide, and proton 
leak, among others [52, 53]. The process of energy gen-
eration requires two main steps: one, the rapid oxidation of 
the specific substrates NADH and FADH produced during 
metabolic pathways including glycolysis, Krebs cycle and 
β-oxidation of fatty acids, and subsequent transport of elec-
trons from these substrates to oxygen through the electron 
transfer system (ETS); two, the oxidative phosphorylation 
(OXPHOS) that involves the phosphorylation of one mol-
ecule of ADP and formation of one molecule of water [54]. 
The ETS is a multiprotein system involved in oxide-reduc-
tion reactions through the complexes I, II, III, and IV, and 
two electron carriers, coenzyme Q (CoQ) and cytochrome c 
(cyt c). Following the chemiosmosis hypothesis [54], during 
electron transfer, CI, CIII, and CIV pump protons against an 
electrochemical gradient from the mitochondrial matrix to 
the intermembrane space, generating a proton gradient along 
the inner mitochondrial membrane (IMM). These protons 
re-enter to the matrix through the CV or ATP synthase, and 
the energy of the gradient is dissipated and used to phos-
phorylate ADP. During these steps, the electrons reaching 
CIV reduce oxygen to water. OXPHOS produces more than 
the 90% of the ATP used by the cell. The energy released 
through the CV depends on the electrochemical gradient, 
i.e., the mitochondrial inner membrane potential (∆+

μH); this 
means that the greater ∆+

μH the more energy available for 

ATP production. But high ∆+
μH favors electron leak that eas-

ily reduced the oxygen present in the inner mitochondrial 
space to O2

·− by increasing the formation of ROS.
The proton gradient can be used for other purposes 

besides the ATP production as it can be dissipated to heat to 
maintain the body temperature. This occurs when the pro-
tons pass through specialized uncoupling proteins (UCPs) 
to the mitochondrial matrix through the MIM instead 
of CV [55]. UCPs are proton transports across the IMM, 
driven only by the membrane potential with well-conserved 
regulation that includes free fatty acids and CoQ, among 
others [52, 56]. There are five members of the UCP fam-
ily (UCP1–5); UCP1 is involved in the heat production in 
collaboration with thyroid hormones [57]; UCP2 has been 
related to neuroprotective properties [58, 59], and the roles 
for the other UCPs are not yet well established.

Besides their well-recognized roles, UCPs are involved 
in the control of ROS formation by the mitochondria. An 
excess of ROS inside these organelles may blunt their capac-
ity to energy conservation, impairment of IMM, depletion 
of glutathione (GSH) and opening the mitochondrial per-
meability transition pore (MPTP); the latter releases death 
signals to the cytosol to induce apoptosis or necrosis [55, 
60]. Mechanistically, UCPs act by opening a channel across 
the IMM that allows the transports of protons from the inter-
membrane space to the matrix; this process drops the elec-
trochemical proton gradient across the IMM and, thus, the 
∆+

μH, reducing the formation of ROS. Besides ROS, other 
free radicals also produced in the mitochondria are RNS. 
Mitochondria contain NO·, which can come from the cytosol 
[61].

A series of studies demonstrated the presence of at least 
two NOS isoforms in the mitochondria, i.e., nNOS and 
iNOS. The former is a Ca2+-calmodulin-dependent enzyme 
that is constitutively expressed, whereas iNOS is an induc-
ible enzyme. Both mitochondrial isoenzymes come from the 
cytosol, and they are coded by the same genes as the cyto-
solic forms [62–64]. Mitochondrial iNOS (i-mtNOS) that, 
unlike in the cytosol, is also constitutively expressed in the 
mitochondria contributes under physiological conditions to 
the intramitochondrial pool of NO· and, thus, participates 
with nNOS in the mitochondrial homeostasis, competing 
with oxygen for the binding site at CIV [36, 53, 65–67]. But 
under pathophysiological conditions such as inflammation, 
cytosolic and mitochondrial iNOS forms are significantly 
induced, yielding huge amounts of NO· and ONOO− that not 
only reduce the efficiency of the OXPHOS thereby reduc-
ing ATP formation, but also produce nitration of tyrosine 
residues that irreversibly inhibit the ETS complexes [37, 
63–65, 67–70].

Mitochondria have their own antioxidant system to pro-
tect them against oxidative stress. A first line of defense 
may be the so-called mild uncoupling that prevents a strong 
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rise in ∆+
μH and, hence O2

·− production. Mitochondrial SOD 
dismutases O2

·− to H2O2, which can be transformed to the 
hydroxyl radical (·HO), the most toxic ROS. Moreover, the 
enzymes of the GSH cycle, glutathione peroxidase (GPx) 
and reductase (GRd) maintain the intramitochondrial pool 
of GSH preventing a rise in the GSSG/GSH ratio, which is 
critical to maintain the reduced state of the MPTP. Here, 
NADP(H) is of particular importance because it is required 
for recovering GSH from its oxidized form, GSSG. The 
magnitude of ∆+

μH becomes critical again because if it is 
too high it favors the formation of ROS, whereas if it is too 
low, it reduces ATP production and oxidizes NADP(H) [58].

An additional component of the mitochondria to be con-
sider here is the mtDNA. Mitochondria contain their own 
genome although with a modified genetic code. The mtDNA 
and multiple copies are located in the mitochondrial matrix. 
The mtDNA molecule is circular and double stranded of 
about 16.6 kpb. The heavy (H) strand contains most of the 
genes for two rRNAs, 14 tRNAs, and 12 proteins. The light 
(L) strand codes eight tRNAs and a polypeptide [71]. The 
genes do not contain introns and intergenic sequences are 
almost absent. The polypeptides coded by the mtDNA cor-
respond to subunits of the CI, CIII, CIV, and CV. Replication 
of mtDNA is unidirectional and an mtDNA polymerase γ is 
required for the synthesis of mtDNA.

Mitochondria do not contain histones and the transcrip-
tion factor mtTFA binds at regularly spaced intervals [71]. 
Due to its location in the mitochondrial matrix and the 
absence of histones, mtDNA is exposed to ROS that cause 
oxidative damage requiring mechanisms of repair. In this 
regard, mitochondria contain an efficient base excision repair 
mechanism that removes oxidized bases from the mtDNA. 
Adducts formed by exposure to UV light are removed by 
a nucleotide excision repair mechanism. Nevertheless, the 
constant exposure to ROS causes mtDNA base modifica-
tions including 8-hydroxydeoxyguanosine (8-HOdG), a G 
to C transversion, which constitutes a mutagenic lesion that 
is not recognized by mtDNA polymerase γ. This situation 
favors the continuous damage to mtDNA leading to more 
inefficient mitochondria along the time [72].

A last question to be considered here is that ROS in gen-
eral, and particularly mitochondrial ROS, are not only del-
eterious molecules that should be removed from the body, 
but they play multiple physiological functions [73]. As 
it is known, the most oxygen consumption occurs during 
OXPHOS and most of the O2

·− formed is generated by the 
mitochondria [74]. Experimental data indicate that some of 
these ROS contribute to the maintenance of cellular home-
ostasis, although if they are produced in excess they can 
negatively affect survival [73]. ROS are produced in huge 
amounts by macrophages to eliminate bacteria [75]; they 
trigger programmed cell pathways and kill damaged and 
mutagenic cells; ROS also regulate cell proliferation [76]; 

they function as second messengers in the gut microbiota 
[77], and they control insulin release in pancreatic β-cells 
[78].

Mitochondria, the link between NF‑κB 
and NLRP3 inflammasome in sepsis

Mitochondria are much more than simple powerhouses of 
the cell. In recent years, more functions were added to their 
ability to synthesize ATP and/or produce heat. Among them, 
mitochondria play a key role in Ca2+ homeostasis [79], and 
regulate the fate of the cell triggering apoptosis/necrosis 
pathways [80]. Mitochondria also are in constant dynamic 
change that affects the cell physiology and pathology [81], 
and produce RNS and ROS which are used also as signaling 
messengers. Recently, the finding that the NLRP3 inflamma-
some can be activated by mitochondrial ROS and mtDNA 
[50, 51] yields an unexpected new function for mitochondria 
in the control of the innate immunity. This directly connects 
mitochondria to severe inflammatory diseases including neu-
rodegenerative diseases, metabolic diseases, and sepsis [82, 
83].

