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Abstract Blood vessel regression is an essential process for

ensuring blood vessel networks function at optimal effi-

ciency and for matching blood supply to the metabolic needs

of tissues as they change over time. Angiogenesis is the

major mechanism by which new blood vessels are produced,

but the vessel growth associated with angiogenesis must be

complemented by remodeling and maturation events

including the removal of redundant vessel segments and cells

to fashion the newly forming vasculature into an efficient,

hierarchical network. This review will summarize recent

findings on the role that endothelial cell apoptosis plays in

vascular remodeling during angiogenesis and in vessel

regression more generally.
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Abbreviations

EC Endothelial cell

OIR Oxygen-induced retinopathy

DISC Death-inducing signaling complex

TUNEL Terminal deoxynucleotidyl transferase dUTP

nick end labeling

Introduction

Blood vessels are tubular structures composed of an inner

lining of endothelial cells (ECs) surrounded by perivascu-

lar support cells (pericytes and smooth muscle) and layers

of basement membrane [1]. The blood vasculature supports

the metabolic needs of tissues by supplying oxygen and

nutrients and removing waste products to facilitate tissue

growth and maintain homeostasis. As tissues grow, so too

does their demand for oxygen and nutrients, requiring a

corresponding expansion of the vascular network to supply

this need. Angiogenesis, defined as the sprouting growth of

new vessels from pre-existing vessels [2–5], is the major

mechanism responsible for the growth and expansion of

blood vessel networks. Angiogenesis begins in utero [6]

and continues into post-natal life during normal tissue

growth. However, it can also be activated pathologically,

contributing to diseases such as cancer, wet age-related

macular degeneration, and diabetic retinopathy. Vessel

network growth by angiogenesis is an imperfect process, as

it generates excessive numbers of vessels that do not

resemble a mature, hierarchical network. Achieving such

hierarchy requires the selective regression of superfluous

vessels (termed ‘pruning’), as well as the removal of

excessive cells.

While vessel regression in the context of angiogenesis is

thought to improve the functionality of the network, it can

also serve to contract vessel networks as the metabolic

demand of the tissue drops. For example, extensive vessel

regression occurs in the corpus luteum during luteolysis [7]
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and the mammary gland during post-lactation involution

[8]. Vessel regression can also remove vessel networks in

their entirety. A particularly well-studied example of this is

the hyaloid vasculature: a transient vessel network in the

eye vitreous that is necessary for eye development, but is

made redundant and undergoes regression when the retina

becomes vascularized [9, 10]. In addition to these physio-

logical examples, vessel regression can also be induced by

stress stimuli. For example, wide-spread vessel regression,

known as vaso-obliteration, occurs in the central retina of

neonates exposed to hyperoxia in an animal model for

retinopathy of prematurity [11], and neutralization of the

survival-promoting, pro-angiogenic cytokine vascular

endothelial growth factor (VEGF)-A, induces vessel

regression in tumors and some normal tissues [12–14].

Vessel regression is also observed in several organs of

diabetic patients, such as in the eye as a precursor to pro-

liferative retinopathy and the kidney preceding

nephropathy.

Apoptosis is a programmed form of cell death that

contributes to tissue remodeling during development

through the removal of redundant cells [15]. EC apoptosis

has been reported in numerous examples of vessel ablation

including hyaloid vessel regression [9], hyperoxia-induced

retinal vaso-obliteration [16], mammary gland involution

[8], and vessel regression following VEGF-A inhibition

[13, 17, 18]. The importance of apoptosis to vessel

regression in these cases is supported by studies showing

that hyaloid regression [19–22], retinal vaso-obliteration

[19], and the tumor growth-suppressing effects of VEGF-A

neutralization [23] are all inhibited in mice lacking genes

essential for apoptosis. EC apoptosis is also present during

angiogenic vessel growth, both in vessel segments being

pruned as part of the normal remodeling process, as well as

in vessels not displaying overt signs of regression [20].

While the role of apoptosis in the examples of vessel

ablation outlined above is well established, its contribution

to the angiogenic process has until recently remained less

so. Here, we review the role of EC apoptosis in angio-

genesis as well as vessel regression more generally, with a

focus on recent in vivo studies.

Angiogenesis

The growth of new vessels by sprouting angiogenesis is a

multi-step process that can be broadly divided into two

major processes: growth and maturation. The molecular

regulation of sprouting angiogenesis and the accompanying

cellular behavior have been the subject of numerous recent

reviews and will not be covered in detail here [2–5].

