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Abstract Defensins are a well-characterised group of

small, disulphide-rich, cationic peptides that are produced

by essentially all eukaryotes and are highly diverse in their

sequences and structures. Most display broad range

antimicrobial activity at low micromolar concentrations,

whereas others have other diverse roles, including cell

signalling (e.g. immune cell recruitment, self/non-self-

recognition), ion channel perturbation, toxic functions, and

enzyme inhibition. The defensins consist of two super-

families, each derived from an independent evolutionary

origin, which have subsequently undergone extensive

divergent evolution in their sequence, structure and func-

tion. Referred to as the cis- and trans-defensin

superfamilies, they are classified based on their secondary

structure orientation, cysteine motifs and disulphide bond

connectivities, tertiary structure similarities and precursor

gene sequence. The utility of displaying loops on a stable,

compact, disulphide-rich core has been exploited by evo-

lution on multiple occasions. The defensin superfamilies

represent a case where the ensuing convergent evolution of

sequence, structure and function has been particularly

extreme. Here, we discuss the extent, causes and signifi-

cance of these convergent features, drawing examples from

across the eukaryotes.

Keywords Disulphide-rich protein � Protein superfamily �
Evolutionary constraint � Divergent evolution �
Evolvability � Antimicrobial peptide

Introduction

Defensins are one of the best-described groups of antimi-

crobial peptides, and are expressed by a wide array of

plants, animals and fungi for host defence. These proteins

are small (less than 10 kDa), cysteine-rich (forming three

to six disulphide bonds) and are typically cationic (net

charge inter-quartile range of ?1 to ?5). The defensins are

best known for their antimicrobial activity at low micro-

molar concentrations against Gram-positive and Gram-

negative bacteria, fungi, viruses, and parasitic protozoa

[1–3]. Additionally, the defensin fold has proved highly

evolvable, with defensin-like protein (DLP) families hav-

ing divergently evolved to perform alternative functions to

antimicrobial activity. Diverse cell signalling roles via

interaction with cell-surface receptors have been described,

such as involvement in immune cell recruitment in verte-

brates [4] and self/non-self-recognition during fertilisation

in plants [5–7]. The venoms from scorpions, spiders,

platypus, snakes and lizards all contain protein families

with defensin-like structures that disrupt ion channels

[8–10]. Plants and sessile animals have also adapted them

for enzyme inhibition functions to deter grazers and

predators [11, 12].

The defensins from across the animal, plant and fungal

kingdoms have recently been classified into two
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superfamilies, the cis- and trans-defensins, each of which

has an independent evolutionary origin [13]. The separa-

tion was established by analysis of 2714 defensin and

defensin-like sequences and structures, covering 27 distinct

disulphide connectivities (discussed in more detail in later

sections) [13], in addition to the recently described sea

anemone DLP, which constitutes a fifth trans-defensin fold

[12]. Because their sequences are so divergent, sequence

similarity and cysteine motifs are insufficient to resolve the

more ancient evolutionary relationships; however, struc-

tural information has proved more useful in resolving these

questions. Networks of structural similarity and topology

separate the defensins into two groups, within each of

which homology is statistically supported, but between

which similarities are below the threshold of chance. This

split results from incompatible differences in secondary

structure and disulphide order and orientation between the

two superfamilies [13].

The larger superfamily is named the cis-defensins,

derived from the two parallel disulphides that bond the

final b-strand to an a-helix. This superfamily, which is

dominated by plant defensins, contains 11 of the struc-

turally characterised defensin motifs and 11 motifs with

currently unsolved structures. Conversely, members of the

trans-defensin superfamily (accounting for the five

remaining disulphide motifs) have two analogous disul-

phides that point in opposite directions from the final b-
strand and thus bond to different secondary structure ele-

ments (Fig. 1a, b) [13].

This evolutionary analysis has addressed the historical

difficulties in classifying defensins by coupling primary

sequence information, with secondary structure orientation,

disulphide bond connectivities and tertiary structure simi-

larities. This extends the classifications in the existing

defensin-specific databases (e.g. the Defensins Knowl-

edgebase [14] and iDPF-PseRAAAC [15]). It is also

relevant for resolving relationships within the ever-ex-

panding small cysteine-rich protein and peptide databases

such as the manually curated APD (and its subsequent

updates) [16–18] and machine-learning databases and

prediction servers, such as CAMP [19], iAMP-2L [20],

LAMP [21], PhytAMP [22], YADAMP [23], and ATDB

[24].

The extant defensin structural classes, therefore, rep-

resent the divergent evolution of two ancestral folds to a

variety of elaborated structures that specialise the defen-

sins to their diverse functions. Within these structural

classes, the inter-cysteine regions have undergone further

extensive divergent evolution, to the extent that defensins

of the same fold often display only chance sequence

identity. Given their independent evolutionary origins and

subsequent divergent evolution, the cis- and trans-

defensin superfamilies display remarkable convergent

evolution of a diverse array of traits. This review explores

the known distribution of defensins in the two super-

families, and how members have undergone convergences

at the levels of gene and precursor protein organisation,

protein sequence and structure, and how this has trans-

lated to functional and mechanistic convergences.

Furthermore, the evolutionary pressures, constraints and

solutions that have caused this convergence and diver-

gence are discussed.

Phylogenetic distribution

With a few notable exceptions, cis- and trans-defensins are

produced by different phyla [13] (Fig. 1c). Most trans-

defensins occur in vertebrates (fish, reptiles, birds and

mammals), with big defensins produced in some molluscs,

arthropods and basal chordates (lancelets), and anemone

DLPs produced in cnidarians. The greatest exception to this

distribution is the presence of transcripts encoding cis b-
defensins in two spiny lobster species of arthropods [25].

Conversely, cis-defensins occur in a wider array of ani-

mals: hydra, annelids, nematodes, arthropods, molluscs,

and lancelets. They are also common in fungi, and sper-

matophyte plants [26, 27].

Genes from both defensin superfamilies are present in

lancelets, and some arthropods and molluscs [27–30].