A relationship between ROS and TLRs signaling is 
known. Mitochondrial ROS contribute to macrophage bac-
tericidal activity, and it was shown that TLR4 activation 
enhances mitochondrial recruitment to macrophage phago-
somes, increasing their production of ROS [75]. These data 
further demonstrate the importance of ROS in the anti-
bacterial response of the innate immune system. ROS also 
regulate the NF-κB response, whereas the latter enhances 
the production of ROS [24]. Moreover, caspase-1 can be 
modulated by SOD in macrophages, linking ROS with sep-
sis and this piece of the NLRP3 inflammasome [84]. Other 
component of the NLRP3 inflammasome, ASC, regulates 
the interaction between caspase-1 and receptor interacting 
protein-2 (RIP2), leading to NF-κB activation [85]. A role 
for the NLRP3-dependent caspase-1 activation in the steps 
leading to proinflammatory cytokine maturation was else-
where reported [86]. These and other data clarified the role 
of the NLRP3 inflammasome as a sensor of danger signals 
for the immune response [87], and the role of ROS/RNS in 
the inflammasome control [88]. In turn, the protective effects 
of reducing ROS production [84] or eliminating NLRP3 
against liver ischemia–reperfusion or acetaminophen-
induced injury in mice were reported [89, 90]. Thus, the 
relationship between NLRP3 inflammasome activation as 
the final point of ROS production was suggested [48]. Soon 
thereafter, thioredoxin was found to link ROS with NLRP3 
inflammasome activation [91]; the former suppresses sepsis 
through the inhibition of the apoptotic signals trigger by 
mitochondria [92]. In addition to ROS, ATP was related also 
to the NLRP3 inflammasome activation [93]. Considering 
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the data, it was not surprising that a link between mitochon-
dria and NLRP3 inflammasome stimulation was proposed 
[94]. Soon after, the connection between mitochondria and 
NLRP3 inflammasome was documented [50]. At the same 
time, mitophagy, the process involved in the elimination of 
damaged mitochondria, was also related to NLRP3 inflam-
masome activation [51]. These data were consistent with the 
view that accumulation of damaged mitochondria favors the 
opening of the MPTP, releasing cyt c, ROS and mtDNA to 
the cytosol; all are confirmed as triggers of the inflamma-
some [95].

With these data, the relationship between danger signals 
that activates TLR4 inducing the NF-κB response of the 
innate immunity, mitochondrial impairment and ROS pro-
duction, and the subsequent activation of the NLRP3 inflam-
masome, became evident (Fig. 1). Working together, the two 
pathways of the innate immunity, i.e., NF-κB and NLRP3 
inflammasome, explain the exaggerated response of the 
innate immunity in some circumstances such as sepsis, due 
to the positive feedback between some cytokines matured 
by caspase-1 including IL-1β and the NF-κB pathway. This 
complex pathophysiological condition also explains the lack 

of efficacy of anti-inflammatory drugs in many of the dis-
eases in which the NF-κB/NLRP3 inflammasome pathways 
are simultaneously activated [82, 96]. Consequently, the 
development of a new class of drugs that target NLRP3 will 
be very welcome [97].

From clock genes to mitochondrial dysfunction 
in sepsis

From a phylogenetic point of view, all living organisms 
adapted their vital functions to the environment. This con-
stituted an important issue for species survival because it 
allows them to anticipate the climatic changes along the 
seasons. In this way, animals are able to regulate their mat-
ing behavior to favor offspring birth in spring or summer, 
when the availability of water and food, and the environ-
ment temperature are optimal for their survival. But seasonal 
reproductive behavior is only one of the biological rhythms 
conditioned by the environment. Most of them run under 
a period of 24 h and they are named “circadian” rhythms, 
which adapt physiological events to the daily photoperiod 

Fig. 1   The connection between NF-κB and NLRP3 inflammasome 
during sepsis. Signals released by invaders microorganisms activate 
specific receptors (TLRs) in the cell membrane. This leads to changes 
in a series of kinases and adaptor proteins that ultimately release 
free NF-κB to the cytosol. Once in the nucleus, NF-κB activates the 
expression of multiple inflammatory proteins and proinflammatory 
cytokines including pro-IL-1β. But NF-κB also causes mitochondrial 

oxidative stress causing opening of the mitochondrial permeability 
transition (MPT), releasing free radicals and mtDNA to the cytosol. 
These molecules trigger the NLRP3 inflammasome that in turn acti-
vates a pro-caspase-1 inducing the maturation of IL-1β. Among oth-
ers, IL-1β further activates the NF-κB response, closing the vicious 
cycle of the innate immunity during sepsis
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or light:dark cycle. Virtually every function in a living 
organism changes rhythmically along the 24 h period. The 
machinery underlying this type of adaptation constitutes the 
so-called “biological clock” and the photoperiod is the Zeit-
geber that synchronizes the clock with the length of the day. 
Initially, the control of our circadian rhythms was attributed 
to the oscillations of activity in a group of about 20,000 
neurons in the suprachiasmatic nucleus (SCN) of the hypo-
thalamus. The SCN clock, entrained by the photoperiod, 
dictates the body’s 24-h rhythms [98]. This point of view 
has changed and we know that most peripheral cells also 
contains clocks working in a similar manner as the central 
clock, but they are influenced by other environmental cues 
or Zeitgebers, such as the timing of food consumption and 
exercise. It is believed that the central clock acts hierarchi-
cally to synchronize all peripheral clocks through the daily 
production of melatonin, which impart both clock and cal-
endar information [99].

Circadian system organization

The light:dark cycle is the main cue for circadian entrain-
ment in most animals. The retina possesses specialized pho-
tosensitive ganglionic cells using melanopsin as a visual pig-
ment, which projects through the retinohypothalamic tract 
to the SCN for photic entrainment of the circadian clock 
[100, 101]. Retinohypothalamic tract releases glutamate 
in the SCN increasing clock gene expression. A secondary 
input to the SCN comes from the geniculohypothalamic tract 
that mainly releases GABA, thus modulating the excita-
tory signals from the retinohypothalamic tract [102]. Other 
pathways including serotoninergic afferents from the raphe 
nucleus and noradrenergic inputs from the locus coeruleus 
reach the SCN and may modulate the main photoperiodic 
entrainment signal [103]. In turn, the SCN sends two main 
efferent signals, chronobiotic and homeostatic ones [104]. 
The latter project mainly to the hypothalamus targeting the 
autonomic and neuroendocrine systems [105], and the for-
mer constitute the main signal to control the pineal synthesis 
of melatonin [106], which in turn feedback on clock genes 
[107]. By this means, the pineal production of melatonin fol-
lows a circadian rhythm peaking at night, when it is rapidly 
released to the blood and cerebrospinal fluid reaching all 
cells of the body [99].

The discovery of period (per) mutants in Drosophila 
melanogaster that yielded long- and short-period pheno-
types was the starting point of clock genetics [108]. From a 
molecular point of view, four main genes, clock (circadian 
locomotor output cycles kaput), bmal1 (brain and muscle 
arnt like protein 1), per1 and per2 (periods), and cry1 and 
cry2 (cryptochromes) constitute the core of the biological 
clock. Moreover, rors (retinoid -related orphan receptors) 

and rev-erbα (reversed-viral erythroblastosis α) act as posi-
tive and negative modulators. Furthermore, chrono and its 
product, CHONO, have been identified as a core compo-
nent of the circadian clock [109]. These genes and their 
products work in a transcriptional/translational feedback 
loops [110]. Here, BMAL1 interacts with CLOCK or 
NPAS2 (neuronal PAS domain-containing protein 2) and 
RORs favoring transcription genes, whereas CRY, PERs 
and REV-ERBα negatively regulate transcription. The 
dimers BMAL1:CLOCK or BMAL1:NPSS2 bind to over 
6000 sites in the chromatin, which correspond to approxi-
mately 3000 genes [111]. Among them, BMAL1:CLOCK 
or BMAL1:NPSS2 (it has been proposed that NPSS2 is a 
redundant gene) upregulate the expression of cry and per 
genes. Cry and Per proteins form homo- and heterodimers 
in the cytosol and then enter the nucleus where they bind to 
and inactivate BMAL1:CLOCK dimer, downregulating the 
expression of the formers. In this situation, a further reduc-
tion in the relative levels of CRY and PER does not inhibit 
BMAL1:CLOCK, starting a new cycle of the clock [112]. In 
this loop, RORα and REV-ERBα act to repress and enhance 
BMAL1 transcription, respectively [113, 114].

Once the clock genes were identified in the SCN, their 
expression was reported in most of the tissues with similar 
pattern of functioning [115]. This means that almost all cells 
of the body may express a clock to control their own bio-
logical cycle. However, the existence of billions of clocks 
working freely without coordination between them is not 
understandable from a homeostatic point of view. Thus, the 
circadian organization of the body suggested that the central 
biological clock located in the SCN works in a hierarchi-
cal fashion as the master circadian pacemaker controlling 
the peripheral clocks [103, 116]. Thus, we can consider the 
circadian system as a multioscillatory timing system con-
trolling multiple central and peripheral rhythms; the SCN 
clock being the central pacemaker that uses homeostatic and 
endocrine signals to synchronize the peripheral clocks. In 
turn, peripheral clocks may yield rhythmic signals that could 
reinforce the circadian rhythm generating system [117].