During the growth phase, new vessel sprouts emerge from

the existing vessels in response to VEGF-A [2]. These

sprouts are led by a specialized EC type termed the ‘tip

cell’, a highly migratory cell type that extends multiple

filopodia and is thought to direct the migration of the sprout

by sensing guidance cues [24–26]. Trailing the tip cells are

the so-called ‘stalk cells’, which proliferate and contribute

new cells to the growing sprout. Tip and stalk cell identity

is dynamic, allowing for constant competition between ECs

for the tip cell position. This competitive behavior has been

hypothesized to ensure that migration is continually

directed toward increasing concentrations of VEGF-A [27].

Vessel sprouts are blind-ended, but establish perfused

vessel segments by anastomosing with other sprouts or

vessels and subsequently forming a continuous lumen with

them [5].

While sprouting angiogenesis is very effective at gen-

erating new vessels, the network that it initially produces is

immature and requires maturation and remodeling events

to transform it into a network with optimal, hierarchical

structure. This process involves the selective removal of

some vessels by pruning and the stabilization and matu-

ration of others [5, 28, 29]. Vessel stabilization and

maturation occurs through the deposition of extracellular

matrix around the vessel and the recruitment of perivas-

cular support cells such as pericytes. Pericytes stabilize

vessels by secreting angiopoietin-1 (ANG1) which acti-

vates the TIE2 receptor on ECs, tightening junctions and

reducing leakiness [30]; however, in some organs, peri-

cytes can regulate ANG/TIE signaling in ECs independent

of ANG1 secretion [31]. While the mechanisms that

determine which vessel segments will regress and which

will be stabilized remains poorly understood, it appears to

be driven largely by hemodynamic cues, such that vessel

segments experiencing low blood flow shear relative to

their neighbors will be preferentially selected for regres-

sion [32, 33]. In addition to the removal of excessive vessel

segments, extensive cellular rearrangements and a con-

current reduction in overall EC density also occur during

angiogenic vessel remodeling [20, 34].

Much of our knowledge of the growth and maturation

phases of angiogenesis in mammals has come from the

study of the neonatal mouse retina. Vascularization of the

mouse retina occurs entirely post-natally through sprouting

angiogenesis in response to tissue hypoxia. Vessel sprouts

emerge from the optic nerve head at the center of the retina

at birth, and then expand radially, reaching the periphery of

the retina around post-natal day (P)8 [35]. During retina

angiogenesis, EC sprouting and proliferation occur at the

leading edge of the growing network, while vessel

remodeling and maturation occur more centrally. This

division is not absolute, however, as EC proliferation also

occurs in and around veins in the central portion of the

retina [34], while vessel pruning occurs throughout the

network [32]. The presence of EC apoptosis during retina

angiogenesis is well documented [20, 32, 36, 37]. The
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distribution of apoptotic ECs within the newly forming

vascular network changes over the course of the angiogenic

response. While it is initially clustered around remodeling

arteries, away from the proliferative regions of the vein and

sprouting front, it becomes more uniformly distributed over

time as the vessels shift away from proliferation and

growth, but when remodeling and maturation processes are

still continuing [20].

The retina is an attractive model for studying angio-

genesis because of its significance to human health. Under-

development or inappropriate re-activation of angiogenesis

in the retinal vasculature underlies a wide range of vision-

impairing diseases in humans [38, 39]. Furthermore,

pathological re-activation of angiogenesis (neovascular-

ization) in retinal vessels occurs in diseases such as

proliferative diabetic retinopathy (PDR). This can result in

the abnormal growth of vessels into the vitreous, greatly

increasing the likelihood of vision impairment due to

hemorrhage, scarring, and retinal detachment. Intravitreal

neovascularization also occurs in retinopathy of prematu-

rity, which can afflict pre-term infants of low birth-weight.

This can be recapitulated in mice using the oxygen-induced

retinopathy (OIR) model [11]. The OIR model is particu-

larly relevant to the study of EC apoptosis and vessel

regression. In this model, mice are reared briefly in a

hyperoxic environment, which results in vaso-obliteration

in the central retina. Upon return to normal air, the avas-

cular central retina becomes hypoxic [40], triggering the

over-production of pro-angiogenic cytokines such as

VEGF-A [41] and causing the misdirected growth of ves-

sels into the vitreous [42]. This model is relevant to the

study of apoptosis and vessel regression, because extensive

EC apoptosis accounts for the initial hyperoxia-induced

vaso-obliteration [16, 19, 43], and the neovascular lesions

undergo spontaneous regression over time [35]. Similar to

the OIR model of ischemia-induced retinopathy, PDR is

preceded by retinal capillary non-perfusion that is associ-

ated with increased EC and pericyte apoptosis [44]. This

capillary loss presumably creates areas of focal ischemia

that result in the abnormal production of pro-angiogenic

cytokines including VEGF-A, driving neovascularization

[45].

