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Abstract Computational prediction of intrinsic disorder in

protein sequences dates back to late 1970 and has flour-

ished in the last two decades. We provide a brief historical

overview, and we review over 30 recent predictors of

disorder. We are the first to also cover predictors of

molecular functions of disorder, including 13 methods that

focus on disordered linkers and disordered protein–protein,

protein–RNA, and protein–DNA binding regions. We

overview their predictive models, usability, and predictive

performance. We highlight newest methods and predictors

that offer strong predictive performance measured based on

recent comparative assessments. We conclude that the

modern predictors are relatively accurate, enjoy wide-

spread use, and many of them are fast. Their predictions are

conveniently accessible to the end users, via web servers

and databases that store pre-computed predictions for

millions of proteins. However, research into methods that

predict many not yet addressed functions of intrinsic dis-

order remains an outstanding challenge.
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Introduction

Intrinsic disorder in proteins manifests as a lack of

stable tertiary structure and could be present along the

entire protein chain or in specific regions. The corre-

sponding intrinsically disorder proteins (IDPs) and

intrinsically disordered regions (IDRs) form dynamic

conformational ensembles. In other words, atomic coordi-

nates of their residues and their dihedral angles vary largely

over time, without a specific equilibrium [1, 2]. IDPs and

IDRs were shown to be abundant in nature [3]. According

to estimates between 3 and 17% of eukaryotic proteins are

fully disordered, depending on an organism [4], and about

30–50% of eukaryotic proteins have at least one long (C30

consecutive residues) IDR [3–6]. These disordered proteins

and regions are crucial for numerous cellular functions

including regulation of transcription, translation [7–10],

and cell signaling [11–15]. They were shown to be asso-

ciated with various human diseases [16, 17] and are being

explored as potential targets for drug discovery [18, 19].

Several databases were developed to store experimental

annotations of disorder. The first and largest repository of

the experimentally verified IDPs and IDRs is DisProt

[20–22]. This resource was released over a decade ago, in

2005, by Prof. Dunker’s group at the Indiana University. It

contains manually curated IDRs together with the annota-

tions of their functions, if available. The latest version 7.03

of DisProt contains 2167 IDRs from 803 protein chains,

compared to 290 IDRs from 179 proteins from the earliest

release of that database. Another source of experimentally

verified IDPs is the IDEAL database [23]. This database
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was published in 2011, originally with 153 annotated

proteins and has grown to 838 proteins in its latest version.

While DisProt offers information on a larger set of disor-

dered regions and a more complete set of functional

annotations of disorder, IDEAL focuses on the annotation

of interaction-driven functions. The latter database includes

information on binding partners of IDPs and proteins with

IDRs, illustrates them in a context of the protein–protein

interaction networks, and includes annotations of domains.

The protein data bank (PDB) [24], which is the main source

of the protein structures (ordered proteins), can be also

used to extract experimental annotations of disorder. IDRs

can be found in PDB as the regions that are missing in the

X-ray crystal structures of proteins [20, 25–27] or regions

that are associated with high structural variability in the

NMR models [28, 29]. Although these repositories of the

experimental annotations of disorder provide invaluable

information to investigate disorder, they represent only a

small fraction of sequences in nature.

Motivated by the high levels of abundance and functional

importance of IDPs and IDRs, numerous computational

methods were developed to predict disorder in protein

sequences [30–33]. The predictive models that are used by

these methods were computed and benchmarked using the

experimental annotations of IDPs and IDRs from the above-

mentioned databases. These computational predictors are used

to efficiently and accurately find disordered proteins and

regions for the millions of proteins that lack experimental

annotations. Given the large number and diversity of these

methods, several relevant reviews and comparative studies

were released in the last decade [27, 30–40]. These articles

covered most of the prediction methods and some related

approaches (e.g., predictors of low complexity regions and

flexible residues) dating back to 1994. We cover a similarly

comprehensive set of methods including six newly released

approaches that were not covered so far, and provide a more

complete side-by-side comparison of their availability,

usability, architecture, and predictive performance. We high-

light ten well-performingmethods that were selected based on

results from several large-scale comparative studies and six

most recent methods and describe them in greater depth. We

also discuss resources that provide access to predicted anno-

tations of disorder and we are the first to comprehensively

review a new group of methods that address prediction of

various cellular functions of disordered regions and proteins.

Historical overview

Inspired by Ref. [32], the development of predictors of IDPs

and IDRs can be divided into three periods: the first gen-

eration (1979–2001), the second generation (2002–2006),

and the third generation (2007 onwards).

The first generation predictors were released between

1979 and 2001, and during that time only a few methods

were authored. The first method, which aims to predict lack

of globular structure, was proposed in 1979 by Williams

[41]. This approach was designed to identify proteins that

form random coil conformations. However, these methods

lacked a proper empirical validation when it was published

and a recent evaluation showed that it provides relatively

poor predictive performance [32]. The first well-tested IDP

predictor was proposed in 1997 by Romero and colleagues

[42]. It is based on a neural network model that uses a

variety of physiochemical properties of the input protein

chain including amino acid compositions, aromaticity,

flexibility, hydropathy, and hydrophobicity. Another early

predictor was proposed by Uversky and co-workers in 2000

by using charge and hydropathy to find disordered proteins

[43]. This idea was later implemented in the FoldIndex

method [44].

The second generation methods were developed

between 2002 and 2006. The defining features of this

period are a rapid spike in the development efforts and use

of relatively simple predictive models. The second gener-

ation methods include approaches that predict intrinsic

disorder based solely on propensities/properties of amino

acids of the input protein sequences, such as GlobPlot [45]

and IUPred [46, 47], and methods that utilize popular

machine learning models, such as the PONDR family of

predictors [48–53], DisEMBL [54], and DISOPRED [55].

One of the new developments of this period was the

introduction of the evolutionary profiles as the predictive

inputs. These profiles are in the form of the position

specific score matrix (PSSM) generated with PSI-BLAST.

Several second generation methods including PONDR-

VL3P [51], DISOPRED2 [6], PROFbval [56], DISpro [57],

and NORSp [58], use this new type of the input. This is in

contrast to the first generation methods that did not use this

information.

The third generation methods were released after 2006.

The main characteristics of these methods are the use of

new or more sophisticated machine learning model and

utilization of meta-predictors. Example methods that take

advantage of more complex machine learning models

include OnD-CRF [59] that applies a conditional random

fields model, DNDisorder [60] that uses deep networks and

boosting, and DISOPRED3 [61] that combines three

machine learning models: support vector machine, neural

network, and nearest neighbor. The meta-predictors com-

bine results generated by several individual prediction

methods, either via a majority vote consensus or a separate

predictive model. The main aim of the meta-predictors is to

improve predictive performance when compared to their

individual input predictors. Examples of meta-methods

include CSpritz [62], MetaDisorder [63], MFDp [64],
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DisMeta [65], and MFDp2 [66]. We also note that a few

methods use structural modeling in the prediction, includ-

ing PrDOS that utilizes structural templates [67] and

DISOclust [68] that utilizes structural models.

Predictors of intrinsic disorder

We searched for the disorder predictors using a variety of

sources including prior reviews [30–37], studies that assess

and compare predictive performance of these methods

[27, 38–40], and manual search of PubMed with query

‘‘(((disorder[Title]) OR unstructured[Title]) AND predic-

tion[Title]) AND protein.’’ Among over 70 resulting

methods, we consider 32 predictors that are publically

available as web servers or/and standalone software, that

were published in reputable peer-reviewed scientific

venues, and that were released as part of the second or third

generation of predictors.

Table 1 summarizes availability and characteristics

related to the convenience for the end users of the 32

methods, which are listed in a reverse chronological order.

We show whether they are available as web servers, stan-

dalone packages or both and provide URLs of these

resources. We also indicate whether their web servers

accept batch submissions (multiple sequences) and whether

their predictions could be considered high-throughput. The

latter means that they finish a prediction in short amount of

time, typically under 30 s per average length sequence.

Consequently, these high-throughput methods can be used

to perform predictions on a genomic scale. We found 12

such methods. They usually do not use computationally

expensive evolutionary information as their input. Nearly

half of the predictors (15 out of 32) are available as stan-

dalone software. This allows the end users to incorporate

these methods into their own computational pipelines. All

but one are implemented as web servers, which is conve-

nient for a less computer savvy end users. To use a

webserver, these users need just a modern web browser and

Internet connection. Moreover, the web servers of five

methods accept batch submission, which is useful when a

user requires to run a large number of predictions, e.g.,

when predicting disorder for a particular family of proteins

or in a particular proteome. The outputs generated by these

methods could be binary (each residue in the input protein

chain is classified as either disordered or structured) or

numeric (propensity score that quantifies likelihood that a

given residue is disordered). We note that all 32 methods

output both binary values and propensity scores.