Clock genes and the innate immunity

The immune system activity oscillates with a 24 h period, 
suggesting that a connection with the circadian system 
should exist. Daily variations in blood T and B lympho-
cytes, monocytes, macrophages, and other cells of the 
immune system have been described. This is also applicable 
to the daily oscillation in blood levels of proinflammatory 
cytokines [118]. These rhythms are controlled by the central 
pacemaker, and cortisol seems to be the mediator, because 
changes in cortisol levels disrupt the T lymphocyte rhythm 
[119]. Circadian changes in the immune system occur also 
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after its activation by inflammatory signals such as LPS 
[120].

These data point to the control of the innate immunity 
by the clock proteins CLOCK, BMAL1, RORα, and REV-
ERBα (Fig. 2). We can consider the immune system in two 
states: an state of anticipation (a typical feature that the bio-
logical clock allows) and increased activity, and a subse-
quent state of repair and regeneration [121]. In mice, during 
the transition to their active phase (at night), the immune 
system anticipates an elevated risk of infection. In these 
conditions, however, there exists an elevated risk of sepsis 
due to an exaggerated response of the immune system and 
greater induction of proinflammatory cytokines after LPS. 
During the remaining phase of mice, i.e., in the day, the abil-
ity of LPS to induce an inflammatory response is decreased, 
leading to a smaller capacity of the innate immune response 
[121]. This situation depends in part on BMAL1, which is 
the central mediator of the innate immunity. Thus, BMAL1 
inhibits the expression of the chemokine (C-C motif) ligand 
2 (Ccl2), which in turn reduces the proinflammatory mono-
cytes [122]. Another two players are involved in this game. 
In fact, BMAL1 induces the expression of rorα, increasing 
the content of RORα that binds to an RORE sequence in 
the promotor of bmal1 enhancing its expression. Moreover, 
RORα also induces the expression of IκB, the inhibitor of 
NF-κB, blocking its activation and reducing its translocation 
to the nucleus. The importance of RORα in the control of 
the immune response was confirmed since mice deficient 

in RORα have an enhanced activity of their immunity and 
they are more susceptible to sepsis [123]. But BMAL1 also 
induces rev-erbα expression and content of REV-ERBα, 
which binds to the same RORE in the promoter of bmal1 
suppressing its expression, thus triggering the NF-κB-
dependent inflammatory pathway [124]. Although it was 
suggested that REV-ERBα may also repress CCL2, acting 
as an anti-inflammatory molecule [120], there is consensus 
regarding its proinflammatory roles. The consequence of 
BMAL1 activity is the reduction of the NF-κB-dependent 
immune response, decreasing the expression of proinflam-
matory molecules including iNOS, COX-2, cytokines, and 
other mediators of the inflammation. Thus, BMAL1 func-
tions as an anti-inflammatory molecule controlling the 
rhythmic activity of the innate immunity under basal condi-
tions, but also preventing an exaggerated immune response 
against infection.

CLOCK coexists in the protein complex with the p65 
subunit of NF-κB, enhancing its phosphorylation and 
acetylation, and increasing its transcriptional activity 
[125]. Thus, CLOCK and BMAL1 exert opposite effects 
on immunity and BMAL1, recruiting CLOCK, prevents 
the proinflammatory effects of the latter. Another two 
proteins of the clock, PER and CRY, also modulate the 
immune system. Although there are three PER proteins, 
PER2 seems to be the most significant in controlling the 
immune system. PER2 controls the production of INFγ 
and IL-1β, and the absence of PER2 significantly reduces 

Fig. 2   A simplified scheme of 
the clock-NF-κB connection. 
BMAL1:CLOCK constitutes a 
loop controlled by PER:CRY 
heterodimers. Over them, 
RORα enhances BMAL1 and 
REV-ERBα represses it. Among 
other mechanisms, BMAL1 
regulates nampt expression 
and the NAMPT protein that 
synthesizes NAD+, the cofactor 
for SIRT1. The deacetylase 
activity of SIRT1 inactivates 
NF-κB, controlling the immune 
response. When REV-ERBα 
dominates, blocks BMAL1 
releasing the inflammatory 
activity of NF-κB
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these cytokines in response to sepsis. But PER2 binds 
to block the BMAL1:CLOCK activity, enhancing the 
inflammatory response [126]. PER2 may also inhibit the 
activity of REV-ERBα, thereby having a more complex 
role in the immunity [113]. Thus, whereas PER2 controls 
the circadian production of some cytokines, it promotes 
inflammation by reducing the activity of BMAL1. The 
cryptochromes CRY1 and CRY2 are other supervisors of 
the BMAL1:CLOCK function. In this case, the lack of 
CRY1 and CRY2 triggers the production of iNOS, IL-6, 
and TNFα, reflecting a proinflammatory condition. The 
effects of these cryptochromes depend on their activation 
of cAMP-dependent NF-κB phosphorylation and subse-
quently activation [127].

The fact that CLOCK is a histone acetylase (HAT) that 
modulates NF-κB transcriptional activity through the 
acetylation of its p65 unit suggests that other acetylases/
deacetylases may also influence NF-κB and/or CLOCK 
itself. Class III mammalian histone deacetylases (HDACs) 
include sirtuins 1–7, and they sense cellular energy 
metabolism [128]. The most studied sirtuins is SIRT1, 
a nuclear protein involved in metabolism control. It is a 
deacetylase that uses NADH/NAD+ to remove an acetyl 
group from its substrates and it is involved in metabolic 
control and aging [128]. Because metabolism and SIRT1 
deacetylase activity oscillate with a daily period, a rela-
tionship between the pacemaker and SIRT1 was proposed 
[129]. BMAL1, CLOCK, and SIRT1 associate together 
and locate at the promoters of clock-controlled genes 
favor the circadian gene expression. It was proposed that 
SIRT1 interacts directly with CLOCK and interacts with 
the BMAL1:CLOCK complex, controlling the circadian 
histone acetylation by CLOCK. The circadian function 
of BMAL1 is regulated by its acetylation by CLOCK, 
and it has been suggested that deacetylation of BMAL1 
by SIRT1 contributes to its activity [129]. But SIRT1 
activity depends on the circadian production of nicotina-
mide phosphoribosyl transferase (NAMPT), the limiting 
enzyme required for the synthesis of NAD+ that is under 
the control of BMAL1. SIRT1 controls its own activity 
inducing the expression of NAMPT due to its interac-
tion with BMAL1:CLOCK, which means that NAMPT, 
NAD+, and SIRT1 activity are under circadian control, 
constituting a loop with BMAL1:CLOCK complex [130].

Inflammation disrupts the molecular clock through 
multiple pathways. On the one hand, inf lammation 
represses both expression and oscillation of the clock 
genes, effects related to the inhibitory roles of TNFα and 
IL-1β, and probably NF-κB itself, on the transcriptional 
activity of the BMAL1:CLOCK complex [131]. The feed-
back connection between clock genes and inflammation 
further explains the exaggerated response of the innate 
immunity in some conditions such as sepsis.

Clock genes and mitochondrial function

Although mitochondria are related commonly to the main 
source of ATP in the cell, they have many other functions 
including the energy-to-heat production balance, calcium 
homeostasis, and apoptosis/necrosis control of the cell death 
[60]. These functions are directly linked to the cell metabo-
lism and, so, it is not surprising that mitochondrial activity 
could also fluctuate in a clock-dependent fashion [132, 133]. 
Rhythms in some genes related to glucose and lipid metabo-
lism, among others, are rhythmically expressed in mouse 
liver [134]. The circadian expression of hepatic metabolic 
enzymes is of high importance because clock gene dysfunc-
tion leads to metabolic disorders. As an example, bmal1 
deletion produces hypoglycemia and clock mutations induce 
obesity and metabolic syndrome [135]. Because mitochon-
dria are involved in some of these metabolic pathways, a 
relationship between clock genes, metabolism, and mito-
chondria is emerging. The expression of pgc1α (peroxisome 
proliferator-activated receptor gamma coactivator 1-alpha) 
oscillates with per2 in peripheral tissues including the liver 
and skeletal muscle, regulating energy metabolism. PGC1α 
through coactivation of RORα induces the expression of 
bmal1 and rev-erbα [136]. In this loop of clock genes modu-
lation SIRT1 participates; it deacetylates PGC-1α promoting 
its activation [137]. So, PGC-1α constitutes a link between 
clock genes and metabolism, with RORα as an intermediary 
signal. But SIRT1 and its substrate PGC-1α are present in 
the mitochondrial where they regulate energy metabolism 
[138]. They activate the mitochondrial transcription factor 
A (TFAM) that regulates mtDNA copy number and its tran-
scriptional activity [139].