Molecular regulation of apoptosis

Two separate pathways control apoptosis: one is regulated

by BCL2 family proteins and the other by the so-called

‘death receptors’. Both converge on the activation of cas-

pases, intracellular proteases normally present in the cell as

inactive zymogens. A cascade of caspases are activated

during apoptosis, starting with initiator caspases (e.g.,

caspases 8 and 9) that in turn cleave and activate down-

stream effector caspases (e.g., caspases 3 and 7) which go

on to cleave hundreds of target proteins and activate

DNases, thereby demolishing the cell [46].

The BCL2-regulated apoptosis pathway

The BCL2-regulated pathway (also known as the ‘intrinsic’

or mitochondrial pathway) removes excess cells during

development, but is also activated in response to cellular

damage or stress. Mice in which the BCL2 pathway of

apoptosis has been blocked show developmental defects

including persistent interdigital webbing and accumulation

of excess hematopoietic and neuronal cells [47]. Cells

lacking the BCL2 apoptosis pathway are also resistant to a

range of cellular stresses such as exposure to DNA dam-

aging agents, ER stress, and withdrawal of trophic factor

support [47, 48]. The BCL2 family proteins are related by

the presence of short segments of sequence homology

referred to as the BCL2-homology (BH) regions. These

proteins are divided into three sub-families (Fig. 1). BCL2

tBID

BAX/BAK
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Cyt C

caspase 9

caspase 3
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Apoptotic Stimuli

BH3-only 
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Fig. 1 Schematic overview of the BCL2-regulated and death recep-

tor-regulated apoptosis pathways. In the BCL2 pathway, interactions

between opposing factions of BCL2 family proteins (pro-apoptotic

BH3-only sub-family proteins and pro-survival BCL2 sub-family

proteins) determine whether the effector sub-family proteins BAK

and BAX become activated. Activation of BAK and BAX results in

mitochondrial permeability and release of apoptogenic factors such as

cytochrome C, which, in turn, leads to activation of the caspase

cascade via caspase 9. In the extrinsic pathway, death receptor-ligand

engagement by their cognate receptor leads to activation of the

caspase cascade via caspase 8. In some cell types, caspase 8 cleaves

the BH3-only protein BID, yielding its active, truncated form (tBID)

that can activate BAX and BAK
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is the prototypic member of the pro-survival sub-family,

which also includes BCLxL, MCL1, BCLW, and A1. The

other two sub-families are pro-apoptotic. The first of these,

the BH3-only sub-family, is so-named because its members

share only the BH3-region in common. Its members (BIM,

BID, BAD, BIK, BMF, HRK, PUMA, and noxa) are reg-

ulated by apoptotic stimuli and initiate apoptosis via the

BCL2 pathway. BAX and BAK (and possibly BOK) make

up the other pro-apoptotic sub-family, and are responsible

for the mitochondrial damage that commits a cell to

apoptotic death. Interactions between the three BCL2 sub-

families determine whether BAX and BAK become acti-

vated (Fig. 1). Pro-survival BCL2 family proteins inhibit

cell death by preventing BH3-only proteins from binding to

and activating BAX and BAK [49], and by directly binding

to and inhibiting the activated forms of BAX and BAK

[50]. There is selective affinity of BH3-only proteins for

other BCL2 family members. While BIM, tBID, and

PUMA appear to have affinity for all pro-survival BCL2

family proteins, others, such as BAD and noxa, bind only a

limited subset [51–53]. Furthermore, only some BH3-only

proteins (e.g., BIM and tBID) can directly bind to and

activate BAX and BAK, thus are referred to as ‘activator’

BH3-only proteins [49]. Other BH3-only proteins displace

the activator BH3-only proteins from the pro-survival

proteins, thus freeing them to bind and activate BAX and

BAK [49]. Once activated, BAX and BAK form oligomers

at the outer mitochondrial membrane, which, through an

ill-defined mechanism, permeabilize the mitochondria.

This causes the release of apoptogenic factors such as

cytochrome c and others that trigger the activation of the

initiator caspase, caspase 9, and the subsequent caspase

cascade [54].

Death receptor-regulated apoptosis

The death receptor-mediated apoptosis pathway (otherwise

known as the ‘extrinsic’ pathway) is particularly important

in the adaptive immune system for killing infected cells

and to prevent auto-immunity and tumorigenesis [55].