Apart from the availability and usability, we also sum-

marize methodologies that are utilized by the selected 32

methods. Table 2 lists the various types of predictive

models and inputs, and divides the predictors into four

classes:

1. Scoring function-based methods. They compute

propensity of disorder using a scoring function or

formula based on selected physiochemical properties

of the input amino acids, such as propensity to form

structured and disordered regions, certain secondary

structures, and solvent accessibility. Examples include

NORSp [58], GlobPlot [45], and IUPred [46, 47].

2. Machine learning-based methods. The propensity for

disorder is outputted from a classifier that is generated

using a machine learning algorithm. This classifier

utilizes the sequence and sequence-derived properties,

such as evolutionary conservation, predicted secondary

structure, predicted solvent accessibility, as its inputs.

Example classifier types include neural network,

support vector machine, regression, nearest neighbor,

and conditional random field. Predictors in this class

include DisEMBL [54], RONN [69], DeepCNF-D

[70], and DISOPRED [6, 55, 61, 71].

3. Meta-predictors. These methods use predictions of

disorder, in some cases together with other sequence-

derived properties, as the inputs to (re)predict disorder.

This prediction is computed either via voting, which is

typical for methods that use only the prediction of

disorder as inputs (e.g., disCoP [72], MetaDisorder

[63], metaPrDOS [73], DisMeta [65], and CSpritz

[62]), or by using a classifier. The examples of the

latter classifier-based consensuses are MD [74], MFDp

[64], and MFDp2 [66] that use neural networks (MD)

and support vector machines (both versions of MFDp).

4. Structure-based methods. Their predictive models use

structural models, either predicted or in a form of

structural templates. Examples are PrDOS [67] and

DISOclust3 [75].

Majority of the more recent models are either meta-

predictors or machine learning-based predictors. The most

commonly used classifier in the latter class is the neural

network. We also analyze various types of inputs that these

methods use including type, physiochemical property or

position of amino acids in the input protein sequence (AA),

evolutionary conservation (EVO), predicted secondary

structure (PSS), predicted solvent accessibility (PSA), and

predicted disorder (PDIS). The most commonly used inputs

is AA. The EVO input is often used by the machine

learning methods. The use of PDIS has started only around

2008 because accurate predictions of disorder has become

available at this time. Besides these inputs, some methods

utilize other types of information including sequence

alignment and predicted disorder content [66], predicted

flexibility [64, 76], predicted globular domains and tor-

sional angles [64], and predicted residue–residue contacts

[77]. The many available methods are diverse in terms of

the predictive models and inputs that they use. This fact has
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motivated the development of the meta-predictors that

exploit differences and complementarity between individ-

ual predictors to improve predictive performance [72, 78].

Predictive performance of predictors of intrinsic

disorder

A key aspect of these predictors is their predictive per-

formance, i.e., how well they predict the disordered and

structured residues in the input protein sequence. The

assessment of predictive performance is performed by

comparing predicted disorder to native annotations of dis-

order for a set of proteins for which the native annotations

are known; these proteins are typically dissimilar to the

proteins that were used to derive predictors. Since predic-

tions include the numeric propensities of disorder and

binary values, they are accordingly accessed using different

quality measures. The most widely used metric for the

Table 1 Availability and convenience of the selected 32 publically available disorder predictors. Batch submission refers to ability to submit
multiple proteins using the webserver

Name Year last
published

References Availabilitya Batch submission
(max # proteins)

High-
throughput

URL

DISOclust 2015 [75, 79] WS ? SP No http://www.reading.ac.uk/bioinf/IntFOLD/
IntFOLD2_form.html

DISOPRED 2015 [6, 55, 61, 71] WS ? SP No http://bioinf.cs.ucl.ac.uk/psipred/?disopred=1

DeepCNF-D 2015 [70] SP No Yes http://ttic.uchicago.edu/*wangsheng/
DeepCNF_D_package_v1.00.tar.gz

DisMeta 2014 [65] WS No http://www-nmr.cabm.rutgers.edu/
bioinformatics/disorder/

disCoP 2014 [72] WS Yes (up to 5) http://biomine.cs.vcu.edu/servers/disCoP/

DNDisorder 2013 [60] WS No http://iris.rnet.missouri.edu/dndisorder/

MFDp2 2013 [66] WS Yes (up to 100) http://biomine.cs.vcu.edu/servers/MFDp2/

ESpritz 2012 [80] WS ? SP Yes (no limit) Yes http://protein.bio.unipd.it/espritz/

MetaDisorder 2012 [63] WS No http://iimcb.genesilico.pl/metadisorder/

SPINE-D 2012 [81] WS ? SP No http://sparks-lab.org/SPINE-D/

CSpritz 2011 [62] WS Yes (no limit) http://protein.bio.unipd.it/cspritz/

IsUnstruct 2011 [82] WS No Yes http://bioinfo.protres.ru/IsUnstruct/

MFDp 2010 [64] WS Yes (up to 5) http://biomine.cs.vcu.edu/servers/MFDp2/

PONDR-FIT 2010 [83] WS No Yes http://disorder.compbio.iupui.edu/
metapredictor.php

MD 2009 [74] WS ? SP No https://ppopen.rostlab.org/

PreDisorder 2009 [84] WS ? SP No http://sysbio.rnet.missouri.edu/predisorder.
html

metaPrDOS 2008 [73] WS No http://prdos.hgc.jp/cgi-bin/meta/top.cgi

OnD-CRF 2008 [59] WS No http://babel.ucmp.umu.se/ond-crf/

Norsnet 2007 [76] WS ? SP No https://ppopen.rostlab.org/

Ucon 2007 [77] WS ? SP No https://ppopen.rostlab.org/

PrDOS 2007 [67] WS No http://prdos.hgc.jp/cgi-bin/top.cgi

PROFbval 2006 [56] WS ? SP No https://ppopen.rostlab.org/

PONDR-VSL2B 2006 [52, 53] WS ? SP No Yes http://www.dabi.temple.edu/disprot/predictor.
php

FoldUnfold 2006 [85] WS No Yes http://bioinfo.protres.ru/ogu/

DISpro 2005 [57, 86] WS ? SP No http://scratch.proteomics.ics.uci.edu/

FoldIndex 2005 [44] WS No Yes http://bioportal.weizmann.ac.il/fldbin/findex

IUPred 2005 [46, 47] WS ? SP No Yes http://iupred.enzim.hu/

RONN 2005 [69] WS ? SP No Yes https://www.strubi.ox.ac.uk/RONN

PONDR-VL3 2005 [50, 51] WS No Yes http://www.dabi.temple.edu/disprot/predictor.
php

DisEMBL 2003 [54] WS ? SP No Yes http://dis.embl.de/

GlobPlot 2003 [45] WS No Yes http://globplot.embl.de/

NORSp 2003 [58] WS ? SP No https://ppopen.rostlab.org/

a Availability: SP (standalone package); WS (webserver)
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binary predictions is Matthews Correlation Coefficient

(MCC), while the predicted propensities are usually eval-

uated with the Area Under receiver operating characteristic

Curve (AUC). These two measures were used in the most

recent Critical Assessment of protein Structure Prediction

(CASP) experiments: CASP9 [40] and CASP10 [87], and

in several recent empirical assessments of the disorder

predictions [27, 38, 88]. The MCC is defined as

MCC¼ TP�TN�FP�FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPþFPð Þ� TPþFNð Þ� TNþFPð Þ� TNþFNð Þ
p ;

ð1Þ

where TP is the number of true positives (correctly

predicted disordered residues), FN is the number of false

negatives (native disorder residues predicted as structured

residues), FP is the number of false positives (native

Table 2 Architectures of the selected 32 publically available disorder predictors

Name Classa Predictive modelb Inputsc

AA EVO PSS PSA PDIS Other inputs

DISOclust SB SF ? consensus X Alignment of predicted folds

DISOPRED ML SVM ? NN ? NNE X X

DeepCNF-D ML Deep CNF X X X X

DisMeta Meta Consensus X

disCoP Meta Regression X

DNDisorder ML DN ? boosting X X X X

MFDp2 Meta SVM X Sequence alignment, predicted disorder content

ESpritz ML NN X X

MetaDisorder Meta Consensus X X Predicted folds

SPINE-D ML NN X X X X

CSpritz Meta Consensus X

IsUnstruct SF SF Energetic potential scores.