Within the multicellular eukaryotes, defensins have yet to

be described in the non-spermatophyte plants (e.g. bryo-

phytes, monilophytes), non-chordate deuterostomes (e.g.

echinoderms), and the non-arthropod/nematode ecdyso-

zoans (e.g. tardigrades). This broad and patchy distribution

of defensins may be the result of repeated gene loss in

multiple lineages [31] or extensive horizontal gene transfer

between phyla, as has been documented for other host

defence genes [32, 33]. Although ‘‘defensin-like’’ sequen-

ces of prokaryotic origin have been reported, these have

only four cysteines and lack any other sequence similarity

[34]. Therefore, in the absence of structural information, it

is not yet possible to assert their relatedness [13].

Most of the disulphide connectivities are unique to a

phylum; however, two cis-defensin disulphide connectivi-

ties are broadly distributed across multiple eukaryotic

kingdoms. They are termed the C6 and C8 defensins in

reference to their number of cysteines (Fig. 1c). The C8

defensins are found in plants, molluscs and insects and are

mostly antimicrobial (Table 1). C6 defensins are dis-

tributed even more broadly and contain members with

antimicrobial activity in invertebrates, plants and fungi, as

well as members with signalling roles in plants and toxic

roles in chelicerates.
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Gene and precursor protein convergence

Gene copy number

Defensins from both superfamilies can be present in mul-

tiple copies in the genome of an organism, having evolved

by tandem gene duplication with subsequent sequence

diversification [46–49]. For instance, over 300 defensin and

defensin-like sequences have been identified in Arabidop-

sis and Medicago [48, 50, 51]. Orthologues frequently

derive new functions (i.e. neofunctionalise) due to positive

selection, a common feature of host immune proteins co-

evolving against pathogens or parasites as the host com-

petes in an arms race [52, 53].

The b-defensin gene clusters on chromosome 8p23.1

form one of the most copy number variable regions in the

human genome [54] and gene copy number variation cor-

relates with a range of disease susceptibilities. The DEFB4

gene, encoding human b-defensin-2 (HBD-2) has been

particularly well studied in this regard where increased

PHYLUM CIS-DEFENSINS TRANS-DEFENSINS

Vertebrata | | 
Cephalochordata C6 Big
Other deutrostomia
Mollusca C6 | C8 | Mollusc | Annelid | giBardyH
Annelida Annelid | Hydra
Other lophotrochozoa
Arthropoda C6 | C8 | -Tx | Small-Tx | MauroTx | ExcitoTx | Mollusc | Spiderine (a, b) Big | 
Nematoda C6 | Annelid
Other ecdysozoa
Cnidaria C6 | enomenAardyH
Porifera
Ascomycota C6 | Fungal N | Fungal C
Basidomycota C6
Glomeromycota C6
Zygomycota C6
Other fungi
Angiospermae C6 | C8 | Petunia | Fusion | S-locus (a, b, c, d, e, f, g)
Gymnospermae C6 | C8
Other viridiplantae
Other eukarya

c

ba cis-oriented
disulphide pair

trans-oriented
disulphide pair

Fig. 1 Architecture and taxonomic distribution of cis- and trans-

defensins. a The plant defensin NaD1 (PDB:1MR4) is a typical cis-

defensin in which both of the most conserved disulphides (yellow)

from the final b-strand (blue) point in the same direction and bond to

the same a-helix (red). b The human b-defensin HBD-1 (PDB:1IJV)

is a typical trans-defensin in which the disulphides from the final b-
strand point in opposite directions, therefore, bonding to different

secondary structure elements. Non-conserved disulphides are

represented as dashed lines in the secondary structure diagrams.

Adapted from [13]. c A simplified phylogeny of eukaryotic phyla,

annotated with the occurrence of different structural classes and

cysteine motifs (in italics) from each defensin superfamily. Classes

specific to a kingdom are coloured as in the phylogeny. Classes are

described in more detail in Figs. 4 and 5. Phyla with no known

defensins from each of the superfamilies are filled in grey

Convergent evolution of defensin sequence, structure and function 665

123



DEFB4 gene copy number was associated with psoriasis

[55, 56]. For Crohn’s disease, the findings have been mixed

with separate studies reporting correlations with low [57]

or high [58] DEFB4 gene copy number. In addition, b-
defensin gene copy number may also contribute to sus-

ceptibility to other conditions and diseases such as HIV

infection [59], cervical cancer [60] and ankylosing

spondylitis [54].

Protein biosynthesis, processing and trafficking

All known cis- and trans-defensins are processed from

precursor proteins during maturation and trafficking. Given

the presence of cysteine residues that participate in disul-

phide bonds, defensins are produced with N-terminal

endoplasmic reticulum (ER) signal sequences (Fig. 2a).

The mature defensin is secreted in the absence of any other

signalling information.

Defensins that are targeted to intracellular locations (e.g.

vacuole or phagolysosome) have additional prodomains

(also referred to as propeptides, prosequences, prosegments

or propieces) [61–66]. This targeting prodomain can either

precede or follow the mature defensin domain (Fig. 2b, c).

For instance, plant class II defensins (mainly represented in

the Solanaceae family) have long anionic prodomains on

the C-terminal side of their C8 cis-defensin domains, in

contrast to the more common plant class I defensins, which

lack a prodomain and are secreted [42, 62]. Analogous

negative prodomains are located at the N-terminus of

mammalian a-defensins from the trans-defensin

superfamily [67]. The fungal N-terminal and C-terminal

defensin classes only occur as a two-domain fusion, and are

proteolytically processed into two mature defensins [68]

(Fig. S1). The plant ‘fusion’ class is similarly only found

Table 1 Distribution and functions of examples from the shared C6 and C8 cis-defensin scaffolds

Taxon Function Example Species Accession References

C6 Plant Unknown Nodule defensin Astragalus sinicus 77994681 [ds]

Fertilisation LURE1 Torenia fournieri 225320707 [7]

Fungus Antibacterial Micasin Arthroderma otae 2LR5 [35]

Cnidarian Antifungal Galiomicin Helicoverpa zea 528880428 [ds]

Cephalochordate Unknown BfD1 Branchiostoma floridae 260803302 [29]