Taking into account the data above mentioned, the con-
nection between clock genes and mitochondrial function 
can be established at several levels. On the one hand, in 
its active form, CRY is able to inhibit the expression of 
some enzymes of the gluconeogenesis pathway, whereas 
AMP-activated kinase (AMPK) phosphorylates and inac-
tivates CRY. This situation leads to a modification of the 
clock function because CRY is a repressor of the BMAL1/
CLOCK complex. Here, BMAL1 enhances rorα expression, 
favoring the expression of bmal1 and rev-erbα. In a follow-
ing step, BMAL1:CLOCK dimer enhances the expression 
of cry, again initiating the cycle. In this loop, SIRT1/PGC1α 
participates in regulating mitochondrial functional capac-
ity. So, it can be summarized that CRY influences mito-
chondrial activity reducing gluconeogenesis and favoring 
the substrates for OXPHOS through glycolysis, enhancing 
ATP production. AMPK senses the energy increase, reduc-
ing CRY activity and, thus, ATP production by the mito-
chondria. Now, CRY inactivation releases BMAL:CLOCK 
that initiates a new cycle enhancing cry, nampt, and rorα 
expression, whereas the latter, with SIRT1/PGC1α, further 
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induces the expression of bmal1 and mitochondrial biogen-
esis. REV-ERBα acts as a repressor of BMAL1, modulating 
clock genes function. Thus, mitochondrial dynamics, bio-
genesis, and function are connected in a circadian manner 
with clock oscillations [140].

When speaking about mitochondria, we must have in 
mind that they produce ATP because they consume oxygen. 
Approximately, 95% of the oxygen entering the body is used 
by the mitochondria during OXPHOS. But some of the O2 
is partially reduced by one, two or three electrons yielding 
O2

·−, H2O2, and ·HO [141, 142], a group of ROS that may 
impair mitochondrial function. Mitochondria also produce 
RNS, mainly NO· and ONOO−, a product formed through 
the reaction of NO· with O2

·− [143]. ONOO− is an extremely 
reactive compound that irreversibly damages the ETC com-
plexes leading to mitochondrial failure [144]. Moreover, 
normal mitochondria are the main source of O2

·− in the cyto-
sol, where it can also react with NO· forming ONOO− in 
circumstances where there is an excess of O2

·− production 
[145]. However, NO· plays a central role in mitochondrial 
bioenergetics through the modulation of the oxygen con-
sumption. In fact, NO· competes with O2 for the same site 
in the cytochrome c oxidase [65]. The excess of these ROS/
RNS is normally eradicated by the antioxidative defense sys-
tem. In some circumstances, however, when the production 
of ROS is elevated or the antioxidant defense is insufficient, 
the levels or ROS rise generating oxidative damage. This is 
particularly significant during inflammatory processes, when 
ROS and RNS increase.

Because mitochondrial production of ROS is a normal 
consequence of mitochondrial metabolism, one won-
ders whether ROS formation also oscillates along the 
24 h period. There is evidence showing that ROS lev-
els change along the day in several tissues of mice, and 
bmal1-deficient mice produce high levels of ROS that 
have been related to the short life-span of these animals 
[146]. In human red blood cells, rhythms in the perox-
iredoxin oxidation have been reported [147]. Moreover, 
changes in ROS formation are also related to a similar pat-
tern of changes in LPO and protein oxidation [148]. The 
antioxidant defense is also under the control of the clock 
that regulates the expression of the antioxidant enzymes, 
probably acting through NF-κB and Nrf2 expression. ROS 
produce damage at multiple levels, and besides its elimina-
tion, the molecules, specially DNA, should be repaired. In 
this regard, the nucleotide excision repair systems oscillate 
also with a 24 h period [149]. If the daily changes in ROS 
production directly depend on the pacemaker or they are 
a consequence of the metabolic rhythms, remains to be 
clarified. However, ROS can damage sufficiently the cell 
to trigger cell death events. Among others, autophagy is 

related to remove damaged organelles from the cell when 
they are malfunctioning, normally due to oxidative dam-
age. It is known that genes associated with autophagy 
and autophagic activity itself are under the control of the 
biological clock [110, 150]. Thus, the disruption of clock 
genes impedes a normal program of autophagy, leading 
to damaged mitochondrial accumulation, contributing to 
disease [82, 83, 96].

Central vs. peripheral clocks

It has been mentioned that the oscillations in SCN clock 
genes expression lead to a parallel protein rhythm and 
function. The transcription translation oscillating (TTO) 
model served to explain the oscillatory regulation of the 
clock-controlled genes [133, 151]. However, post-trans-
lational modifications of the clock proteins, mainly phos-
phorylation/dephosphorylation of PER proteins, yield an 
additional regulatory control of the clock [152]. Rhythmic 
clock gene expression is not limited to the central pace-
maker, and it is also detected in most of the cells in the 
organism where they control metabolic and other rhythms 
[151]. Studies on cardiomyocytes showed the presence of 
a circadian clock in the heart [153], leading to identify its 
response to lipid metabolism. In fact, food intake serves as 
synchronizer for peripheral clocks but lesions of the SCN 
impede this effect [154].

The presence and functions of the circadian clock in the 
immune system are now an important matter of study. It 
oscillates in several immune cells including macrophages, 
B cells, and dendritic cells [155]. Importantly, the expres-
sion of some TLR receptors that recognize PAMPs such as 
TLR9 shows a circadian rhythm that is dependent on PER2 
[155]. The response of the immune cells also changes 
along the day, and mice show increased T cell response 
when they are immunized during the day than at night 
[156]. These peripheral clocks hierarchically depend on 
the central pacemaker. Lesions in the SCN lead to a loss in 
the rhythm of peripheral clocks, suggesting that the latter 
are not autonomously rhythmic but require its regulation 
by the SCN clock [157]. Also, the SCN lesion leads to the 
impairment of the melatonin rhythm, blunting its role as 
endogenous synchronizer and loss of peripheral rhythms. 
Even more, deletion of a clock gene may affect the func-
tion of several organs [158]. Thus, the central pacemaker, 
through multiple signals including neurotransmitters sig-
nal inside the brain, endocrine (melatonin and corticoids), 
and nervous (through the autonomic nervous system) 
signals to peripheral organs, orchestrated the peripheral 
clocks maintaining them in synchrony [151, 157].
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Melatonin‑mitochondria interplay in sepsis

Melatonin and clock genes

Melatonin, N-acetyl-5-methoxytryptamine, is a product of 
tryptophan and derived from 5-hydroxytryptamine (sero-
tonin). Initially reported as a product of the pineal gland 
[159, 160], it is now evident that melatonin is synthesized 
in most organs and tissues via the same enzymatic machin-
ery as in the pineal gland [161]. Unlike pineal melatonin, 
extrapineal melatonin does not follow a circadian rhythm, 
and its concentrations are one or two orders of magnitude 
higher than pineal melatonin. Moreover, it is unknown to 
date if its synthesis is controlled by clock genes [162]. Pin-
eal melatonin production is under the control of the central 
pacemaker that transforms the photoperiodic signal in an 
endocrine one. Melatonin mechanisms of action include its 
effect through specific MT1 and MT2 membrane receptors 
that mediated chronobiotic properties of the indoleamine 
[163]; genomic effects, through nuclear receptors belong-
ing to the ROR/RZR family of nuclear transcription factors 
[164], and regulatory effects through its binding to calmodu-
lin and calreticulin, two proteins related to calcium homeo-
stasis. The binding of melatonin to these proteins shows a Kd 
in the low nanomolar range, and it fulfills pharmacological 
features of a receptor [165, 166]. Melatonin also regulates 
mitochondrial homeostasis by several mechanisms includ-
ing nuclear and mitochondrial DNA transcriptional activity 
[60, 167]. Mitochondria have not been proven definitively 
to possess melatonin receptors; however, they may be a site 
of melatonin synthesis [168].

Perhaps the most intriguing feature of melatonin is the 
differences in the way it is handled by the pineal and extrap-
ineal sources. Pineal melatonin is not stored in the gland, 
where it is released into the blood and cerebrospinal fluid 
soon after it is produced; this occurs with the typical noc-
turnal peak. This rhythm conveys a chronobiotic signal that 
synchronizes multiple functions of the body to a 24 h day/
night cycle [99]. The maximal concentration of melatonin 
in blood at night rarely exceeds 1 nM, although it is in much 
higher levels in the CSF [161, 169].