MFDp Meta SVM X X X X X Predicted flexibility, globular domains, and

torsional angles

PONDR-FIT Meta Consensus X

MD Meta NN X X X X X Local sequence profile, sequence complexity

PreDisorder ML NN X X Multiple sequence alignment profile

metaPrDOS Meta Consensus X

OnD-CRF ML CRF X X

Norsnet ML NN X X X X Predicted flexibility

Ucon ML NN Predicted residue–residue contacts

PrDOS SB SVM ? templates X Structural templates

PROFbval ML NN X X X X Chain length

PONDR-VSL2B ML SVM ? LR X

FoldUnfold SF SF X

DISpro ML NN X X X

FoldIndex SF SF X

IUPred SF SF X Interaction energy

RONN ML NN Sequence alignment

PONDR-VL3 ML NN X Sequence complexity

DisEMBL ML NN X

GlobPlot SF SF X

NORSp SF SF X X X Predicted membrane helices, coil–coil regions

a Class: Meta (meta-predictor); ML (machine learning-based method); SB (structure-based method); SF (scoring function-based method)
b Predictive model: CNF (convolutional neural fields); CRF (conditional random field); DN (deep neural network); LR (logistic regression); SF

(scoring function); NN (neural network); NNE: (nearest neighbor); SVM (support vector machine)
c Inputs: AA (AA type, property, propensity and/or position); EVO (evolutionary information based on PSSM or HMM profile); PDIS (predicted

disorder); PSA (predicted solvent accessibility); PSS (predicted secondary structure)
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structured residues predicted as disordered residues), and

TN is the number of true negatives (correctly predicted

structured residues). MCC values range between 0 that

corresponds to random predictions and 1 for perfect

predictions; negative values of MCC would indicate

inverse predictions. The AUC is used to evaluate the

propensities by considering a range of predictions with

varying values of the true positive rates TPR = TP/

(TP ? FN) and false positive rates FPR = FP/

(FP ? TN). The propensity score is binarized using a set

of thresholds that equal to a set of all unique values of

the propensity. The residues associated with propensities

above the threshold are assumed to be disordered and

with propensities equals or lower than the threshold to

be structured, and the corresponding TPR and FPR val-

ues that form the ROC curve are computed for each

threshold. The area under the ROC curve typically ran-

ges between 0.5 that corresponds to a random predictor

and 1 for a perfect predictor.

Several large-scale evaluations of the predictive per-

formance of disorder predictors were published over the

last quindecennial. Prediction of intrinsic disorder was

included in the CASP starting with CASP5 in 2002 [89]

and until CASP10 in 2012 [87]. CASP is a biannual event

where predictions submitted by a large number of

research groups across the world are evaluated on a blind

dataset by an independent groups of assessors (the

assessors do not participate in the event). The blind

datasets typically include about 150 new proteins that

could not be used to develop the participating predictors.

The inclusion into CASP coincided with the start of the

second generation period and was likely the driving factor

of the rapid growth in the development of the disorder

predictors. The latest CASP event that included prediction

of the intrinsic disorder was CASP10 where 26 computer

servers (methods that do not include any human inter-

vention) and two human expert groups were evaluated,

compared to a much smaller set of 6 groups that partic-

ipated in CASP5. The two human expert groups in CASP

10 were outperformed by the computer models [87]. The

highest MCC achieved in CASP10 was 0.53 and the

highest AUC was 0.91, indicating that the modern pre-

dictors are characterized by strong predictive

performance. One of interesting aspects that was assessed

in CASP10 is a relation of the predictive quality and the

length of the IDRs. Predictions of long IDRs (over 30

consecutive residues in length) were found to be generally

characterized by lower predictive performance when

compared to the predictions of shorter regions [87]. Such

differences in the predictive performance relative to the

length of the IDRs motivate the development of methods,

such as PONDR-VSL2 [53] and MFDp [64], that aim to

improve predictive performance by specifically

considering disordered regions that are either long or

short. Finally, we note that the prediction of intrinsic

disorder in CASP11 was canceled due to a lack of a

sufficient number of suitable protein targets.

Apart from CASP there were three major empirical

assessments published in recent years [27, 38, 88]. The

comparative review from 2012 by Peng and Kurgan

includes 19 predictors that were tested on a dataset of

nearly 500 proteins [38]. The second review by Cheng’s

group that was released in 2012 included 32 methods that

were evaluated on 117 proteins [88]. The most recent

study that was published in 2015 by Tosatto’s group

compared 14 predictors on a large set of 25 thousand

proteins [27]. Table 3 summarizes the MCC and AUC

values of the 23 out of the 32 methods considered here

that were included in at least one of these four studies:

CASP10 and the three comparative reviews. We report

the best result across multiple versions of ESpritz, Dis-

EMBL, and IUPred methods. The 10 methods that were

ranked in the top three based on either the AUC or MCC

score in at least one assessment are highlighted with bold

font. According to these results, the most accomplished

predictors include DISOPRED, MFDp, PONDR-VSL2B,

and PrDOS that have secured top three finish in two

assessments. Several other methods, such as ESpritz,

PONDR-FIT, MD, PreDisorder, IUPred, and DisEMBL

performed very well in one of the assessments. We

observe that the predictive performance depends on the

level of sophistication of the underlying predictive mod-

els. Typically, more complex models and meta-predictors

offer stronger predictive performance but they also

require longer runtime to generate the predictions.

Examples are DISOPRED that used multiple machine

learning models, MFDp and PONDR-VSL2B that are

meta-predictors, and PrDOS that combines a modern

machine learning model and structural templates. Overall,

the AUC values (MCC values) range between 0.73 and

0.85 (MCC was not measured) in [88], 0.70 and 0.82

(0.18 and 0.45) in [38], 0.61 and 0.91 (0.24 and 0.53) in

[87], and 0.61 and 0.81 (0.11 and 0.31) in [27]. The lower

predictive performance in Ref. [27] is attributed to the

fact that this assessment included only high-throughput

methods which typically trade predictive quality for the

computational efficiency. The differences in the predictive

quality in different studies stem from the use of different

predictors and datasets but in general the range of values

is comparable and the top performing methods secure

consistently high scores. For example, DISOPRED has

secured AUC (MCC) of at least 0.78 (0.41), MFDp at

least 0.82 (0.45), and PrDOS at least 0.85 (0.53). We

conclude that some of the current predictors of intrinsic

disorder consistently provide high-quality predictions with

AUC[0.8 and MCC[0.4.
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Table 3 Empirical evaluation of the selected disorder predictors based on results from comparative reviews [27, 38, 88] and CASP10 [87]

Name AUC MCC

[88] [38] [87] [27] [38] [87] [27]

DISOclust 0.79 0.78 0.82a 0.34 0.24a

DISOPRED 0.85b 0.78c 0.90d 0.41c 0.53d

DisMeta 0.69 0.46

ESpritz 0.86e 0.78g 0.32f 0.28h

MetaDisorder 0.81i 0.84i 0.34i

SPINE-D 0.83j

CSpritz 0.83 0.32

MFDp 0.82k 0.82 0.89l 0.45 0.49l

PONDR-FIT 0.79 0.42

MD 0.82 0.44

PreDisorder 0.85 0.87m 0.40m

metaPrDOS 0.88n 0.39n

OnD-CRF 0.73 0.81o 0.31o

Norsnet 0.74 0.34

Ucon 0.74 0.31

PrDOS 0.85p 0.91q 0.53q

PROFbval 0.70 0.20

PONDR-VSL2B 0.79 0.81 0.40 0.26

FoldIndex 0.61 0.28 0.11

IUPred 0.78r 0.78s 0.41r 0.31s

RONN 0.76 0.76 0.37 0.22

DisEMBL 0.79t 0.32u 0.31t

GlobPlot 0.63 0.18 0.12

9 of the 32 considered methods (DeepCNF-D, disCoP, DNDisorder, MFDp2, IsUnstruct, FoldUnfold, DISpro, PONDR-VL3, and NORSp) are

not listed since they were not included in these comparative studies. Methods ranked in the top three based on AUC or MCC and in at least one

assessment are highlighted with bold font
a Under group IntFOLD2
b Under group DISOPRED3C
c Result for DISOPRED2
d Result for DISOPRED3
e Under group ESpritz
f Under group ESpritzv2
g Result for ESpritz X-ray
h Result for ESpritz NMR
i Under group GSmetaDisorderMD
j Under group ZHOU-SPINE-D
k Under group biomine_DR_pdb
l Under group biomine_dr_mixed
m Under group MULTICOM-construct
n Under group metaprdos2
o Under group OnD-CRF2
p Under group Prdos2
q Under group Prdos-CNF
r IUPred for long IDRs
s IUPred for short IDRs
t DisEMBL-465
u DisEMBL-R
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Detailed summary of selected predictors of intrinsic

disorder

We provide a detailed and structured summary of several

selected methods. These methods include ten methods that

secured the top three finish in at least one of the four

assessments (methods shown in bold font in Table 3) and

six most recent methods that were published after 2012:

DNDisorder [60], MFDp2 [66], disCop [72], DisMeta [65],

DeepCNF-D [70], and DISOclust3 [75]. We discuss these

16 methods in the chronological order. For each method,

we introduce its authors, briefly overview its key archi-

tectural characteristics, and provide details about its inputs,

outputs, and availability.

DISEMBL (2003)

DISEMBL [54] was developed by Linding et al. at the

European Molecular Biology Laboratory (EMBL). This

method includes three predictive models, each implemented

as a neural network, that focus on finding disordered resi-

dues and residues in disorder-like conformations: loops and

coils defined by DSSP, hot loops (loops with high degree of

mobility), and disordered residues defined as those that have

missing coordinates (i.e., remark465) in the X-ray struc-

tures in PDB. The latter version has secured the second

highest AUC (0.79) and MCC (0.31) in the recent assess-

ment of disorder predictors by the Tosatto’s group [27].