Nematode Unknown CreD1 Caenorhabditis remanei 308463700 [ds]

Mollusc Antibacterial MGD-1 Mytilus galloprovincialis 1FJN [36]

Insect Antibacterial Nasonin-1 Nasonia vitripennis 2KOZ [37]

Ixodid Antibacterial Varisin A1 Dermacentor variabilis 37999545 [38]

Arachnid Antibacterial, antifungal oh-Defensin Ornithoctonus hainana none [39]

Chelicerate Antibacterial LqD1 Leiurus quinquestriatus 1169262 [40]

Ion channel toxin Bmtx2 Mesobuthus martensii 2BMT [41]

C8 Plant Antifungal NaD1 Nicotiana alata 1MR4 [42]

Serine protease inhibitor ATT Arabidopsis thaliana 1JXC [11]

Sweet taste Brazzein Pentadiplandra brazzeana 1BRZ [43]

Mollusc Induced by bacteria Hs-defn Hyriopsis schlegelii 339646140 [44]

Insect Antifungal Drosomycin Drosophila melanogaster 1MYN [45]

ds direct submission to NCBI database

a

b

c

d

Pro

Def

ER Def

ER Def

ER Pro

ER Pro Pro2Def

I

II
Cyclic dimer

Pseudo

Fig. 2 Organisation of defensin precursor proteins. All defensins are

produced with N-terminal endoplasmic reticulum (ER) signal

sequences (to direct them to the ER for disulphide bond formation)

in addition to the mature defensin domain (Def). Examples of

defensins that adopt this structure include a scorpion C6 and plant C8

class I defensins. Other defensins are produced with additional

prodomains (Pro) that can be positioned b C-terminally (e.g. mussel,

and plant C8 class II defensins) or c N-terminally (e.g. insect C6 and

vertebrate a- and b-defensins) of the mature domain. d h-defensin
precursors are truncated a-defensin prologues with a premature stop

codon after the first 12 residues, from which a 9-mer fragment is

excised, dimerised, and ligated to create the backbone-cyclised h-
defensin. The sequence after the stop codon is still highly similar to

the a-defensin (Pseudo). Domain lengths not to scale
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fused to a C8 defensin in a two-domain gene and it is

currently unknown whether or not it is proteolytically

processed.

Reconstruction of ancestral a-defensin sequences indi-

cates their acidic prodomains have co-evolved to

compensate for the basic amino acids in the mature

defensins [67]. Therefore, in addition to its role as a tar-

geting signal, the prodomain either has a chaperone

function to assist folding or protects against autocytotoxi-

city by shielding the extreme positive charge of the mature

defensin from deleterious interactions with lipids or other

cellular proteins [63, 69–73]. Similar targeting sequences

are located between the N-terminal ER signal and mature

defensin domains of other non-secreted defensins

[28, 64, 74].

The complete activation of preprodefensins often

involves a two-step process: cleavage of the ER signal

peptide producing an inactive prodefensin, followed by

removal of the prodomain [62, 63, 65]. The mature

defensins can be stored as fully processed active proteins

such as in HNP-1–4, which reside primarily in the intra-

cellular compartment of the phagolysosome [64, 75, 76].

This is akin to the mature class II plant defensins that are

stored in the plant vacuole [42, 62, 73]. In contrast, other

defensins (e.g. human Paneth cell a-defensins HD-5 and

HD-6) are stored as inactive prodefensins in secretory

granules that are destined for extracellular activities in the

intestinal lumen [77–79]. These defensins are activated

proteolytically by a Paneth cell-derived trypsin after they

are secreted [75]. In mice, the Paneth cell a-defensins
(known as cryptdins) [80, 81] are activated by removal of

the prodomain by matrix metalloproteinase-7 (matrilysin,

MMP-7) [82] before secretion [69]. The importance of

proteolytic removal of the prodomain for defensin activa-

tion is highlighted by the observation that mice deficient in

the MMP-7 protease do not produce mature cryptdins and

are more susceptible to oral challenges with Salmonella

typhimurium bacteria [82].

The precursor proteins of h-defensins are especially

unusual. The prodomains are homologous to full-length a-
defensins and undergo unique processing, in which two

nine amino acid segments from two prodefensins are

cyclised head-to-tail by transpeptidation to form a single

18-amino acid mature cyclic protein [83] (Fig. 2d). The

cyclic product can consist of a homodimer produced by

ligation of two identical precursors, or heterodimers from

ligations of different precursors [84, 85]. Heterodimers are

strongly favoured, although the mechanisms controlling

their ligation are not yet known [86, 87]. Human h-defensin
pseudogenes are not expressed due to a premature stop

codon in their precursor, which may contribute to the

human susceptibility to HIV as compared to the resistance

in old world monkeys [83].

Individual defensins from the cis- and trans- super-

families are expressed under specific circumstances or at

specific sites. For instance, they often have distinct, organ-

specific expression patterns, particularly in tissues that are

vulnerable to microbial attack, such as nutrient-rich

reproductive tissues, root nodules and seeds in plants or

epithelial tissues and neutrophils in animals. They can also

be expressed constitutively or induced by infection and

inflammatory factors [42, 48, 51, 88]. Mice cryptdins, for

instance, constitute *70 % of the bactericidal activity that

is secreted by the Paneth cells, with the concentration of

cryptdins at the point of secretion in the intestinal mucosa

reaching levels that are at least 1000 times greater than the

antibacterial minimal inhibitory concentration (MIC) [89].

In humans, a-defensin HD-5 is stored at approximately

90–450 lg/cm2 of the surface of the intestinal mucosa,

sufficient to generate microbicidal concentrations in the

lumen [75].