Pineal melatonin synthesis is controlled by the central 
biological clock in the SCN, which generates circadian 
rhythms through the transcriptional/translational feedback 
loop described above. This clock machinery is entrained by 
the light:dark cycle that induces the expression of bmal1 
and clock at night, with the corresponding translation into 
BMAL1 and CLOCK proteins some hours later. Then, the 
BMAL1/CLOCK complex triggers the expression of per and 
cry yielding the proteins PER and CRY that accumulates 
during the day and, once they reached a critical levels, forms 
heterodimers that enter the nucleus to negatively feedback 
the BMAL1/CLOCK complex [170]. During the first phase 

of the clock genes loop, i.e., at night, is when melatonin 
synthesis in the pineal gland starts. The signals coming 
from the SCN to the pineal gland constitute a polysynaptic 
pathway culminating in the release of norepinephrine on the 
pinealocyte that induces the expression of arylalkylamine 
N-acetyltransferase (AANAT) [171, 172]. Although it was 
suggested for years that AANAT is the limiting enzyme in 
melatonin synthesis, it is currently suggested that acetylser-
otonin-O-methyltransferase (ASMT) is actually the enzyme 
that limits the synthesis of the indoleamine [173].

Melatonin also can influence the SCN pacemaker through 
a feedback pathway that closes the loop of the central regu-
lation of the circadian rhythms. One hypothesis suggests 
that melatonin stabilizes clock proteins in the SCN tran-
scribed during the dark phase of the light:dark cycle via the 
ubiquitin–proteasome system [107]. This feedback pathway 
implies melatonin to maintain rhythm stability [174]. Some 
possibilities arise for this effect of melatonin. On the one 
hand, melatonin exerts an inhibitory role on glutamatergic 
activity in several areas of the brain independently of MT1 
and MT2 receptors [175–177] and, thus, the indoleamine 
may modulate the glutamatergic activation of the SCN con-
veyed by the retinohypothalamic tract. On the other hand, it 
was shown that melatonin phase-shifts bmal1 and rev-erbα 
expression [178], which could be produced through its own 
receptors described in the SCN [179]. These double mecha-
nisms of action of melatonin in the SCN may account for the 
two distinct actions of the indoleamine elsewhere reported 
[180]: One of them, an acute inhibitory effect on neuronal 
firing mediated by glutamatergic and or glutamatergic-
related events, and the second that involves phase-shifting 
of the clock. In any event, the activity of melatonin on the 
central pacemaker could serve to fine tunning the circadian 
clock, informing it of the correct time and amplitude of its 
rhythm [181].

Melatonin and the NF‑κB pathway during sepsis

The beneficial effects of melatonin in sepsis was shown in 
our pioneer study demonstrating that melatonin adminis-
tration inhibited in a dose-dependent manner the inflam-
matory response triggered by LPS administration to rats 
[182]. Three-month-old animals received 10 mg/kg bw of 
LPS serotype 0127:B8, a dose that produces acute sepsis 
and MOF, and the rats die 6 h later. Groups of animals 
received melatonin at different doses from 0 to 60 mg/kg 
bw. The mRNA expression, protein content, and enzymatic 
activity of iNOS, and NO· production were totally counter-
acted by melatonin in the liver and lungs of the rats. Even 
more, melatonin absolutely prevented liver, kidney, and 
cardiovascular dysfunction in these animals, restoring the 
normal carbohydrate, lipid, and protein metabolism. Of 
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note, septic rats were only treated with melatonin, which 
was able to recover rat from septic shock-mediated MOF.

Because both the incidence and mortality of sepsis 
further increase with age, the next step was to evalu-
ate the antiseptic properties of melatonin in aged rats 
injected with LPS. For this purpose, 18 months old rats 
were treated following the same protocol as before, and 
iNOS expression and activity, NO· production, and LPO 
levels were analyzed in liver and lungs. The inflammatory 
reaction was higher in aged rats than previously recorded 
in young animals. Melatonin administration to aged rats 
at the same doses as injected to young animals totally 
prevented the inflammatory reaction and the MOF [70]. 
Compared with the effects in young rats, the efficacy of 
melatonin to recover aged animals from sepsis was higher. 
These data imply that melatonin is more efficient in recov-
ering to a healthy condition when the injury is greater.

The experimental model of acute sepsis induced by LPS 
is not completely comparable with clinical sepsis, and the 
effects of melatonin were analyzed in the model of sepsis 
induced by CLP in mice. With this model, the develop-
ment of sepsis is slower than with LPS, and the maximal 
survival of animals reaches 35 h. We also used inos+/+ 
and inos−/− mice strains to analyze the effects of NF-κB 
activation on the septic process and melatonin effects. 
Melatonin was given at dose of 120 mg/kg bw, since in 
preliminary experiments this dose blunted absolutely 
iNOS activity and expression. Moreover, 120 mg/kg bw 
in mice correspond to 60 mg/kg bw of melatonin in rats, 
in accordance with the dose translation calculations [183]. 
We analyzed here the expression of inos, and the levels of 
nitrotyrosine residues and carbonyl groups in the liver of 
septic mice. The results showed that the activation of NOS 
isoforms, i.e., iNOS and nNOS, was related to liver dam-
age during sepsis. The absence of iNOS in inos−/− mice 
blunted the septic response, with no contribution of nNOS 
to liver damage after CLP. In contrast, nnos−/− mice did 
not affect the response to CLP. We demonstrated that the 
effects of sepsis were unrelated to nNOS [38]. Moreover, 
melatonin treatment blunted the septic response in inos+/+ 
mice, reducing to normal levels the expression of iNOS 
and the levels to nitrotyrosine residues and protein oxida-
tion. Moreover, skeletal and cardiac muscles failure during 
clinical sepsis is critical for the survival of septic patients. 
So, we analyzed with the CLP model the effects of sepsis 
on these tissues and the antiseptic properties of melatonin. 
Diaphragm, skeletal muscle, and heart of mice were ana-
lyzed in inos+/+ and inos−/− mice strains. In all cases, it 
was shown that inos gene was required for triggering the 
septic response, which produced a severe damage to these 
tissues, in a similar extend as that reported previously in 
liver and lungs. As usual, melatonin treatment counter-
acted the effects of sepsis [62, 63, 67].

These data reflected a role of melatonin to reduce the 
effects of activation of the NF-κB pathway during the 
inflammatory response during sepsis, but they do not dem-
onstrate a direct effect of melatonin on NF-κB activation. 
Some reports showed also that in different circumstances, 
melatonin antagonized NF-κB [184, 185], whereas others 
suggested that, in turn, NF-κB could modulate the synthesis 
of melatonin [186, 187].

To get more insight into the mechanisms involved in 
the inhibitory effects of melatonin on NF-κB pathway, we 
performed a series of experiments to evaluate the complete 
pathway of its activation from TLR4 signaling to the NF-κB 
binding to DNA and subsequent gene expression [82]. For 
this study, we used C57/Bl6 and rorαsg/sg mice, the latter 
deficient in rorα gene, because of the participation of RORα 
nuclear receptor in the genomic effects of melatonin. Mice 
became septic after CLP and the results showed for the 
first time that melatonin administration blunted the NF-κB 
activation through SIRT1-dependent NF-κB deacetylation 
in septic mice. Melatonin also counteracted the NF-κB-
dependent gene expression, reducing to normal values the 
levels of iNOS and of the proinflammatory cytokines includ-
ing TNFα and IL-1β. Melatonin also restored the redox bal-
ance in septic mice. Because NF-κB also induces the expres-
sion of antioxidant enzymes, the effect of melatonin could 
be mediated through its binding to RORα. Interestingly, the 
inhibition of NF-κB by melatonin was blunted in rorαsg/sg 
mice, demonstrating also by the first time that functional 
RORα nuclear receptor modulates the NF-κB-dependent 
innate immune activation in sepsis, and it is the target for 
the anti-inflammatory actions of melatonin [82].