DISEMBL is a high-throughput method and its predictions

(based on the remark 465 and hot loop versions) are

included in the MobiDB database [90].

Input: Swiss-Prot ID or a single raw (unformatted)

amino acid sequence.

Output: Predicted propensities for disorder for each

residue in the input sequence for each of the three models,

formatted as plain text and in the CASP format (column-

wise with the first column showing the amino acids, second

showing the binary predictions, and the third giving the

propensities); a plot representing the propensity scores of

being disorder for the three models. Binary prediction for

each residue in the input sequence for each of the three

models.

Availability: A webserver and a standalone package

running on a Linux platform.

URL: http://dis.embl.de.

IUPred (2005)

IUPred [46, 47] was authored by Dosztányi et al. at the

Hungarian Academy of Sciences. This predictor finds

putative intrinsically disordered residues and regions using

a scoring functions that estimates energy of inter-residue

interactions and the fact that such energy differs between

structured and unstructured regions. IUPred has two ver-

sions: short and long. The former was designed to predict

missing residues in the X-ray structures while the long

version was optimized to predict functionally relevant

disordered segments. Although the underlying scoring

function is relatively simple, this method offers good pre-

dictive performance and is very fast to compute. Based on

the recent comparative review by the Tosatto’s group [27],

the version of IUPred that targets short regions secures

third highest AUC (0.78) and the highest MCC (0.31)

among the considered 14 high-throughput predictors. The

predictions by both versions of IUPred are included in the

D2P2 database [91] and the MobiDB database [90].

Input: Swiss-Prot ID, TrEMBL ID, or a single raw

(unformatted) or FASTA-formatted amino acid sequence.

Output: Predicted propensities for disorder for each

residue in the input sequence for each of the two models;

scores above 0.5 indicate that the corresponding residues is

predicted as disordered. IUPred can also output plots that

show structured regions and propensities of disorder for

long and short regions.

Availability: A webserver and a standalone package

running on a Linux platform.

URL: http://iupred.enzim.hu.

PONDR-VSL2B (2006)

PONDR-VSL2B [52, 53] was released by Obradovic et al.

at the Temple University. This method is a part of a larger

family of PONDR predictors of disorder. The VSL (various

short long) suffix stands for fact that this method was built

using disorder characterized by various approaches (X-ray

crystallography, NMR, and circular dichroism) and to

predict both short and long disordered regions. The 2B

recognizes the fact that this is second of the two models,

this one is based on SVM, while B indicates that this is a

Baseline predictor that utilizes only the information

derived from amino acid composition [53]. In contract,

VSL2 (without ‘‘B’’) utilizes information derived from

amino acid composition, PSSM generated with PSI-

BLAST, and predicted secondary structure. PONDR-

VSL2B is much faster than PONDR-VSL2 (computations

of PSSM and secondary structure are time consuming) and

according to the test performed by the authors its accuracy

is only 3% inferior to VSL2 [53]. In the evaluation by

Kurgan’s group [38], PONDR-VSL2B achieved the third

highest AUC (0.79). Predictions by this method are

included the D2P2 database [91]. Moreover, this is the first

method that predicts IDRs of various length with similar

predictive quality.

Input: A single raw (unformatted) amino acid sequence

(up to 100 predictions per IP address per day; query

sequence limited to up to 5000 residues).
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Output: Predicted propensities and binary scores for

each residue in the input sequence.

Availability: A webserver and standalone version run-

ning on a Linux platform.

URL: http://www.dabi.temple.edu/disprot/

predictorVSL2.php.

PrDOS (2007)

PrDOS [67] was developed by Ishida and Kinoshita at the

University of Tokyo. This is a hybrid design that combines

a machine learning model with a template-based approach.

PrDOS uses an SVM model that takes the PSMM gener-

ated with PSI-BLAST run on the input protein chain as the

input. The output by the SVM model is combined with

results of a search for homologues in PDB. The final

propensity for the intrinsic disorder is computed as a

weighted average of the results from SVM and the

homology search. This predictor offers one of the highest

levels of predictive performance. PrDOS has secured the

highest AUC (0.85) in the assessment by Cheng’s group

[88], and its new version based on conditional neural field

has achieved the highest AUC (0.91) and the second

highest MCC (0.53) in CASP10 [87]. However, the con-

ditional neural field version is not available publically.

Although PrDOS is not a high-throughput method (it takes

[1 min to run it for a sequence), its predictions over

multiple genomes are included in the D2P2 database [91].

Input: A single raw (unformatted) or FASTA-formatted

amino acid sequence.

Output: Predicted propensities and binary scores for

each residue in the input sequence; a plot of the propensity

scores.

Availability: A webserver.

URL: http://prdos.hgc.jp/cgi-bin/top.cgi.

PreDisorder (2009)

PreDisorder [92–94] was created by Cheng et al. at the

University of Missouri. This is a machine learning model

based on a recursive neural network. The network utilizes a

diverse set of inputs derived from the input sequence

including multiple sequence alignment profiles, predicted

secondary structure, and predicted solvent accessibility.

PreDisorder obtained the second highest AUC (0.82) in the

comparative evaluation published in 2012 by the same

group [88] and also performed well in the CASP8 experi-

ment [95].

Input: A single raw (unformatted) amino acid sequence.

Output: Predicted propensities and binary scores for

each residue in the input sequence.

Availability: A webserver.

URL: http://sysbio.rnet.missouri.edu/predisorder.html.

MD (2009)

MD [74] is a meta-predictor that was developed by

Schlessinger et al. the Columbia University. This method

relies on a neural network model that utilizes a large set

of diverse inputs that are derived from the input protein

chain. These inputs are divided into two types: (1) the

outputs from four disorder predictors including NORSnet

[76], IUPred [46], DISOPRED2 [71], and UCon [77];

and (2) other sequence-derived information including

flexibility predicted with PROFbval [56], predicted sec-

ondary structure and solvent accessibility, amino acid

composition, annotation of low complexity regions,

sequence profiles, sequence length, estimated hydropho-

bicity and net-charge of the input protein, and estimated

sequence energy. MD is tied with MFDp [64] for the

highest AUC (0.82) in empirical evaluation by the Kur-

gan’s group [38], and achieved the second highest MCC

(0.44) in the same evaluation. This method is a part of a

comprehensive PredictProtein Open platform [96] for the

prediction of protein structure and function. Pre-

dictProtein Open offers predictions of intrinsic disorder

and flexibility, disulphide bridges, effects of point

mutations, gene ontology terms (functions), subcellular

localization, and binding sites.

Input: A single raw (unformatted) or FASTA-formatted

amino acid sequence.

Output: Predicted propensities and binary scores for

each residue in the input sequence.

Availability: integrated into the PredictProtein Open

webserver.

URL: https://ppopen.rostlab.org/.

MFDp (2010)

MFDp [64] is a meta-predictor designed by Mizianty et al.

the University of Alberta. This method combines three

SVMs that were trained to predict short IDRs (\30 con-

secutive residues), long IDRs (30 or more consecutive

residues), and IDRs of all length. Each of the three SVMs

uses a rich set of inputs that are categorized into two types:

(1) the outputs from three predictors of intrinsic disorder,

IUPred [46], DISOPRED2 [71], and DISOclust [68]; and

(2) other sequence-derived information including the input

sequence, PSSM profiles generated with PSI-BLAST,

flexibility predicted with PROFbval [56], secondary

structure predicted with PSIPRED [97], solvent accessi-

bility and backbone dihedral torsion angles predicted with

Real-SPINE3 [98], and globular domains predicted with

IUPred. This method was shown to provide high levels of

predictive performance. MFDp is tied with MD [74] for the

highest AUC (0.82) in the empirical evaluation by the same

group [38], and secured the highest MCC (0.45) in the
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same evaluation. Is also obtained third best AUC and MCC

in CASP10 [87] and second best MCC in CASP9 [40].

Input: A single or multiple (B5 sequences) FASTA-

formatted amino acid sequence(s).

Output: Predicted propensities and binary scores for

each residue in the input sequence.

Availability: A webserver.

URL: http://biomine.cs.vcu.edu/servers/MFDp/.

PONDR-FIT (2010)

PONDR-FIT [83] is a meta-predictor that was authored by

Xue et al. at the Indiana University. It combines outputs of

six predictors of intrinsic disorder: PONDR-VLXT [48],

PONDR-VSL2 [52, 53], PONDR-VL3 [50], FoldIndex

[44], IUPred [46], and TopIDP [99], using a neural net-

work. The predictions from this method are provided

together with the results from the other PONDR methods:

PONDR-VSL2B, PONDR-VL3, and PONDR-VLXT.

PONDR-FIT achieved the third highest MCC (0.42) in the

comparative evaluation from 2012 by the Kurgan’s group

[38].

Input: A single FASTA-formatted or EMBL-formatted

amino acid sequence.