Structural convergence

Primary structure

The cis- and trans-defensin superfamilies have convergent

features across their primary, secondary and tertiary

structures. Both superfamilies are extremely sequence

diverse. The inter-cysteine loops of homologues from the

same phylogenetic order often share less than 20 % amino

acid sequence identity and have multiple insertions and

deletions. Despite this, there are several convergent

sequence features between the 1820 cis-defensins and 894

trans-defensins [90]. Foremost, their sequence composition

is highly biased towards cysteines, positively charged

amino acids (arginine and lysine) and glycine, at the

expense of the aliphatic hydrophobic residues (valine,

leucine, isoleucine and methionine) which form the

hydrophobic cores of globular proteins [91] (Fig. 3a). This

amino acid bias parallels the overall hydrophilic and net

positive charge distributions of proteins from both super-

families (Fig. 3b–g).

The only non-cysteine residue that is broadly conserved

within each superfamily is a glycine in a GxC motif. This

motif occurs in 91 % of cis-defensins (excluding the

S-locus proteins which have an additional disulphide at the

homologous location) and 92 % of the a-helix-containing
trans-defensins, with alanine being the most common

alternative (Fig. 3h). This motif is a consequence of the

disulphides, which constrain the b-strand such that the

glycine’s hydrogen side chain points back towards the a-
helix (Fig. 3i, j). The R-groups of other residues cannot be

accommodated in such a confined space and thus the

potential steric clash causes them to be selected against. In
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this way, the constraints intrinsic to building similar

cationic, disulphide-rich proteins cause convergence of

both an overall residue bias, and the independent appear-

ance of a defined GxC arrangement.

Secondary and tertiary structure and disulphide

connectivity

Both defensin superfamilies convergently use a double- or

triple-stranded b-sheet (typically with an a-helix), cross-
linked by a disulphide network into a compact core

(Fig. 1a, b). Residues characterised as functionally

important typically have highly solvent-exposed cationic

side chains that bind to anionic ligands on the target. They

may be located in the core (as in charybdotoxin) or on the

displayed loops (as in NaD1) [26, 92–94]. Each super-

family has a conserved disulphide connectivity, which has

been elaborated by divergent evolution to produce 22 cis-

defensin and five trans-defensin classes with distinct,

additional disulphides (Figs. 4, S2).

The disulphide bonding imparts another common fea-

ture to the defensins: their high stability to temperature, pH

and proteolysis [42, 95–97]. The presence of disulphides

limits the conformation entropy of the unfolded state and

sterically occludes proteases. This may also account for the

evolvability of the defensins, as disulphides make the

structure robust to mutations in the loop regions, allowing

extreme sequence diversification of the superfamilies [98].

The diversity of disulphide connectivities in the cis-

defensins (Fig. 4) is generally derived from elaboration of

the common C6 motif found in all eukaryotic kingdoms

(Fig. 5a). Although such ancient evolutionary relationships

are unresolved, it is tempting to speculate that the C6 class

represents the ancestral fold of the cis-defensin superfam-

ily. The C8 defensins, for example, have an additional

disulphide compared to the C6 class, which constrains their

longer N- and C-termini. The C10 petunia cis-defensins

further elaborate on their C8 counterparts with a fifth

disulphide which does not change the orientation of

secondary structure elements, but substitutes for the net-

work of non-covalent interactions that are present in the C8

defensins [42, 99]. Conversely, fewer trans-defensin

structural classes have been identified, but each is far more

distinct from other classes of the superfamily (Fig. 5b).

Within each superfamily, insertion of secondary struc-

ture elements has generated different elaborations on the

same core structure. Some such exemplifiers include the

annelid and hydra ‘macin’ defensins and the big defensins

(Fig. 5). These structures can be twice the size of the

smaller members and have multiple insertions within their

loops relative to smaller antimicrobial defensins, although

they retain a similar charge density and hydrophobicity

[13]. Even within each scaffold, families have divergent

inter-cysteine loop lengths and composition, which adapts

them to alternative functions. For example, scorpion toxins

that use the C6 defensin fold have a shorter and more

hydrophilic first loop for binding to their target ion chan-

nels [92]. Conversely, several cysteine pattern classes can

be involved in the same function; for example, signalling

by the seven S-locus 11 disulphide variant subclasses a–g

(Figs. 5a, S2).

Quaternary dimerisation and oligomerisation

Several cis- and trans-defensins form homodimers or

higher order oligomers [100–104]. The increased local

charge density on the multimers is proposed to contribute

to their high potency, broad-spectrum antimicrobial activ-

ity (elaborated further in the next section) [102, 105–107].

For such defensins in homogeneous solutions, there is an

equilibrium between dimers and higher oligomers but

dimers are the most prominent form adopted by the plant

cis-defensins NaD1 (Fig. 6a) and TPP3 [100, 101], and the

human trans-defensins including b-defensin HBD-2

(Fig. 6b) [102], and a-defensins HNP-3, HNP-4, HD-5 and

HD-6 [103, 104]. The solved structures of specific human

a-, b- and plant defensins are dimers with a six-stranded

antiparallel b-sheet across the dimer interfaces. These

dimeric structures have been proposed to provide a plat-

form for lipid bilayer attachment and permeabilisation for

innate defence against pathogens [2, 100]. It remains to be

ascertained whether oligomerisation is a common feature

for other cis- and trans-defensins.

NaD1 and TPP3 homodimers display a grip-shaped,

cationic binding pocket, termed the ‘‘cationic grip’’

[94, 101]. The inner face of the cationic grip for NaD1

binds the anionic head group of the phospholipid phos-

phatidylinositol 4,5-bisphosphate (PIP2) via a network of

ionic and hydrogen bond interactions (Fig. 6a). The grip

region is comprised mainly of loop residues 36–40

(KILRR) in NaD1 and residues 37–41 (KLQRK) in TPP3.

These loops are critical for lipid binding as well as for the

bFig. 3 Amino acid sequence properties of cis- and trans-defensins.

a Average amino acid residue occurrence for the cis-defensins (light

blue), trans-defensins (dark blue) and whole Uniprot database (grey).

Distributions of length, hydrophobicity and charge for b–d 1820 cis-

defensins and e–g 894 trans-defensins. The common GxC motif

occurs in both cis-defensins (e.g. NaD1) and trans-defensins (e.g.