Using NF-κB-RE-luc [BALB/c-Tg(NFkB-RE-luc)-Xen] 
mice, a transgenic strain that expresses a luciferase reporter 
under transcriptional control of NF-κB, we followed the 
inflammatory response during the first 24 h of sepsis in vivo, 
when most of the animals die if they are not treated. We 
showed that whole body and, specifically the heart, was 
subjected to the inflammatory response, which disappeared 
when the animals were treated with melatonin. Importantly, 
the bacterial load was analyzed in vivo in BALB/c mice after 
injection of Bacteriosense 645 (5 nmol/100 μl PBS/mouse 
i.v.), a probe that binds to negatively charged lipids on the 
bacterial cell membrane. We found the same bacterial load 
in the presence and absence of melatonin. With the results 
showing that melatonin did not affect the cytosolic signaling 
events triggered by TLR4 stimulation, our data demonstrated 
that melatonin blocks the NF-κB response at nuclear level 
without removal of the bacterial stimulus, thus preventing 
the bacterial LPS triggering the innate immunity [82]. An 
inhibitory role of melatonin on NF-κB binding to DNA was 
also shown in cancer metastasis [188]. In a model of aging, 
we further demonstrated that the activation of NF-κB with 
age follows the same signaling pathways that sepsis in young 
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mice, and melatonin administration affected the same molec-
ular targets [96]. Thus, the connection of melatonin with 
NF-κB in sepsis and aging was solved.

Mitochondrial function during sepsis

A recent review addressed some key questions related to 
the role of mitochondria in sepsis [189]. A major question 
is whether mitochondrial (dys)function during sepsis is a 
primary event or a secondary player in the disease. A second 
question is that sometimes mitochondria are not excessively 
damaged during sepsis, opening the discussion on to what 
extent they contribute to the organ system dysfunction dur-
ing the inflammatory response. Related to these findings, the 
third question is a methodological one, and it is linked to the 
measurement of mitochondrial bioenergetics in the tissues of 
septic patients and in experimental models of sepsis.

During sepsis, there is an increased production of ROS 
and RNS, which can originate in the cytosol and contribute 
to mitochondrial impairment. But ROS and RNS are also 
produced by mitochondria and so the cellular pool of these 
radicals is composed by the sum of both sources, cytosolic 
and mitochondrial. The extent to which each source of ROS/
RNS contributes to the total pool of free radicals is a matter 
of debate. For mitochondria, increased ROS/RNS produc-
tion over the capacity of their antioxidant defense leads to 
an impairment of their function; so, mitochondrial damage 
and subsequent ROS/RNS formation should be secondary 
to sepsis.

To address these questions, we performed a series of 
experiments conducted in healthy conditions and in experi-
mental sepsis. We found that during the first steps of sepsis 
mitochondria function may not be excessively dysfunctional, 
and the degree of mitochondrial failure depends on the tis-
sue [37]. Here, young (3 mo.) and aged (18 mo.) rats were 
injected with LPS (serotype 0127:B78, 10 mg/kg b.w.) and 
inos/nnos/enos expression in the mitochondria, iNOS activ-
ity, and complex I and IV activities of the mitochondrial 
ETS were measured in liver and lungs. Rats were killed 6 h 
after LPS administration. The results showed for the first 
time that iNOS was constitutively present in the mitochon-
dria, together with nNOS, whereas no eNOS was detected. 
Mitochondrial iNOS (i-mtNOS), but not nNOS (n-mtNOS), 
expression and activity were significantly increased during 
sepsis, parallel to the changes in cytosolic iNOS. How-
ever, complex I and IV activities were more significantly 
reduced in the lung mitochondria than in liver. These results 
reflect that mitochondrial damage is secondary to sepsis; it 
depends, at least in part, on the iNOS induction, and it is 
tissue dependent [37].

These results prompt a new query regarding mitochon-
dria in sepsis: what was the source of mitochondrial NOS 

isoforms and what are the role(s) of the NO• produced by 
each isoform in mitochondria. Since n-mtNOS was iden-
tified as a cytosolic nNOS that enters mitochondria after 
post-translational modifications, and it is coded by the same 
gene as nNOS [190, 191], we conducted other experiments 
in inos−/− and nnos−/− mice to address this question. These 
experiments were carried out in the model of sepsis induced 
by CLP, and mice were evaluated at 24 h after CLP. Due to 
the tissue-specific response of mitochondria to sepsis, differ-
ent organs and tissues were analyzed, including diaphragm, 
skeletal muscle, heart, and liver [62, 63, 67, 82, 192, 193]. 
The results showed that CLP induced the expression of iNOS 
and i-mtNOS at 24 h after CLP, with a parallel increased in 
mitochondrial NO· and LPO levels, and a rise in the GSSG/
GSH ratio. The antioxidant enzyme GRd decreased drasti-
cally during sepsis, whereas GPx activity increased. The 
results, supporting an oxidative/nitrosative stress in mito-
chondria, coincided with a reduction in the activity of the 
four ETS complexes. On the contrary, inos−/− mice were pro-
tected against mitochondrial damage during sepsis. They did 
not display any activation of i-mtNOS and had no oxidative 
damage. These data confirmed that i-mtNOS comes from 
cytosolic iNOS and it is coded by the same gene.

We were able to measure the proportion of mitochon-
drial NO· yielded by i-mtNOS and its role on mitochon-
drial bioenergetics [67]. Under physiological conditions, the 
intramitochondrial pool of NO· comes from both i-mtNOS 
and c-mtNOS, which account for the 32 and 68% of the 
total NO· pool, respectively. Here, the constitutive isoforms 
of NOS in the mitochondria produce NO· giving an [O2]/
[NO] ratio of 500/1000, which competitively and revers-
ibly inhibits cytochrome c oxidase by 16–26% [53]. Mice 
lacking iNOS and, thus, deficient in i-mtNOS, showed the 
equivalent reduction in NO· of 0.9 nmol/mg prot, which was 
enough to increase two-fold the activity of the complex IV. 
So, increasing levels of NO· during sepsis clearly inhibit 
complex IV activity in a dose-dependent manner leading 
to OXPHOS impairment, electron leak, and formation of 
ROS [68]. The parallel increase in O2

·− and NO· favors the 
formation of ONOO−, causing nitration and inactivation 
of the four respiratory complexes [144]. However, in the 
presence of an excess of NO·, in addition to complex IV 
inhibition, NO· and ONOO− also interact with ubiquinol, 
inducing its oxidation to ubiquinone preventing nitration of 
tyrosine residues by ONOO− [194]. These apparent para-
doxical effects of NO· in mitochondria help to explain the 
different degrees of energetic failure during sepsis, and it 
may depend on the experimental conditions of sepsis, the 
animal and type of strain, but also on the type and evolution 
of the septic patient.

We then decided to explore whether mitochondrial prep-
aration method affected the bioenergetics measurement. 
Mice were made septic by CLP and the evolution of the 
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mitochondrial bioenergetics was assessed at 8 and 24 h after 
CLP. Heart permeabilized fibers were prepared for high-
resolution respirometry (HRR). This preparation maintained 
the full mitochondrial pool and maintained also mitochon-
drial ultrastructure and interactions, resembling the in vivo 
conditions. Moreover, ETS, OXPHOS, cytochromes redox 
states, and OXPHOS supercomplexes were also measured. 
Our results showed a significant time-dependent impairment 
in ETS and OXPHOS during sepsis, which were apparent at 
8 h after CLP. Sepsis induced a significant time-dependent 
increase in leak and in coupling control ratio, and altered 
the CIII supercomplexes molecular structure [193]. These 
data were compared with our previous experiments meas-
uring mitochondrial function in isolated mitochondria from 
hearts of septic mice under the same experimental protocol 
of sepsis [63]. We observed that ETS complexes were less 
damaged when analyzed isolated mitochondrial preparation 
than when used permeabilized fibers.

These data collectively indicate that the extensive 
mitochondrial damage that occurs during sepsis is a time-
dependent phenomenon. Together with energetic malfunc-
tion, there is a significantly oxidative and nitrosative stress 
that participates in the mitochondrial malfunction [195]. 
Moreover, the data point to a major methodological issue: 
when mitochondria are isolated from any tissue, most of the 
damaged mitochondria are lost or broken during the proce-
dure, and the resulting pool contains relatively well-coupled 
mitochondria. However, using permeabilized fibers we work 
with the complete pool of mitochondria. Using HRR and 
mitochondria isolated from liver of septic mice, we further 
corroborated this hypothesis, because these mitochondria 
were apparently less damaged than those of permeabilized 
fibers [192]. These differences account for a major mito-
chondrial impairment detected in permeabilized fibers than 
in isolated mitochondria, raising concerns regarding the 
methods used to detect mitochondrial dysfunctions during 
sepsis.