Output: Predicted propensities and binary scores for

each residue in the input sequence; a plot of propensity

scores where residues above the 0.5 cut-off are predicted as

disordered.

Availability: A webserver.

URL: http://disorder.compbio.iupui.edu/metapredictor.

php.

ESpritz (2012)

ESpritz [80] was developed by Walsh et al. at the

University of Padua. This machine learning predictor is

based on a bidirectional recursive neural work. ESpritz has

three versions that were trained using different sources of

annotations of disorder based on X-ray crystals, NMR, and

the DisProt database. The NMR-based version of ESpritz

secured the third highest MCC (0.28) in the evaluation

from 2015 by the same group [27]. Each of the three ver-

sions has an option to be executed without the use of

computationally expensive evolutionary profiles, which

results in a very fast runtime (typically \10 s per

sequence). Predictions generated by each of the three

versions of ESpritz are included the D2P2 database [91] and

the MobiDB database [90].

Input: A single or multiple FASTA-formatted amino

acid sequence(s); the submission limit is less than 3000

proteins when pasted into online page; no limit if the

proteins are uploaded in a file.

Output: Predicted propensities and binary scores for

each residue in the input sequence; summary of disorder

for input protein(s).

Availability: A webserver and a standalone package

running on a Linux platform.

URL: http://protein.bio.unipd.it/espritz.

DNDisorder (2013)

DNDisorder [60] was created by Eickholt and Cheng at the

University of Missouri; the same research group also

developed PreDisorder. The architecture of DNDisorder is

an ensemble of deep neural networks and this is the first

predictor that applied this type of a machine learning

model. The inputs to these networks include information

extracted from PSSM derived with PSI-BLAST, predicted

solvent accessibility, predicted secondary structure, and

Atchley factors [100]. The Atchley factors are five numeral

values that quantify secondary structure, polarity, volume,

codon diversity, and electrostatic charge of amino acids.

This predictor achieved relatively good AUC of 0.83 and

0.85 in CASP9 and CASP10, respectively [60].

Input: A single raw (unformatted) or FASTA-formatted

amino acid sequence.

Output: Predicted propensities and binary scores for

each residue in the input sequence.

Availability: A webserver.

URL: http://iris.rnet.missouri.edu/dndisorder.

MFDp2 (2013)

MFDp2 [66] is a meta method that was designed by

Mizianty et al. at the University of Alberta; the same

research group that developed MFDp. It utilizes a novel

architecture that includes three major components: disorder

predictor MFDp [64], predictor of disordered content (i.e.,

overall amount of disorder in a whole protein) DisCon

[101], and an alignment engine. DisCon was empirically

shown to predict the disorder content more accurately than

MFDp and several other disorder predictors [66, 101]. The

idea behind MFDp2 is to combine the predictions from

MFDp with predictions using alignment against a database

of annotated disordered proteins and adjust these results so

that they agree with the disorder content predicted with

DisCon. MFDp2 was empirically shown in [66] to achieve

relatively high AUC (0.86) and MCC (0.48) values on a

benchmark dataset with 105 proteins.

Input: A single or multiple (up to 100) FASTA-for-

matted amino acid sequence(s).

Output: Predicted propensities and binary scores for

each residue in the input sequence from MFDp2 and

MFDp; disorder content predicted with DisCon;
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evolutionary conservation, secondary structure predicted

with PSIPRED [97], and solvent accessibility predicted

with Real-SPINE3 [98] for each residue in the input

sequence.

Availability: A webserver.

URL: http://biomine.cs.vcu.edu/servers/MFDp2/.

disCop (2014)

DisCop [72] is a meta-predictor by Fan and Kurgan at the

University of Alberta; this research group also developed

MFDp and MFDp2. The defining feature of this meta

method is that its input disorder predictors were selected

empirically from a large set of 20 disorder predictors to

maximize predictive performance. The selected seven

methods include ESpritz (the DisProt and X-ray versions),

CSpritz (the long disorder version), SPINE-D, DIS-

OPRED2, MD, and DISOclust. Their outputs are combined

together using a regression model to produce a new dis-

order prediction that offers higher predictive performance

compared to any of the 20 predictors [72]. DisCop was

shown to achieve high values of AUC = 0.85 and

MCC = 0.50 on a benchmark dataset with over 240 pro-

teins [72].

Input: A single or multiple (up to 5) FASTA-formatted

amino acid sequence(s).

Output: Predicted propensities and binary scores for

each residue in the input sequence.

Availability: A webserver.

URL: http://biomine.cs.vcu.edu/servers/disCoP/.

DisMeta (2014)

DisMeta [65] is a meta-predictor that was released by

Huang et al. at the Rutgers University. This method

implements consensus of eight disorder predictors: DIS-

EMBL [54], DISOPRED2 [71], DISpro [57], FoldIndex

[44], GlobPlot2 [45], IUPred [46], RONN [69], and

PONDR-VSL2 [52, 53]. A user can also select to generate

the consensus prediction using a subset of these methods.

To the best of our knowledge, DisMeta was not empirically

evaluated neither by the authors in the corresponding

publication or in other studies. This method has been used

to select and prepare proteins for NMR and crystallization

studies at the Northeastern Structural Genomic Consortium

(NESG) [65].

Input: A single raw (unformatted) amino acid sequence

or the NESG target ID.

Output: Predicted disordered residues from each selec-

ted input predictor and the consensus score for each residue

in the input sequence; predicted secondary structure with

PROFsec [102] and PSIPRED [97]; predicted secretion

signal peptides with SignalP [103]; predicted

transmembrane regions with TMHMM [104]; predicted

low complexity regions with SEG [105]; predicted disor-

dered protein binding residues with ANCHOR [106].

Availability: A webserver.

URL: http://www-nmr.cabm.rutgers.edu/bioinformatics/

disorder.

DeepCNF-D (2015)

DeepCNF-D [70] was created by Wang et al. at the

University of Chicago. This method utilizes weighted deep

convolutional neural fields (CNF) as the machine learning

model. This model uses physiochemical properties of the

input amino acids and sequence-derived evolutionary

information, predicted secondary structure, and predicted

solvent accessibility as its inputs. DeepCNF-D was evalu-

ated by the authors on the CASP9 and CASP10 datasets and

achieved relatively high AUC values (0.86 and 0.90) and

MCC values (0.49 and 0.47) [70]; we note that this was done

after the CASP experiments were concluded. This predictor

has a high-throughput version that uses only the properties of

amino acids as the input; the AUCs of that version are lower

at 0.70 and 0.77 and MCCs at 0.40 and 0.43 when tested on

the CASP9 and CASP10 datasets, respectively [70].

Input: A single FASTA-formatted amino acid sequence.

Output: Predicted propensities and binary scores for

each residue in the input sequence.

Availability: A standalone software running on a Linux

platform.

URL: http://ttic.uchicago.edu/*wangsheng/DeepCNF_

D_package_v1.00.tar.gz.

DISOPRED3 (2015)

DISOPRED3 [61] was authored by Jones and Cozzetto at

the University College London. The first version of this

method (DISOPRED) was published in 2003 [55], the

second (DISOPRED2) around 2004 [6, 71], and the latest

third version in 2015 [61]. DISOPRED3 has a two layer

design. The first layer uses three models to predict disorder

which are next combined together in the second layer with

a help of a neural network. The three models in the first

layer include the SVM model from DISOPRED2, a new

neural network model that aims to predict long disordered

regions, and a nearest neighbor model that is used to pre-

dict disorder using a reference dataset of proteins annotated

with disorder. Moreover, DISOPRED3 also predicts dis-

ordered protein binding sites using an SVM-based model.

This method provides very accurate predictions. It has

secured the second highest AUC (0.90) and the highest

MCC (0.53) in CASP10 [87]. DISOPRED3 and DIS-

OPRED2 are now embedded into the PSIPRED platform

[107] that also provides predictions of protein structure,
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membrane helices, and topology of transmembrane helices,

protein domains, and protein functions.

Input: A single raw (unformatted) or FASTA-formatted

amino acid sequence, or the multiple sequence alignment

of the input protein.

Output: Predicted propensities and binary scores for

each residue in the input sequence; predicted binary scores

and propensities for the disordered protein binding sites for

each residue in the input sequence.

Availability: A webserver and a standalone software

running on a Linux platform.

URL: http://bioinf.cs.ucl.ac.uk/psipred/?disopred=1.

DISOclust3 (2015)

DISOclust3 [75] was released by McGuffin et al. at the

University of Reading. The first version of this method was

published in 2008 [68]. This predictor is based on a pre-

mise that structured residues are conserved in three-

dimensional space across multiple structural models, while

the residues that vary in position or are missing across

these models are likely to be disordered. DISOclust3 used

ModFOLDclust2 [108] to identify residues with highly

variable positions over multiple alternative structural

models that are computed with the IntFOLD3-TS method.