HBD-1). h Residue bias in the first position of the GxC motif in the

cis-defensins (excluding S-locus and spiderines, which have an

additional disulphide at this location) and the trans-defensins

(excluding a- and h-defensins, which lack an a-helix and so are

unconstrained at this location). In both i cis-defensins (PDB:1MR4)

and j trans-defensins (PDB:1IJV), the glycine (sphere) is oriented

such that a non-hydrogen R-group on any other amino acid in this

position (arrow) would clash with the a-helix. b-Strands in blue, a-
helices in red, disulphide bonds in yellow
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antifungal and anticancer activities of these defensins

[94, 100, 101]. The homologous loop of the Medicago

truncatula defensin (MtDef4) consists of RGFRRR, which

has been proposed to mediate antifungal activity by bind-

ing to phosphatidic acid (PA) as well as promoting entry

into the fungal cell [108]. Whether dimerisation and

oligomerisation is important for this PA interaction and

antifungal activity has yet to be determined.

Human HBD-2 contains an analogous cationic loop that

connects the first two b-strands. This loop, comprised of

residues 22–25 (RRYK), forms a strikingly similar cationic

grip structure in the HBD-2 dimer to that of the plant

defensins NaD1 and TPP3 [102] (Fig. 6b). Despite a dis-

tinctly different dimer arrangement compared with HBD-2,

HBD-6 also dimerises and forms a positively charged

binding groove in the presence of glycosaminoglycan

[109]. Therefore, the cationic binding pocket may be a

common convergent feature in the structure–function

relationship of defensin dimers.

For some defensins, high concentrations or the presence

of ligand can promote the formation of higher order oli-

gomers, illustrating an emerging role for defensin

oligomers in innate host defence. HBD-2 oligomerises at

high concentrations [102], NaD1 oligomerises in the

presence of PIP2 [94], and a-defensins HNP-1, HNP-2 and

HD-6 oligomerise upon contact with artificial lipid mem-

branes [110–112].

A high-resolution structure of an NaD1:PIP2 complex

was determined by X-ray crystallography and revealed an

intriguing oligomeric arrangement. The oligomer com-

prises seven ‘‘cationic-grip’’ dimers of NaD1 in complex

with the anionic head groups of 14 PIP2 molecules. The

seven NaD1 dimers assemble into an arch-shaped config-

uration with an extended cationic grove in which the
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Fig. 4 Defensin disulphide connectivities. Disulphide connectivities

for the a cis-defensins and b trans-defensins. The most highly

conserved disulphides are indicated in black and disulphides that are

unique to each class are indicated in yellow. The dashed line indicates

cyclisation of the h-defensin
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anionic lipid head groups are bound via a cooperative

network of hydrogen bonds [94] (Fig. 6c). Interestingly,

NaD1:PIP2 complexes can assemble into long string-like

fibrils in vitro, as revealed by transmission electron

microscopy [94]. Whether such large oligomeric com-

plexes can form in vivo and their functional importance

remains to be determined.

A distinct oligomerisation event has been described for

the a-defensin HD-6, which lacks direct antimicrobial

activity, but self-assembles into ordered fibrils and nan-

onets to entrap bacteria [112]. The formation of multimeric

transmembrane pores has also long been proposed for a-
defensins, such as HNP-2 [111] and the C6 defensin,

phormicin [113].
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Structures are shown for cysteine patterns with solved structures,

classes with unresolved structures are represented by italicised names

in circles. Putative disulphides unique to a class are denoted as

x:y where x and y are the additional cysteines involved in the

disulphide. Uncharacterised variants with additional disulphides are

denoted by single letters (e.g. S-locus 11b, etc.). Black lines indicate

homology evidence from structural similarity, grey lines indicate

evidence from gene structure and organisation. The PDB codes for the

proteins are given in parentheses. Structures are organised by

kingdom, with a fungal representative as an example of the shared

C6 defensins and a plant representative for the shared C8 defensins

(colours as used in Fig. 1)
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Functional and mechanistic convergence

Antimicrobial activity by targeting membrane lipids

Host defence by antimicrobial activity was the first

described activity and is the most commonly reported

function for members of both defensin superfamilies. It is

also the likely ancestral role of each superfamily, with

other functions having divergently evolved in various

eukaryote taxa. Antimicrobial action is often achieved via

complex, multi-step interaction mechanisms, which remain

poorly characterised for the majority of defensins. These

diverse mechanisms include interaction with cell wall

carbohydrates, membrane transport machineries, cytoplas-

mic cell components, nucleic acids, or induction of reactive

oxygen species, and typically cannot be generalised across

even closely related defensins [114–121]. However, the

most common antimicrobial mechanism of both super-

families involves lipid binding that either directly disrupts

membranes, inhibits lipid-dependent cell wall synthesis or

c

ba

Monomer II Monomer II

90°

Monomer I Monomer I

Fig. 6 Defensin dimerisation and lipid-mediated oligomerisation.

a The plant C8 defensin NaD1 (PDB:4CQK) forms a homodimer that

binds negatively charged phospholipid head groups via a cationic grip

[94]. b The human b-defensin HBD-2 (PDB:1FD4) forms a structurally

similar dimer [102]. Protein surface charge is indicated by blue

(positive) and red (negative). Lipids are shown as sticks with phosphate

in white and oxygen in red. c NaD1 dimers assemble into an arching

oligomeric structure after interaction with the anionic head groups of

PIP2 within an extended cationic groove on the surface of the NaD1

oligomer (PDB:4CQK). Alternating dimers in white and blue
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aggregates pathogens. Specific defensin-lipid interactions

distinguish between host and pathogen by taking advantage

of differences in cell wall and membrane composition.

Vertebrate defensins additionally regulate the interaction

between innate and adaptive immunity via signalling

mechanisms, and are described in more detail in the next

section [122, 123].