Melatonin and mitochondria in sepsis

From in vitro studies in isolated mitochondria to cell culture 
as well as in vivo reports, the relationship between melatonin 
and mitochondria has been thoroughly analyzed; the data 
document that mitochondria are a major target of melatonin 
in the cell. This connection started with our paper in which 
we showed the effects of melatonin on isolated mitochon-
dria from rat liver and brain. Mitochondria were incubated 
with or without 100 μM t-butyl hydroperoxide (t-BHP) and 
in the presence or absence of 10–100 nM melatonin [167]. 
t-BHP increased mitochondrial hydroperoxides, leading 
to an oxidation of the 90% of the GSH pool, and block-
ing the activities of GPx and GRd. This situation produced 

mitochondrial swelling and their destruction. Melatonin, 
at doses of 100 nM, totally prevented the damage induced 
by t-BHP, recovering the GSH pool and the GPx and GRd 
activities, and normalizing the mitochondrial redox sta-
tus. These changes were accompanied with a recovery by 
melatonin of the ETS complexes inhibited by the toxin. To 
further analyze the specificity of the effects of melatonin, 
N-acetyl-cysteine (NAC), vitamin C and vitamin E were also 
tested for their antioxidant activity. These antioxidants, even 
at doses of 1 mM, i.e., 10,000 times higher than the dose of 
melatonin, had not ability to counteract the damage induced 
by the hydroperoxides to mitochondria. Melatonin also 
increased the activity of the ETS complexes in mitochon-
dria not exposed to t-BHP. The results support melatonin 
as the best antioxidant and mitochondrial protector against 
oxidative damage, and raised serious concerns regarding the 
value of the other antioxidants in clinical practice [167]. In 
parallel, we injected ruthenium red to normal rats to induce 
similar mitochondrial damage and oxidative stress in vivo. 
Melatonin administration at doses of 10 mg/kg bw increased 
the activity of the complexes I and IV in brain and liver 
mitochondria of untreated rat; it counteracted the inhibitory 
effect of ruthenium red in these respiratory complexes, and 
restored the GSH pool [196]. This was the first demonstra-
tion that melatonin in vivo exerts direct beneficial effects 
on mitochondria.

With these results in mind, the next experiments were 
designed to clarify the effects of melatonin on mitochon-
dria. Rat liver and brain mitochondria were cultured in vitro 
and the activity of the complex I and IV, the synthesis of 
ATP, was analyzed. Melatonin enhanced the activity of 
complex I and IV from 1 nM to 10 nM, and the actions of 
the indoleamine reflected an allosteric regulation of these 
enzymes [197]. The specificity of melatonin was further ana-
lyzed. Blue native-PAGE and histochemical analysis of the 
complex I demonstrated an increase in its activity. Moreo-
ver, titration studies showed that melatonin counteracted the 
inhibition of the complex IV by cyanide. Finally, melatonin 
also increased the production of ATP. The next experiments 
showed that melatonin binds specifically to a matrix mito-
chondrial protein, and increased the transcriptional activity 
of mtDNA of the subunits 1, 2, and 3 of the complex IV 
in vitro and in vivo [198].

Collectively, these data speak in favor of high sensitivity 
of mitochondria to the regulatory effects of melatonin that 
can be considered the intracellular targets of the indoleam-
ine. With the use of HRR, fluorimeter, and spectrophotom-
etry, mitochondrial bioenergetics was evaluated in vitro in 
the presence of increasing amounts of melatonin added to 
the respiratory chamber. Mitochondria were obtained from 
mouse liver and melatonin was added from 1 nM to 1 mM 
[199]. The results showed that melatonin decreased oxygen 
consumption in a dose-dependent manner, without changes 
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in oxygen flux when ADP was added. Melatonin also had a 
mild-uncoupling effect, reducing the ∆+

μH and leading to a 
reduction in the formation of O2

·− and H2O2. Melatonin also 
enhanced the activity of the four ETS complexes, maintain-
ing OXPHOS and ATP synthesis. Pharmacokinetic studies 
revealed that mitochondria take up melatonin in a dose-
dependent manner, thus supporting that the effects of the 
indoleamine here recorded depend on a direct effect inside 
the organelle. Together, the data above summarized fur-
ther confirm melatonin as the major endogenous hormone 
involved in the control of mitochondrial homeostasis.

With the demonstration of the ability of melatonin to 
boost both normal and oxidatively damaged mitochondrial 
function, it was expected that the indoleamine should main-
tain mitochondrial efficiency in situations such as sepsis, 
where these organelles are severely damaged. The connec-
tion between melatonin and mitochondrial function in sepsis 
came from our paper published in 2003 reporting for the 
first time the existence of an i-mtNOS, a mitochondrial form 
of iNOS [37]. Here, we found that sepsis induced an age-
dependent increase of mitochondrial NO· in rats injected 
with LPS that was dependent on the induction of i-mtNOS. 
The high levels of NO· reduced the activity of the ETS com-
plexes I and IV in the mitochondria of lungs and liver, which 
was counteracted by melatonin administration at doses of 
60 mg/kg bw. The deleterious effects of sepsis on mitochon-
dria were significantly higher in aged than in young rats, 
which also showed higher levels of i-mtNOS. The effects of 
melatonin were also more pronounced in aged rats, which 
was related to the lower levels of melatonin in the latter. 
The efficacy of melatonin to restore the normal mitochon-
drial function preventing their failure during sepsis was then 
identified.

The failure of skeletal and cardiac muscles is the main 
cause of mortality during sepsis and their mitochondria 
show an elevated oxidative and nitrosative stress with a par-
allel drop in the ETS complexes activity [62, 67]. These 
changes follow the increased activity of i-mtNOS during 
endotoxemia. Melatonin administration at doses of 120 mg/
kg bw to septic mice prevented the mitochondrial dysfunc-
tion and the development of septic shock and MOF in these 
mice, reflecting the high efficacy of the antiseptic proper-
ties of melatonin. Of note, the dose of 120 mg/kg bw of 
melatonin in mice corresponds to that of 60 mg/kg bw in 
rats, according to the equivalence of dose elsewhere pub-
lished [183]. Moreover, melatonin therapy doubled the sur-
vival time of the animals [63]. Importantly, mitochondrial 
dysfunction does not occur in mice lacking iNOS/i-mtNOS 
isoforms, with the effects of melatonin being less marked, 
supporting the idea that these NOS isoforms are responsible 
for the bioenergetic impairment during sepsis. Studies with 
human endothelial cells in culture showed that melatonin 
counteracted LPS-dependent induction of NF-κB, reduced 

IL-6 and IL-8 levels, and improved mitochondrial function 
[200].

The specific effects of melatonin to improve the ETS 
activity should be accompanied with a significant increase 
in their ability to produce ATP; this hypothesis was further 
analyzed in the same experimental model of septic mice. 
Here, we measured the content of the adenine nucleotides 
and the ATP production. The results showed that the mito-
chondrial ATPase activity did not change during sepsis or 
melatonin treatment, but it increased the production of ATP 
that may explain the reduction of the mortality [63]. The 
absence of changes in the complex V activity indicates that 
the drop in the ATP formation depends on the ETS damage 
during sepsis [201]. Moreover, the lack of effects of mela-
tonin on the activity of the complex V was further demon-
strated in isolated mitochondria analyzed by HRR [199]. 
The ability of melatonin to enhance the bioenergetic capac-
ity of the mitochondria reducing their oxygen consumption 
protects this organelle from oxidative damage favoring their 
recovery during sepsis [202].

Melatonin and the NLRP3 inflammasome pathway 
during sepsis

The sequence of events during sepsis as revised herein is 
summarized as follows: (1) stimulation of TLR4 (and others) 
receptors by the bacterial LPS; (2) release of free NF-κB to 
the cytosol and its translocation to the nucleus; (3) activation 
of NF-κB transcriptional activity; (4) production of proin-
flammatory molecules including iNOS and both mature and 
immature proinflammatory cytokines such as TNF and pro-
IL-1β; (5) positive feedback of these cytokines on NF-κB; 
(6) increased oxidative damage to mitochondria that lose 
their capacity to produce ATP, and (7) eventually cell death. 
These events correspond to the classical NF-κB pathway of 
the innate immunity activated during sepsis. As a secondary 
but necessary component of the innate immunity that is trig-
gered during sepsis is the NLRP3 inflammasome. The exist-
ence of a mitochondrial failure during sepsis and the fact that 
the NLRP3 inflammasome is activated by ROS and mtDNA 
from impaired mitochondria, close the loop and explain the 
exaggerated inflammatory response in this disease.

The fact that mitochondria are the main intracellular 
targets of melatonin suggests that melatonin may protect 
against NLRP3 inflammasome activation preventing the 
release of ROS and mtDNA from these organelles. Moreo-
ver, since NF-κB transcriptional activity enhances the cyto-
solic levels of NLRP3, the activity of melatonin to blunt 
NF-κB yields an additional pathway of inhibition of the 
NLRP3 inflammasome activation by the indoleamine.