The results from the above approach are combined with the

results generated with DISOPRED3 [61] to generate the

final prediction. Disclust3 achieved AUC = 0.82 and

MCC = 0.24 in CASP10 [87]. This predictor is embedded

into the IntFOLD platform [75] that also provides predic-

tion of tertiary structure, domain, binding sites and offers

model quality assessment scores.

Input: A single raw (unformatted) amino acid sequence.

Output: Predicted propensities and binary scores for

each residue in the input sequence.

Availability: A webserver and a standalone software

package (Java environment required).

URL: http://www.reading.ac.uk/bioinf/IntFOLD/

IntFOLD2_form.html.

Databases of putative annotations of intrinsic
disorder

Recent comparative reviews reveal that predictors of

intrinsic disorder are relatively accurate. These predictions

are used to guide experimental studies of disorder and to

address practical problems in other areas, such as targets

selection in structural genomics [109]. They were also used

to analyze prevalence and functional characteristics of

disorder on large scale across functionally related proteins

[9, 110, 111] and in whole proteomes [3, 19, 112–114]. To

this end, several databases of the putative annotations of

IDPs and IDRs were developed to ease access to this

information for the end users. Given that these resources

provide access to putative disorder for large sets of pro-

teins, they include results generated by high-throughput

predictors of intrinsic disorder.

DICHOT [115] is the first such database. It provides

predictions of intrinsic disorder for the human proteome. It

includes 20,333 protein chains collected from the Swiss-

Prot database [116], where the IDRs are predicted using

DISOPRED2 [6] and CLADIST [117]. This resource is

now superseded by the two more recent and much larger

databases: MobiDB [90, 118] and D2P2 [91]. MobiDB

offers access the putative disorder generated by ten pre-

dictors: three versions of Espritz [80], two versions of

IUPred [46], two versions of DisEMBL [54], GlobPlot

[45], PONDR-VSL2b [52], and RONN [69]. The database

also combines these 10 predictions into a consensus.

Moreover, MobiDB includes experimental annotations of

disorder collected from DisProt and PDB, the latter based

on both X-ray and NMR structures. The current version 2.2

of MobiDB (version 2.3) covers over 80.37 million chains,

which were obtained from the UniProtKB and Swiss-Prot

resources [116]. Importantly, these putative annotations of

disorder are also cross-referenced in UniProt [116]. D2P2 is

the second large repository of predicted annotations of

intrinsic disorder. It contains annotations generated with

nine predictors: three versions of Espritz [80], two versions

of IUPred [46], PV2 [119], PrDOS [67], PONDR-VSL2b

[52], and PONDR-VLXT [48]. It also links to the experi-

mental annotations of disorder from DisProt and IDEAL

and includes putative annotations of disordered protein

binding regions computed with ANCHOR [106, 120]. The

current version of D2P2 contains annotations for 10.43

million proteins from 1765 proteomes across all kingdoms

of life. The main difference between MobiDB and D2P2 is

that the former provides annotations for arguably largest

possible set of currently known proteins, while the latter

provides the annotations for all complete proteomes. Both

MobiDB and D2P2 include a number of secondary anno-

tations to put the putative disorder in the structural and

functional context. For example, MobiDB includes infor-

mation about organism a given protein comes from,

subcellular location, annotations of functions, post-trans-

lational modifications, domains, secondary structure, and

protein interactions. D2P2 includes the source organism and

a comprehensive annotation of domains and post-transla-

tional modifications.

Predictors of functions of intrinsic disorder

IDPs and IDRs are involved in a wide repertoire of cellular

functions. In recent years, progress has been made to

develop methods that predict these functions from the
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Table 4 Availability, convenience, and architecture of the 12 predictors of functions of disorder

Method Year last

published

References Predictive

target

Availabilitya Batch

submission

High-

throughput

URL

DFLpred 2016 [136] Linkers WS ? SP Yes Yes http://biomine.cs.vcu.edu/servers/DFLpred/

MoRFCHiBiWeb 2016 [129] Protein binding WS ? SP No http://morf.chibi.ubc.ca:8080/mcw/index.

xhtml

fMoRFpred 2015 [130] Protein binding WS Yes Yes http://biomine.cs.vcu.edu/servers/

fMoRFpred/

DISOPRED3 2015 [61] Protein binding WS ? SP No http://bioinf.cs.ucl.ac.uk/disopred

MoRFCHiBi 2015 [128] Protein binding WS ? SP No Yes http://www.chibi.ubc.ca/faculty/joerg-

gsponer/gsponer-lab/software/morf_

chibi/

disoRDPbind 2015 [121] Protein, RNA,

DNA binding

WS Yes Yes http://biomine.cs.vcu.edu/servers/

DisoRDPbind/

PepBindPred 2013 [135] Protein binding WS No http://bioware.ucd.ie/*compass/

biowareweb/Server_pages/pepbindpred.

php

MFSPSSMpred 2013 [127] Protein binding WS ? SP No http://webapp.yama.info.waseda.ac.jp/

fang/MoRFs.php

MoRFpred 2012 [126] Protein binding WS Yes http://biomine.cs.vcu.edu/servers/

MoRFpred/

SLiMPred 2012 [134] Protein binding WS No http://bioware.ucd.ie/*compass/

biowareweb//Server_pages/slimpred.php

retro-MoRFs 2010 [131] Protein binding N/A N/A N/A N/A

ANCHOR 2009 [106, 120] Protein binding WS ? SP No Yes http://anchor.enzim.hu

alpha-MoRFpred 2007 [124, 125] Protein binding N/A N/A N/A N/A

Batch submission refers to ability to submit multiple proteins using a webserver
a Availability: WS (webserver); SP (standalone package)

Table 5 Architectures of the 12 predictors of functions of disorder

Name Classa Predictive modelb Inputsc

AA EVO PSS PSA PDIS Other inputs

DFLpred ML LR X X Propensity for secondary structure estimated from sequence

MoRFCHiBiWeb Meta Bayes X X X

fMoRFpred ML SVM X X X

DISOPRED3 ML SVM X X

MoRFCHiBi ML SVM X

disoRDPbind ML LR X X X Multiple sequence alignment, sequence complexity

PepBindPred SB NN X X Docking scores

MFSPSSMpred ML SVM X

MoRFpred ML SVM X X X X Predicted B-factors, multiple sequence alignment

SLiMPred ML NN X X X X Predicted structural motifs and domains

retro-MoRFs SF SF X X Multiple sequence alignment

ANCHOR SF SF X Propensity for disorder, intrachain interactions, and binding.

alpha-MoRFpred ML NN X X X Three disorder predictors are used

a Class: Meta (meta-predictor); ML (machine learning-based method); SB (structure-based method); SF (scoring function-based method)
b Predictive model: Bayes (Bayesian rule); LR (logistic regression); NN (neural network); SF (scoring function); SVM (support vector machine)
c Inputs: AA (AA type, property, propensity and/or position); EVO (evolutionary information based on PSSM or HMM profile); PDIS (predicted

disorder); PSA (predicted solvent accessibility); PSS (predicted secondary structure)
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protein sequences. In contrast to the predictors of intrinsic

disorder, these methods find a subset of IDRs that carry out

a specific function. The current predictors of functions of

disorder address primarily binding-related functions that

include interactions of IDRs with proteins, DNAs, and

RNAs. This is motivated by an observation that these

binding-related functions are the most prevalent functions

carried out by IDRs. Based on the experimental data from

DisProt, 74% of the over 1000 functionally annotated IDRs

in DisProt interact with proteins, DNAs, RNAs, metals, and

lipids. The protein–protein binding is the most populated

function, with over 450 annotated IDRs in DisProt.

The predictors of the most populated disordered protein

binding regions are categorized into three classes. The first

class are the methods that predict generic disordered pro-

tein binding regions which include ANCHOR [106, 120]

and DisoRDPbind [121]. The second class focuses on a

specific type of protein binding regions called molecular

recognition features (MoRFs). MoRFs are protein binding

regions located within IDRs that include at least five
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Fig. 1 Putative and native annotations of disordered protein and

DNA binding regions. a Anophelin protein (DisProt ID: DP00824)

that includes disordered protein binding region between positions 54

and 83 (denoted by the light red horizontal line at the bottom). This

panel also gives putative disordered regions generated by IUpred

(dark and light gray lines that correspond to the predictions by the

IUPred that predicts long and short disordered regions), putative

disordered protein binding regions output by DisoRDPbind (orange

lines) and putative MoRF regions produced by MoRFpred (green),

ANCHOR (pink), MFSPSSMpred (violet), and MoRFCHiBiWeb

(dark red). b Thymine-DNA glycosylase protein (DisProt ID:

DP00719) that includes disordered DNA binding region between

positions 51 and 111 (denoted by the light red horizontal line at the

bottom). It also visualizes putative disordered regions provided by

IUpred (dark and light gray lines that correspond to the predictions by

the IUPred that predicts long and short disordered regions) and

putative disordered DNA binding regions predicted by DisoRDPbind

(dark red lines)
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consecutive residues and which undergo disorder-to-order

transitions upon binding to their protein partners

[122, 123]. There are several predictors of MoRFs

including alpha-MoRFpred [124, 125], MoRFpred [126],

MFSPSSMpred [127], MoRFChiBi [128], MoRFChiBi-

Web [129], fMoRFpred [130], retro-MoRF [131], and

DISOPRED3 [61]. The third category of methods aims to

predict short linear sequence motifs (SLiMs). SLiMs are

conserved in the sequence and their length typically ranges

between 3 and 10 consecutive amino acids [132]. They

mediate protein–protein interactions and although they are

primarily disordered, about 20% of them are located in

globular protein domains [129]. The currently experimen-

tally annotated SLiMs can be obtained from the Eukaryotic

Linear Motif (ELM) resource [133] and they can be pre-

dicted with the help of the SLiMpred [134] and

PepBindPred [135] methods.