Lipid targeting is a property that extends throughout

the antifungal C8 plant and insect cis-defensins. For

example, glucosylceramide lipids located in the cell walls

and plasma membranes of filamentous fungi are targeted

by the plant defensins RsAFP2 [117], Psd1 [124] and

MsDef1 [125] and the insect C6 defensin heliomicin

[117]. Other plant defensins interact with structurally

related membrane lipids such as mannosyl-diinosi-

tolphospho-ceramide (bound by DmAMP1) [126] and

phosphatidic acid (bound by MtDef4) [108]. As men-

tioned, the cis-defensins NaD1 and TPP3 bind the

phospholipid PIP2 as does the trans-defensin HBD-3

[94, 101, 127, 128]. Indeed, the above-mentioned lipid

binding loops of NaD1 and TPP3 are strikingly analogous

to that of HBD-3 (residues 36-39, RGRK), suggesting a

convergent ‘phospholipid recognition code’ between the

defensin superfamilies [129].

Both superfamilies also contain members that bind the

membrane-anchored lipid II peptidoglycan precursor, to

block cell wall biosynthesis. Fungal C6 cis-defensins,

including plectasin [130], oryzeasin [131] and eurocin

[132] use this mechanism, and lipid II binding has also

evolved in the mollusc cis-defensins MGD-1 and Cg-Def

[36, 133]. Convergent use of lipid II binding is reported for

the trans-defensins, human a-defensin 1 (HNP-1) [134]

and human b-defensin 3 (HBD-3) [135].

Finally, binding to the cell surfaces of potential micro-

bial pathogens by several cis- and trans-defensins may

block pathogen adsorption and entry into host cells

[136, 137], or cause aggregation of the microbes

[112, 138]. Proposed aggregation mechanisms include the

simultaneous binding of two microbial cells by a defensin

with two hydrophobic interfaces, or by the formation of

extended fibril networks [112, 138].

Achieving high affinity as well as specificity for a par-

ticular lipid in a pathogen’s membrane requires high

binding energy, whether for membrane disruption [128] or

lipid extraction (of the order of 100 kJ mol-1 [139]).

Hydrophobic interactions are typically neither energetic,

nor specific enough to achieve this [140, 141] and conse-

quently the proteins rely on multiple electrostatic contacts

with the charged head groups (on the order of 10 kJ mol-1

energy each [142]. This contrasts with the non-specific

plant lipid transfer proteins, which use an extensive binding

tunnel to form hydrophobic interactions with fatty acyl

lipid tails [143].

Signalling by receptor interaction

Both cis- and trans-defensin superfamilies have conver-

gently evolved members with signalling activities. The two

most common signalling functions are immune cell

recruitment and self-recognition, mediated by interactions

with cell-surface receptors. In the trans-defensin super-

family, multiple human a- and b-defensins selectively

chemoattract leukocytes and stimulate cytokine release

[144–147]. These immunomodulatory effects are mediated

by interaction with a number of chemokine receptors. For

human b-defensins, these receptors include CCR6 (imma-

ture DCs, neutrophil, T cells), CCR2 (monocytes), and

Toll-like receptors (TLR) 1, 2 and 4 (monocytes, myeloid

DCs and immature DCs) [147–151]. In contrast, human a-
defensins HNP-1, 2 and 3 potently inhibit the phospholipid/

Ca2? protein kinase C-mediated signalling pathway [152].

They, therefore, link innate and adaptive immunity, and

effectively enhance pathogen killing and clearance.

An example of signalling by an antimicrobial cis-de-

fensin is the plant C8 defensin Psd1, which mediates its

antifungal action against Neurospora crassa, not from

direct membrane disruption but rather from protein inter-

nalisation and signalling via cyclin F, which interferes with

nuclear division and disrupts the cell cycle [153]. This

mechanism was supported by localisation of Psd1 to the

nucleus and its interaction with cyclin F [153].

The largest group of signalling cis-defensins (the S-locus

11 class) functions in self/non-self-recognition during fer-

tilisation in angiosperm plants and lack antimicrobial

activity. S-locus protein 11 (SP11) variants, also referred to

as S-locus Cysteine-Rich (SCR) proteins, are important

signalling mediators of plant self/non-self-recognition in the

sporophytic incompatibility system that prevents inbreeding

[154]. SP11 variants or haplotypes are expressed by poly-

morphic genes that reside at the multi-allelic S-locus and

serve as the pollen S-haplotype specificity determinants.

They are paired with cognate stigmatic S-haplotype speci-

ficity determinants known as S-locus receptor kinases

(SRKs), which are single-pass serine/threonine receptor

kinases present in the plasma membrane of stigmatic papilla

cells [6, 155]. In a self-pollination, binding of the pollen

SP11 protein to the ‘‘self’’ SRK on the stigma leads to SRK

autophosphorylation and results in pollen rejection. This is

mediated by the initiation of a transduction pathway that

results in the inhibition of pollen hydration and penetration

of the pollen tube through the epidermal cell walls of the

stigma. During cross-pollination, there is no interaction

between SP11 and SRK and fertilisation proceeds unim-

peded [6]. Binding to cognate SRKs is largely determined

by the exposed loop regions between the third and fourth as

well as the fifth and sixth cysteine residues in SP11, as

identified by site-directed alanine mutagenesis and loop
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swapping experiments [6]. This suggests that new allelic

specificity has evolved readily in the SP11 folds. Indeed,

over 100 haplotypes can exist in a given species, and con-

sequently as many SP11 and SRK proteins [154, 156]. This

is reflected in the extraordinarily high variation in protein

sequence and seven different disulphide connectivities

(Figs. 4a, S2) [13].

An additional plant fertilisation role is played by another

group of defensins called LUREs (C6 defensin fold).

LUREs are secreted by the two synergid cells on the side of

the egg cell and act as diffusible, species-specific signals

that chemoattract and guide the pollen tube to the ovule for

fertilisation [7, 157].

The diverse signalling interactions by defensins from

both superfamilies are a product of the small and

stable defensin folds, which allow for the display of highly

divergent loop sequences and the selection of molecules

that form specific receptor interactions.

Toxic function by ion channel perturbation

Within the two defensin superfamilies, several subfamilies

of animal DLPs have been converted to neurotoxic func-

tions. These DLPs retain a defensin-like scaffold, but inter-

cysteine loop sequences have been selected that enable

specific interactions with ion channels, and they have typi-

cally radiated into large, diverse multigene families [158].