To address the mechanism of action of melatonin in the 
regulation of the NLRP3 inflammasome, we performed a 
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series of experiments that confirmed for the first time that 
melatonin inhibits the NLRP3 inflammasome activation dur-
ing sepsis by a mechanism independent of its inhibition of 
NF-κB [82]. We showed that the NF-κB induction by sepsis 
depends on the inhibition of the expression of RORα and 
activation of REV-ERBα, thus reducing the activation of 
SIRT1. In these conditions, p65 was not deacetylated main-
taining its binding to DNA and subsequent gene transcrip-
tional activity. These data explain why in rorsg/sg mice we 
found a major NF-κB activation and immune response. Mel-
atonin was able to block the NF-κB activation in response to 
sepsis in rorα+/+ mice, but it lacks of effect in rorsg/sg mice. 
However, melatonin blunted the activation of the NLRP3 
inflammasome in both rorα+/+ and rorsg/sg mice. Further 
experiments confirmed that the effect of melatonin to coun-
teract the oxidative damage to mitochondria in septic mice, 
reducing the cytosolic levels of ROS and preventing mtDNA 
release from mitochondria, was the mechanism involved in 
the reduction of the NLRP3 inflammasome activity [82].

In other conditions including age and mucositis, where 
the activation of the NF-κB/NLRP3 inflammasome path-
ways was demonstrated, melatonin administration counter-
acts both of them through the same mechanisms as here 
reported in sepsis [96, 203]. Additional experiments were 
done to assess the melatonin-NLRP3 inflammasome con-
nection. Mice lacking nlrp3 gene are expected to respond to 
sepsis with lower innate immune reactivity than wild type 
counterparts. We compared the septic response to CLP in 
these mice. The results showed that nlrp3−/− mice had an 
inhibition of the septic response comparable to that found 
after melatonin treatment to septic wild-type mice. Mice 
lacking nlrp3−/− gene, however, have a disruption of the 
expression of clock genes, which was restored when they 
were treated with melatonin [204]. The lack of nlrp3 gene 
converts sepsis in a moderate inflammatory disease, and it is 
comparable with the therapeutic effect of melatonin admin-
istration. These data identify NLRP3 inflammasome as the 
main therapeutic objective in sepsis, which may be consid-
ered a target for the antiseptic properties of melatonin. The 
results also established dual roles of melatonin to control the 
innate immune response: an RORα/REVERBα-dependent 
mechanism to curb NF-κB activation during sepsis, and a 
mitochondrial-dependent mechanism to inhibit the activa-
tion of the inflammasome. These data also identified mela-
tonin as the first drug able to blunt these two pathways of 
the innate immunity.

Melatonin, clock genes and the NF‑κB/NLRP3/
mitochondrial connection in sepsis

It is known that the circadian system is directly involved 
in the control of the immune system, which shows a day/

night changes compatible with a circadian rhythm. Clock 
genes play important roles in the control of the immune 
responses, and ablation of the SCN enhances the immune 
response [205]. In turn, cytokines mediate the immune-cir-
cadian loop. Proinflammatory cytokines and the expression 
of their receptors display circadian rhythms. INFγ affects the 
clock gene expression [206], whereas TNFα, which is under 
rhythmic release in normal conditions, inhibits BMAL1/
CLOCK-dependent transactivation of clock genes [131]. 
TNFα also phase-shifts per2 expression affecting the cen-
tral clock [207]. Under inflammatory conditions, these and 
others cytokines may promote chronodisruption leading to 
a major immune response. This and other information have 
been revised here. Interesting, melatonin affects the SCN 
clock by different pathways including the transcription of 
per1 and per2 at night [208], which is related to the feedback 
effect of the indoleamine to induce advance phases of the 
clock. Also, melatonin antagonizes NF-κB, alters the effect 
of NF-κB to repress BMAL1/CLOCK [209], and the role 
of CLOCK to enhance NF-κB activation, and supports a 
more complex connection between the anti-inflammatory 
properties of melatonin to reduce proinflammatory cytokines 
and the roles of both melatonin and these cytokines on the 
central clock (Fig. 3).

Whether sepsis drives clock gene expression towards a 
proinflammatory rearrangement or clock genes themselves 
change their expression favoring the immune response in 
sepsis is yet unclear. To look for further insights that could 
help to decipher this connection, we performed a series of 
experiments in septic and aged mice. Septic mice constitute 
an acute model of inflammation that also acutely influences 
the clock, whereas aging is a chronic, subclinical model of 
inflammation that results in low level expression of proin-
flammatory molecules. In the model of sepsis induced by 
CLP in mice, the induction of the innate immune response in 
terms of NF-κB/NRLP3 inflammasome activation and pro-
inflammatory molecules including TNFα, iNOS, INFγ, and 
IL1-β was synchronous with the disruption of the BMAL1/
CLOCK/RORα/REV-ERBα loop. In parallel with the 
immune response, the RORα/REV-ERBα ratio was quickly 
reversed, favoring REV-ERBα. This change conditioned the 
reduction in BMAL1 and CLOCK expression, which in turn 
diminishes the SIRT1-dependent deacetylation of NF-κB, 
enhancing its transcriptional activity [82]. These events 
close the loop of the innate immunity as it has been shown 
in this review.

Aged animals display the same activation of the innate 
immunity that young animals with sepsis, although with a 
low grade of NF-κB/NRLP3 inflammasome induction [96]. 
In the aged animals, there is a small, but significant reduc-
tion in the RORα/REV-ERBα ratio, leading to the activation 
of the full pathway of the NF-κB/NRLP3 inflammasome 
although at much lower extent than in sepsis. The induction 
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of sepsis in aged mice worsens this situation, promoting the 
high-level of innate immune response, with a major altera-
tion in the BMAL1/CLOCK/RORα/REV-ERBα loop. In 
both cases, i.e., sepsis and aging, therapeutic administration 
of melatonin restored the clock and blunted the inflamma-
tion. Of note, acute administration of melatonin to aged and 
septic mice blunted the innate immune response to the level 
of non-septic aged mice; a similar response was recorded 
in relation to the BMAL1/CLOCK/RORα/REV-ERBα [96]. 
These data support the fact that chronodisruption is the con-
dition that, during age, leads to the activation of the innate 
immunity.

In conclusion, it seems that age-dependent chrono-
disruption may release the innate response, entering in a 
feedback cycle that favors the aging process itself. These 
data led us to propose the chronoinflammatory theory of 
aging [96]. In the presence of an inflammatory signal such 
as bacterial LPS, however, the release of some proinflam-
matory molecules may be the first signal to induce loss of 
clock homeostasis, driving it towards an increased inflam-
matory condition that continues in a vicious cycle and ends 
in an uncontrolled response of the innate immunity, lead-
ing eventually to death. Both conditions, sepsis and aging, 
courses with diminished production of melatonin, allowing 
major chronodisruption and immune reactivity. In sepsis 
and aging, melatonin restored the pacemaker homeosta-
sis, reducing the innate immunity and enhancing survival. 

Thus, we can consider melatonin as the link between the 
central pacemaker and the innate immunity. The outstand-
ing properties of melatonin to revert the BMAL1/CLOCK/
RORα/REV-ERBα/NF-κB/NLRP3 inflammasome activa-
tion make it an ideal candidate for its therapeutic applica-
tion in sepsis and aging [210]. The lack of adverse effects 
of melatonin elsewhere reported [211, 212], and its broad 
antiseptic properties [213], supports the use of melatonin 
in humans. These inti-inflammatory properties of mela-
tonin are being currently assayed in a Phase II clinical 
trial in septic patients (Eudract # 2008-006782-83). The 
patients have been treated with a new patented injectable 
formulation of melatonin (PCT/ES2015070236). From the 
preliminary results, similar beneficial effects of melatonin 
have been obtained in septic patients as in experimental 
models of the disease.
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Fig. 3   A model to explain 
the anti-inflammatory activ-
ity of melatonin. Melatonin is 
released in a rhythmic manner 
controlled by the central clock, 
which in turn exerts a feedback 
control of the clock. The effects 
of melatonin also include its 
binding to RORα receptors 
enhancing BMAL1-dependent 
SIRT1 activity and reducing 
the NF-κB activity. Moreover, 
melatonin directly acts on the 
mitochondria, boosting the 
production of ATP and reducing 
the formation of free radicals. 
These effects maintain the 
integrity of the mitochondria 
preventing opening the MPT. 
Thus, melatonin impedes the 
activation of the NLRP3 inflam-
masome. These three effects of 
melatonin blunt the inflam-
matory response during sepsis 
and recover the clock/NF-κB/
NLRP3/mitochondria normality
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