So far only one predictor, DisoRDPbind [121], which

considers IDRs that bind to other types of ligands has been

developed. This method combines three predictive models

that provide putative annotations of the disordered protein,

DNA, and RNA binding residues. Just recently, the first

method that addresses prediction of a function of intrinsic

disorder that is not related to binding was released. The

DFLpred method [136] predicts disordered flexible linker

regions, elements that serve as linkers/spacers in multi-

domain proteins or between structured constituents within

protein domains. The disordered flexible linkers differ from

linkers in three aspects. They are characterized by lack of

defined structure, are longer (avg length of 25 residues),

and could be localized both within and between domains,

for instance, to link structured elements within a domain.

These linkers constitute the most populated in DisProt type

of the non-binding function of IDRs that accounts for about

9% of all functionally annotated disordered regions.

Table 4 summarizes the availability and features related

to the user convenience of the abovementioned 13 pre-

dictors of cellular functions of disorder, which are listed in

the reverse chronological order. Most of these methods,

except for alpha-MoRFpred and retro-MoRF, are provided

to the end users as convenient to use web servers. More-

over, six methods: DFLpred, ANCHOR, MFSPSSMpred,

MoRFCHiBi, MoRFCHiBiWeb, and DISOPRED3 are

available as standalone packages. This option is useful for

users who would want to include them in other predictive

pipelines. The table also indicates whether the web servers

accept batch submissions (i.e., multiple sequences in a

single request) and whether their predictions are high-

throughput (they are computed quickly, typically in under

30 s, for an average length sequence). Several predictors,

such as ANCHOR, disoRDPbind, MoRFChiBi,

fMoRFpred, and DFLpred, are very fast and can be used to

perform predictions on the whole proteome scale. Four

methods are that available online, including MoRFpred,

DisoRDPbind, fMoRFpred, and DFLpred, offer an option

to perform batch predictions to facilitate large-scale

applications over protein families or whole proteomes.

Moreover, predictions from ANCHOR for over 10 million

proteins are already included in the D2P2 database.

Table 5 discusses architectures of the 13 predictors.

Similar to the predictors of intrinsic disorder, it divides

these models into four classes based on the predictive

models and inputs that they use:

1. Scoring function-based methods. These approaches

input properties computed directly from the protein

sequence, such as sequence alignment and propensity

for intrachain interactions and binding, as well as the

propensity for intrinsic disorder into a scoring function

to predict disordered protein binding regions. The two

methods in this category are retro-MoRF [131] and

ANCHOR [106, 120]

2. Machine learning-based methods. This the largest by

far category includes nine methods: alpha-MoRFpred

[124, 125], SLiMpred method [134], MoRFpred [126],

MFSPSSMpred [127], DisoRDPbind[121], DIS-

OPRED3 [61], fMoRFpred [130], MoRFChiBi [128],

and DFLpred [136]. They compute propensity for a

specific function utilizing machine learning classifiers.

Inputs for these classifiers are generated directly from

the sequence and from the sequence-derived proper-

ties, such as evolutionary conservation, putative

secondary structure, and putative solvent accessibility.

While these architectural details are similar to the

predictors of intrinsic disorder, these methods also

frequently use multiple sequence alignment and puta-

tive annotations of disordered residues. The machine

learning-based methods predict protein, RNA, and

DNA binding regions as well as the disordered flexible

linkers.

3. Meta-predictors which include the MoRFChiBiWeb

method [129]. This predictor uses sequence alignment

and a Bayesian approach to combine MoRFChiBi,

Espritz, and sequence conservation profiles to (re)pre-

dict MoRF regions. Benchmarks performed by the

authors of MoRFChiBiWeb reveal that it is more

accurate than MoRFChiBi but it also requires longer

runtime.

4. Structure-based methods that include PepBindPred

[135]. This method relies on the structure of the

protein that binds to a disordered region to generate

molecular docking scores that are processed with a

machine learning model to predict SLiMs.

Majority of the predictors of the cellular functions of

disorder are based on machine learning models. In contrast

to the predictors of intrinsic disorder that primarily use
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neural networks, these methods most often adopt machine

learning models in the form of support vector machines.

Moreover, nine out of the 13 methods use putative anno-

tations of intrinsic disorder as one of their inputs, which is

motivated by the fact that these functional regions are

located within IDRs.

Figure 1 visualizes predictions generated by several

methods that find disordered protein binding regions

(Fig. 1a) and disordered DNA binding regions (Fig. 1b)

and compares them to the location of the corresponding

native annotations of disordered protein and DNA binding

residues, respectively. The predictors produce putative

numeric propensities for a given function and the corre-

sponding binary values that denote which disordered

residues are predicted to bind proteins and DNA. The

propensity scores are included at the top of each panel

while the corresponding binary predictions are shown as

horizontal lines at the bottom. The binary predictions are

generated from the propensities by applying a threshold

suggested by the authors, i.e., residues with propensities

higher than the threshold are predicted as binding. We

caution the reader that these results should not be assumed

as typical and representative of the predictive performance

of the corresponding methods, but rather they are used to

illustrate how to use and interpret these predictions.

Figure 1a shows predictions of disordered protein binding

regions from DisoRDPbind and putative MoRF regions

generated by MoRFpred, ANCHOR, MFSPSSMpred, and

MoRFCHiBiWeb for anophelin protein (DisProt ID:

DP00824). This protein has a MoRF region between posi-

tions 54 and 83 [137]. We also include native annotations of

IDR in this protein (positions 23–83) and the corresponding

predictions of intrinsic disorder generated with IUPred. The

predicted disordered residues are in good agreement with the

native disordered residues (gray and black/light red hori-

zontal lines at the bottom of Fig. 1a that denote putative and

native annotations, respectively) and they can be used to

filter out results from the methods that predict the functional

disordered regions. This allows us to eliminate the false

predictions from ANCHOR, MoRFpred, and MoRFCHiBi-

Web near the N-terminus. Interestingly, bothMoRFpred and

ANCHOR accurately find the protein binding region at the C

terminus (green and pink horizontal lines at the bottom of

Fig. 1a). The other three methods, MFSPSSMpred (violet

horizontal line),MoRFCHiBiWeb (dark red horizontal line),

and DisoRDPbind (orange horizontal line), identify the

entire IDRs as protein binding. The lattermethod aims to find

generic disordered protein binding regions, rather than the

MoRF region that is present in this protein, and this is likely

why its results are less accurate. However, all five methods

correctly suggest presence of the disordered protein binding

region in this protein demonstrating that their outputs can be

used for a practical purpose.

Figure 1b illustrates predictions of disordered DNA

binding regions from DisoRDPbind for Thymine-DNA

glycosylase protein (DisProt ID: DP00719). This protein

includes disordered DNA binding region between positions

51 and 111 [138] denoted by the light red horizontal line at

the bottom of Fig. 1b and two disordered regions (positions

1–111, and positions 340–410). Like in the above example,

the putative disordered regions produced with IUPred are

in relatively good agreement with the native disordered

regions (gray and black/light red horizontal lines at the

bottom of Fig. 1b that denote putative and native annota-

tions, respectively). Using these putative annotations of

IDRs as a filter, the predictions from DisoRDPbind (dark

red horizontal lines) point to the correct location of the

native disordered DNA binding region. Once again, our

example reveals that use of the putative annotations of

disorder in tandem with the putative annotations of disor-

dered binding regions leads to an accurate hypothesis that

suggest location of the native DNA binding region.

The putative annotations of disorder function that were

generated with the considered in this article computational

tools have already found numerous practical applications.

For example, both ANCHOR and fMoRFpred were applied

on a large scale to identify and characterize putative disor-

dered protein–protein binding regions in 736 [120] and 868

[130] complete proteomes, respectively. Similarly,

SLiMPred has been applied to identify putative peptide

binding motifs in the human proteome [134] and Dis-

oRDPbind has been applied to predict RNA/DNA binding

residues in the proteomes of human, mouse, worm, and fruit

fly [121]. Moreover, ANCHOR was used to characterize

disordered protein binding regions in the nuclear proteins in

mouse [139], in the human spliceosome [140] and the human

autophagy proteins [141].MoRFpredwas utilized to analyze

such regions in the proteomes of the dengue [142] and hep-

atitis C [112] viruses, in the ribosomal proteins [9], and in

plants [143]. Putative disordered protein binding regions that

were identified with ANCHOR and MoRFpred were also

used to functionally characterize histones [10].