The cis-defensins include several classes from scorpions

and spiders that are uniquely used for toxic functions, such as

the a-toxins (note that a-toxins are not related to a-defensins)
[159, 160] (Fig. 7a). Spiderines are based on an a-toxin
scaffold with additional cysteines (up to 12 total) and, in some

cases, an additional and unique N-terminal domain [8].

In addition to the classes that uniquely perform toxic

functions, distinct subfamilies specialised to toxic function

are present in both C6 cis-defensins and b-trans-defensins
(Fig. 7a, b). In line with their highly divergent function, their

sequences are clearly specialised [92]. Toxins of the C6

class, such as charybdotoxin, contain the conserved KCuN
motif for ion channel binding, not present in antimicrobial

defensins (Fig. 7c). They also lack the segregated, amphi-

philic, cationic surface charge distribution typical of

antimicrobial defensins, and have altered loop lengths to

allow for specific interactions with ion channels, rather than

lipids. Similarly, the b-defensin fold has been adapted to a

toxic function in the well-characterised snake crotamines, as

well as the putative toxins helofensin from bearded lizard

venom and ovDLP-A from platypus venom [161, 162].

The toxic members from both superfamilies act by

binding cation channels (K?, Na?, Ca2?) with the exception

of chlorotoxin, which binds Cl- channels [163]. The best

characterised of these is the scorpion charybdotoxin, which

binds to voltage-gated K? channels and inserts a lysine to

block the channel’s selectivity filter (Fig. 7d) [92, 93]. The

snake toxin crotamine (trans-defensin fold) is also proposed

to bind and block voltage-gated K? channels via analogous

residues R31-Y32 [164]. Conversely, a different region of

the cis-defensin scaffold has been repurposed for toxic

function in the scorpion excitatory toxins, such as Bj-xtrIT.

These toxins bind Na? channels using the opposite surface

to charybdotoxin [165], and likely interact with the chan-

nel’s regulatory regions, rather than the pore itself [163].

It is, therefore, likely that ancestral antimicrobial

defensins from both superfamilies were convergently

neofunctionalised to toxicity by extensive adaptation of the

sequence and length of their inter-cysteine loops for

specific interaction with new ion channel targets. This

convergent recruitment is indicative of the versatility of

defensin folds when subjected to suitable selection pres-

sures. Their short length and secretion is suitable for the

large-scale expression required for toxin production [166].

The stability afforded by the disulphide-rich structures is

beneficial for storage in venom sacs and persistence in

prey, as well as allowing the sequence diversification of the

loop regions [167]. Indeed, similar evolution from innate

immunity function to toxicity has also occurred in other

defence gene families where their mechanisms for patho-

gen defence are repurposed for offence [166].

Enzyme inhibition

Some plant defensins exhibit proteinase [11, 168, 169] and

a-amylase [170–172] inhibitory activities, probably

evolved to fend against insect predation. The tight,

stable disulphide-linked topology of the defensins appears

to make them well suited to enzyme inhibition. For

instance, the A. thaliana trypsin inhibitor ATT uses the cis-

plant C8 defensin fold to competitively inhibit PA clan

proteases, such as trypsin [11]. The putative reactive site

P1–P10 residues are contained in the first solvent-exposed

loop [11] (Fig. 8a). Trans-defensins including a- and h-
defensins are also protease inhibitors, but by non-compet-

itive mechanisms, whereby they bind to the active site at a

location other than the substrate binding site [173, 174].

More recently, a big-defensin-like protein from the sea

anemone Stichodactyla helianthus, helianthamide, was

identified with highly potent (Ki = 10 pM) and selective

inhibitory activity against human pancreatic a-amylase

[12]. Helianthamide adopts a four-stranded trans-defensin

fold highly similar to the big defensins and binds into and

across the a-amylase active site and is thought to act as an

antifeedant. Three aromatic residues (Y7, Y9, and H10)

constitute all of the important polar contacts of heliantha-

mide with the enzyme’s catalytic machinery, along with

I11 and V12, which create a nonpolar interface to com-

plement the hydrophobic ridges bordering the active site of
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the enzyme [12]. It is interesting that both plants and ses-

sile animals independently converted defensins to effective

antifeedant activities to deter their respective grazers or

predators.

Adaption to abiotic stresses

In addition to their induction by biotic stresses such as

pathogen infection, the plant cis-defensins have been co-

opted for response to abiotic stressors, including drought

[175], salinity [176, 177], cold [178, 179] and metals [180].

For instance, the AhPDF1.1 defensin from Arabidopsis

halleri (the only Arabidopsis species adapted to metal-

contaminated soils and displaying high zinc and cadmium

tolerance and hyper-accumulation capacities) has been

functionally linked to conferring zinc tolerance in studies

with yeast (Saccharomyces cerevisiae) and transgenic

plants (A. thaliana) [180].
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Fig. 7 Blocking of ion channels by defensin-like peptides. a The

common cis-defensin C6 fold is adapted in some scorpion toxins,

along with four toxin-specific structural classes with distinct

additional disulphides. A structurally uncharacterised cis-defensin is

also present in lynx spider venom (spiderine). b The trans-defensin

fold has been recruited to toxic function such as crotamine in snakes,

OvDLP from platypus and helofensin from bearded lizards. The

anemone fold is also used in sea anemone neurotoxins. c Comparison

of the C6 defensin fold with different functions. Toxins contain a

conserved KCuN motif, whereas antimicrobial defensins contain the

broader fCxx motif at the same location, in addition to a large,

flexible loop (u = hydrophobe, f = hydrophile). d Charybdotoxin

binds to the tetrameric Kv channel (white surface) and inserts a lysine

residue into the first of the channel’s four K? binding sites, blocking

the transport of K? ions (blue spheres) through the cell membrane

(blue) (PDB:4JTA) [93]
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Anticancer activity

Several defensins from both superfamilies have specific

cytotoxic anti-proliferative activities on cancer cell lines as

well as solid and haematological tumours, and have mini-

mal effects on healthy cells [181–183]. Examples include

human a-defensins HNP-1 to HNP-3 [184, 185], their

rabbit orthologues NP-1 to NP-3 [184], human b-defensin

HBD-1 and HBD-3 [127, 186], frog defensin brevinin-2

[187] and the plant cis-defensins NaD1 [94] and TPP3

[101]. They are cytotoxic to several cancer cell lines such

as Raji and WIL-2 (lymphoma), L1210 and Jurkat (leu-

kaemia), human HeLa (cervical carcinoma) and MCF-7

(breast carcinoma) and do so via direct membrane disrup-

tion and cell lysis [127, 184] or DNA damage [188].