Apoptosis via this pathway is triggered when a death

receptor on the surface of a cell is engaged by its cognate

death ligand. Death receptors are a subset of the tumor

necrosis factor (TNF) superfamily that are defined by the

presence of a cytoplasmic death domain. These include Fas

(CD95), TNFR1, death receptor (DR)3, and the TRAIL

receptors DR4 and DR5 [56]. Their respective ligands are

FasL, TNF, Apo3L, and TRAIL/Apo2L [56]. Ligand

engagement of death receptors results in the recruitment of

a ‘‘death-inducing signaling complex’’ (DISC) via their

death domains [57]. The DISC activates the initiator cas-

pase, caspase 8, which, in turn, activates the caspase

cascade. In certain cell types, known as ‘‘type II’’ cells, the

apoptotic response also requires caspase 8-mediated

cleavage of the BH3 only protein BID, to produce its

activated form, tBID, a direct activator of BAX and BAK,

and thus the mitochondrial apoptosis pathway [58–60].

Therefore, while the BCL2 and death receptor apoptosis

pathways generally act separately, type II cells require

cross-talk between the two.

Death receptors do not solely transduce apoptotic sig-

nals. TNFR1, TRAIL, and FAS receptors can activate NF-

jB and MAPK signaling pathways, leading to the expres-

sion of genes involved in inflammation, proliferation, and

survival [55, 61, 62]. Under the right conditions (which can

include inhibition of caspase 8), death receptors can also

trigger necroptosis, a caspase-independent form of pro-

grammed necrosis [63]. Genetic inactivation of caspase 8

leads to embryonic lethality from cardiovascular defects

[64]. These are likely caused by activation of necroptosis

as co-deletion of the necroptosis pathway proteins RIPK3

or MLKL rescues the caspase 8 lethal phenotype [65–67].

This phenotype appears to be EC-specific as it is recapit-

ulated when caspase 8 is deleted in endothelium using

Tie1-cre [68].

Pathways regulating endothelial cell survival

and death

Factors modulating endothelial cell survival

Pro-angiogenic growth factors promote EC survival (Fig. 2).

VEGF-A promotes EC survival via activation of PI3K/AKT

signaling [69–72]. In vivo, exogenous VEGF-A can prevent

EC apoptosis [16, 73, 74], whereas blocking its activity

causes EC apoptosis [13, 17, 18]. VEGF-A can be produced

by ECs themselves and this autocrine VEGF-A production is

believed to promote EC survival through intracellular sig-

naling [75]. However, whereas signaling by extracellular

VEGF-A prevents apoptotic cell death, intracellular VEGF-

A signaling regulates autophagic cell death [76].

The ANG/TIE signaling axis is another important reg-

ulator of angiogenesis that also impinges on EC survival. It

consists of two ligands (ANG1 and 2) and two receptors

(TIE2 and the orphan receptor TIE1). ANG1 activates the

TIE2 receptor and regulates both angiogenesis and vessel

maturation, whereas ANG2 is a context-specific agonist or

antagonist of TIE2 [30]. ANG1 promotes EC survival via

activation of the PI3K/AKT pathway [77, 78]. Both the

TIE1 and TIE2 receptors appear necessary to promote EC

survival in cells that lose survival stimuli such as serum

support or fluid shear [79]. While both TIE1 and TIE2 are

required for the survival signal, deletion of TIE2 in qui-

escent adult vessels does not affect vascular integrity or

stability, at least in the retina, suggesting that it is not

required for EC survival (or barrier integrity) in all vessels
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[31]. ANG2, by contrast, is frequently expressed at sites of

vessel remodeling (e.g.: hyaloid vessel regression or lute-

olysis) [29] and is required to induce hyaloid vessel

regression by activating EC apoptosis [80, 81]. ANG2 is

not required, however, for hyperoxic vaso-obliteration of

neonatal retinal vessels [82], and thus, its role appears

context-specific.