Detailed summary of selected predictors
of functions of intrinsic disorder

We provide a detailed and structured summary of a few

selected methods. They include the first and only method

that predicts disordered flexible linkers, DFLpred, the first-

of-its-kind predictor of disordered DNA and RNA binding

regions, DisoRDPbind, two most cited predictors of dis-

ordered protein binding regions that are available online:

ANCHOR and MoRFpred. Their citations counts in Google

Scholar as of December 2016 are 267 and 124, respec-

tively. We also overview the most recent predictor of
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protein binding regions, MoRFChiBiWeb. We review these

five methods in the chronological order.

ANCHOR (2009)

ANCHOR [106, 120] was developed by Dosztányi et al. at

the Hungarian Academy of Sciences (currently at the

Eötvös Loránd University). The design of this method was

inspired by the approach used in the IUPred method.

ANCHOR finds disordered protein binding regions by

using a scoring function that combines three hallmarks of

these regions. It identifies regions that are likely to be

disordered, which do not form intrachain interactions to

fold on their own, and which are likely to gain stabilizing

energy through an interaction with a structured protein. The

calculation of the score using this function is quick and this

predictor is available as an easy to use webserver and a

standalone software. The speed, availability, and the fact

that this is the first method that predicts disordered protein

binding regions contribute to the popularity of this

methodology. We note that the earlier alpha-MoRFpred

finds only the disordered protein binding regions that fold

into helical confirmation upon binding.

Input: Swiss-Prot/TrEMBL ID or a single raw (unfor-

matted) amino acid sequence.

Output: Predicted propensities for disordered protein

binding for each residue in the input sequence. A plot

representing the propensity scores from ANCHOR and

IUPred; the latter should be used to filter predictions from

ANCHOR. Binary prediction for each residue in the input

sequence.

Availability: A webserver and a standalone package

running on a Linux platform.

URL: http://anchor.enzim.hu/.

MoRFpred (2012)

MoRFpred [126] was released by Disfani et al. at the

University of Alberta. MoRFpred predicts MoRF regions.

It uses a support vector machine model that takes a set of

24 custom-designed numerical features generated from

evolutionary profiles, selected physiochemical properties

of amino acids and predicted disorder, relative solvent

accessibility, and B-factors as its inputs. The features

aggregate this information for a given predicted residue

and its neighbors in the input protein chain. The predictions

from this machine learning model are combined with pre-

dictions based on sequence alignment against a large

database of proteins annotated with native MoRF regions.

This fairly sophisticated design results in an accurate pre-

diction of MoRFs [126] but it also requires long runtime. A

typical prediction with this method takes anywhere from

about one to several minutes for a single protein chain.

Input: A single or multiple (B5 sequences) FASTA-

formatted amino acid sequence(s).

Output: Predicted propensities and binary scores for

each residue in the input sequence.

Availability: A webserver.

URL: http://biomine.cs.vcu.edu/servers/MoRFpred/.

DisoRDPbind (2015)

DisoRDPbind [121] was authored by Peng and Kurgan at

the University of Alberta. This is the first methodology that

addressed simultaneous prediction of multiple functions of

disordered regions. It predicts disordered protein, RNA, and

DNA binding regions. This predictor uses 7, 11, and 7

custom-designed features computed from selected physio-

chemical properties of input amino acids, sequence

complexity estimated at the residue level, and putative

intrinsic disorder and secondary structure as inputs. These

three sets of inputs are processed by three logistic regression

models to generate predictions of disordered protein, RNA,

and DNA binding regions. The results generated by each of

these three predictors are merged with the corresponding

annotations transferred via sequence alignment from a

dataset of proteins annotated with native disordered protein,

RNA, and DNA binding regions. Empirical assessment

shows that DisoRDPbind’s outputs predictions that com-

plement structured DNA and RNA binding residues are

generated by several representative methods [121]. Dis-

oRDPbind generates predictions for a single protein in

about 2 s compared to ANCHOR that is approximately two

times faster [121]. However, these predictions include all

three functions in contrast to ANCHOR that generates

solely the protein binding predictions.

Input: A single or multiple (B5000 sequences) FASTA-

formatted amino acid sequence(s).

Output: Predicted propensities and binary scores for

each of the three functions for each residue in the input

sequence.

Availability: A webserver.

URL: http://biomine.cs.vcu.edu/servers/DisoRDPbind/.

MoRFChiBiWeb (2016)

MoRFChiBiWeb [129] is a meta method that was designed

by Malhis et al. at the University of British Columbia. It

predicts MoRF regions. The meta design means that it re-

predicts putative annotations of MoRF regions computed

by the MoRFChiBi method to improve predictive perfor-

mance. The architecture of this method is based on

combining three inputs: the results generated by MoRF-

ChiBi, putative intrinsic disorder produced by Espritz and

sequence alignment profiles generated with PSI-BLAST.

MoRFChiBiWeb is using Bayes rule to combine the three
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inputs. The improved predictive performance of MoRF-

ChiBiWeb comes at an expense of a longer runtime when

compared to MoRFChiBi, primarily due to the high com-

putational cost associated with the calculation of the

alignment profiles. MoRFChiBiWeb takes over 30 s to

process a single, average length protein sequence compared

to MoRFChiBi that need about 1 s. The webserver also

offers results generated by MoRFChiBi_light, a fast MoRF

predictor (1 s per protein) that combines MoRFChiBi and

the Espritz method.

Input: A single FASTA-formatted amino acid sequence.

Output: Predicted propensities for each residue in the

input sequence. A plot representing the propensity scores

from MoRFChiBiWeb, MoRFChiBi, and

MoRFChiBiWeb_light.

Availability: An HTML webserver, a RESTful web-

server, and a standalone package.

URL: http://www.chibi.ubc.ca/faculty/joerg-gsponer/

gsponer-lab/software/morf_chibi/.

DFLpred (2016)

DFLpred [136] was created by Meng and Kurgan at the

Virginia Commonwealth University. This method predicts

disordered flexible linker regions. The predictive model is

based on the machine learning architecture. Propensity for

disordered flexible linkers for each residue in the input

protein sequence is computed using a logistic regression

model that takes four numerical inputs. These inputs quantify

tendency of the predicted residue and its neighbors in the

sequence to form structured domains, disordered regions,

helical conformations, and turns. This predictor has low

runtime. A single average length protein chain can be pre-

dicted in 0.1 s while prediction of an entire human proteome

takes less than 1 h on a modern desktop computer.

Input: A single or multiple (B5000 sequences) FASTA-

formatted amino acid sequence(s).

Output: Predicted propensities and binary scores for

each residue in the input sequence.

Availability: A webserver and standalone package (re-

quires Java environment).

URL: http://biomine.cs.vcu.edu/servers/DFLpred/.

Conclusions and future directions

It has been nearly four decades since the first predictor of

intrinsic disorder was introduced. The efforts to develop

methods that predict IDRs and IDPs span three periods,

each advancing this area to new heights. Modern predictors

are characterized by use of meta-approaches and sophisti-

cated predictive models that are typically derived using

machine learning algorithms. Predictive performance of

these methods was evaluated in several large comparative

studies which revealed that some of them provide accurate

predictions, with AUC[0.7 and MCC[0.4. They are also

conveniently available to the end users as web servers and/

or standalone software. The web servers are particularly

attractive for less technically savvy users. They can be

accessed via all major web browsers, perform computa-

tions on the server side, automate the prediction process,

and provide the results in an easy to understand format.

Moreover, the end users nowadays can also access and

search pre-computed putative annotations of disorder via

several large databases, including DICHOT, MobiDB, and

D2P2. These databases store predictions of multiple meth-

ods for virtually all currently known proteins.

Compared with the prediction of IDRs and IDPs, com-

putational prediction of functions of disorder is in early

stages. These predictors primarily focus on the binding-

related functions, such as disordered protein–protein, pro-

tein–RNA and protein–DNA binding. Most of these

methods rely on the machine learning models and are

provided as fast and user-friendly web servers. Although

13 of these methods were already released, the develop-

ment of models that address prediction of other functions

of disorder remains an outstanding and pressing challenge.

The version 6.0.2 of the Disprot database, the main source

of the functionally annotated IDPs, lists close to 40 cellular

functions that have been assigned to about 1200 IDRs. To

date, only 11 of them can be predicted with the currently

available methods. Another interesting and unexplored

subject is related to an observation that IDRs are implicated

in moonlighting [144]. In contrast to the structured

moonlighting proteins that carry out multiple cellular

function through inclusion of multiple domains [145, 146],

a single IDR can carry out multiple functions by itself. Our

analysis reveals that 37% of the functionally annotated

IDRs in the Disprot database carry out more than one

distinct function. Given such high prevalence, computa-

tional characterization, and prediction of these disordered

moonlighting regions should be pursued.
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