Greater activity towards cancerous over healthy cells is

likely to be due, in part, to an increase in affinity for the

dysregulated tumour cell plasma membranes. The changes

to the membrane include an increase in negatively charged

phospholipids [189, 190] and glycoproteins [191, 192] in

the outer leaflet, as well as increased surface area and

fluidity [193, 194].

In contrast, murine b-defensins and human HBD-2 exert

indirect anticancer activity via chemotactic and

immunoadjuvant activities that promote adaptive immune

responses [195–197]. Furthermore, HBD-3 and HNP-1, 2

and 3 additionally exert inhibitory effects on metastasis and

angiogenesis [198–200]. These activities may be physio-

logically relevant in mammalian defensins, but are

certainly a promiscuous side-activity in plant defensins,

and reflect the propensity of antimicrobial defensins to

interact with cell membrane targets.

Causes and significance of convergence

Convergent evolution occurs when similar selection pres-

sures coincide with biophysical constraints that favour only

a small number of accessible, adaptive solutions within a

fitness landscape. In such cases, selection funnels evolu-

tionary lineages towards similar solutions in that fitness

landscape [201, 202]. Convergent evolution has been

widely described for a range of biological phenomena:

from physiology and behaviour to gene organisation and

recruitment; however, examples at the protein level are rare

[201–203].

Convergent evolution of specific sequences or structural

folds is less common than functions, since equivalent

functions can typically be achieved by different structural

folds, and equivalent structures can be formed by many

different sequences [204]. For example, the ability to

cleave peptide bonds by a variety of chemical mechanisms

has convergently evolved in the different classes of pro-

teases. Indeed, even the same mechanism of covalent

proteolysis using the same catalytic triad geometry has

evolved independently at least 24 times in distinct super-

families of serine and cysteine proteases [205]. Sequence

convergence has also occurred in the transmembrane (TM)

helix of the mitochondrial import receptor subunit TOM20.

The plant and fungal analogues have evolved the same

sequence motif, but in reverse order, as the TM helix

passes though the membrane in opposite directions in the

Inhibitory loop ba

Inhibitory loop

c

Anemone fold
(4X0N)

C8 fold
(1JXC)

Fig. 8 Enzyme inhibition by defensin-like peptides. a The C8 cis-

defensins fold has been adapted to enzyme inhibitory function in the

Arabidopsis thaliana trypsin inhibitor (ATT) (PDB:1JXC) [11], and

b the trans-defensins contain an a-amylase inhibitor, helianthamide,

from sea anemones (PDB:4X0N) [12]. Inhibitory loop highlighted in

green (putative for ATT) [11]. c The enzyme a-amylase (white

surface) uses an aspartate-glutamate dyad in its active site for

hydrolysis (green), which is competitively inhibited by the bound

helianthamide (PDB:4X0N)
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different analogues [206]. Similarly, sequence convergence

of linear motif peptides in pathogens is driven by selection

to mimic their host’s sequences and so bind host targets

and disrupt cellular processes [207]. Finally, the conver-

gent evolution of particularly favourable protein folds is

thought to be extremely rare, and possible examples (such

as the b-barrel fold) are highly contentious [206, 208, 209].

The extent of convergence between the cis- and trans-

defensins is, therefore, particularly remarkable and derives

from several intrinsic constraints of fold and function.

First, the structures of small cysteine-rich proteins (CRPs)

are freed from the requirements of a hydrophobic core, but

have additional packing constraints when secondary

structural elements are forced into close proximity. Second,

the activities of the defensins dictate additional biophysical

requirements that further constrain functional structures.

Yet there are simultaneous evolutionary pressures that

favour very high sequence divergence within these con-

straints, largely driven by specialisation to different targets

and subsequent co-evolution with those targets [210].

The constraints of small CRPs impose a limited number

of viable secondary structure orientations and disulphide

topologies [211–213]. Consequently, similar CRP struc-

tures can be converged upon by evolution whereas larger

globular proteins remain more diverse. This constraint is

strong enough that additional unrelated proteins such as the

MARCO receptor have also converged on similar folds

[13].

The use of a compact, disulphide-stabilised core to

display a set of cationic loops has, therefore, proven to be

remarkably evolvable for a number of functions. Both the

cis- and trans-defensin superfamilies independently

evolved innate immune functions, using positively charged

loops for membrane disruption. Analogous loops can

interact with negatively charged lipid head groups in a

‘cationic grip’ formed by protein dimers. Each superfamily

also contains members that have evolved to bind cell sur-

face receptors to perform a variety of signalling roles, some

immune related, some as divergent as fertilisation. Simi-

larly, on multiple occasions, both folds have been recruited

to a toxic function using exposed positive residues for ion

channel blocking. The two defensin superfamilies, there-

fore, represent one of the most extensive occurrences of

convergent evolution and demonstrate how evolution can

favour extremely similar solutions to a selection pressure

even when run independently.

Concluding remarks

In summary, this review provides insights into the unique

features of the two defensin superfamilies, which arose by

extensive convergent evolution from independent origins.

It highlights how the defensins represent a thorough case

study in the evolvability of small CRP scaffolds, which is

unlike that for more commonly studied globular proteins

[214]. This recent work establishes the foundation for

understanding evolutionary relatedness in defensins, and

highlights how the elaboration of stable scaffolds has

enabled both superfamilies to span an uncommonly wide

array of biological roles [13].

With new sequences and structures being described at an

ever-increasing rate, it is inevitable that additional defensin

structural classes will be discovered. The integration of

evolutionary, structural and functional data will inform

design principles to enable the engineering of improved or

novel variants for therapeutic and agricultural applications.
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