In addition to its other roles in the vasculature such as

vasodilation and suppression of inflammation, nitric oxide

(NO) produced in ECs by endothelial nitric oxide synthase

(eNOS) can prevent EC apoptosis caused by a range of

stimuli [83]. NO directly inhibits caspase activation

through S-nitrosylation of the active site of caspases,

activation of ERK1/2, suppression of JNK, and upregula-

tion of BCL2 [83, 84]. eNOS is activated by AKT in

response to a range of stimuli including shear stress [85],

VEGF-A [86], and sphingosine 1-phosphate (S1P). S1P,

via its G-protein-coupled receptors SIPR1 (and to a lesser

extent S1PR3) activates eNOS via AKT in a calcium-de-

pendent manner to promote EC survival [87, 88]. An S1P

receptor agonist delays apoptosis in ECs following serum

starvation by upregulating the expression of pro-survival

MCL1 and delaying the induction of BIM [89]. S1P and

other lysophospholipids are present in high-density

lipoprotein complexes and they have been proposed to

impart the anti-apoptotic activity of HDL on ECs via

G-protein-coupled receptor activation of eNOS via AKT

[90]. Loss of S1PR1 in embryos results in EC apoptosis;

however, this is subsequent to other vascular abnormalities

and loss in post-natal retinal vasculature resulted in a

hyper-sprouting phenotype with no obvious evidence for

impaired EC survival [91], and thus, the regulation of EC

survival is likely secondary to other roles for S1P in vivo.

Other G-protein-coupled receptors contribute to EC

survival. Activation of protease-activated receptor 1

(PAR1) by activated protein C prevents EC apoptosis in

response to high glucose by preventing the downregulation

of BCL2 and the translocation of BAX to mitochondria

[92]. Kaposi sarcoma is a malignancy of the endothelium

caused by Kaposi sarcoma-associated herpesvirus (KSHV)

[93]. A key molecule in the pathogenesis of Kaposi sar-

coma is a G-protein-coupled receptor encoded by the virus

(referred to as KSHV-GPCR), which has been shown to

promote the survival of serum deprived ECs through acti-

vation of PI3K/AKT signaling [94].

Other factors reported to promote EC survival include

erythropoietin which acts via PI3K/AKT (and MEK/ERK)

activation [95], FGF2 [72, 96, 97], and both extracellular

matrix and cell–cell contacts by ECs [98]. In contrast,

endogenous angiogenesis inhibitors (thrombospondin-1,

endostatin, and angiostatin) have been reported to induce

EC apoptosis [98].

Blood flow-mediated endothelial cell survival

Laminar shear stress imparted by unidirectional blood flow

is an important stimulus for shaping vascular networks for

maximal flow efficiency, which suppresses inflammation

(such as in atherosclerosis) and promotes EC survival [99].

A range of endothelial cell-surface receptors can sense

shear stress, including integrins, receptor tyrosine kinases,

G-protein-coupled receptors, and intercellular junction

proteins [100]. Blood flow shear regulates EC survival

through AKT signaling, which, in turn, upregulates eNOS

[85, 101] (Fig. 2). Ligand-independent activation of

VEGFR2 occurs in response to shear stress, resulting in

activation of PI3K/AKT and eNOS by forming a complex

with VE-cadherin and beta-catenin [102, 103]. The MAP
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Fig. 2 Overview of selected

endothelial cell survival

signaling pathways. EC survival

is regulated via multiple

signaling pathways, including

growth factor receptor tyrosine

kinases, G-protein coupled

receptors, and mechanical

forces, such as laminar blood

flow shear stress. See main text

for details
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kinase ERK5 is activated in ECs by laminar blood flow

shear and promotes EC survival and anti-inflammatory

responses [104, 105]. ERK5 upregulates eNOS via the

flow-responsive transcription factor Kruppel-like factor 2

(KLF2) [104]. KLF2 also modulates the ANG/TIE axis by

upregulating TIE2 but downregulating ANG2 in response

to flow [79, 104]. This may enhance ANG1/TIE2 survival

signaling under laminar flow conditions, but shear stress

can also promote EC survival by directly activating TIE2,

thereby triggering activation of the PI3K/AKT pathway

[106]. TIE1 is upregulated under conditions of low flow,

and during angiogenesis, this has been proposed to promote

EC survival in vessels undergoing angiogenic vessel

pruning (which is associated with reduced blood flow)

through increased expression of TIE2 [79]. Despite its

positive regulation by blood flow shear, deletion of TIE2

from adult quiescent vasculature demonstrates that it is not

continuously required for EC survival by all vessels, at

least in the quiescent state [31]. Similarly, mice lacking

ERK5 specifically in the quiescent endothelium survive

normally and do not show elevated levels of EC apoptosis,

suggesting that ERK5 may not be required for vascular

maintenance under steady-state conditions [107]. On

challenge, however, ERK5 mice have increased

atherosclerotic lesion formation demonstrating an impor-

tant role for ERK5 in protecting against atherosclerosis

[107]; however, the extent to which this depends on its

anti-apoptotic function as opposed to its anti-inflammatory

role is not clear.

Pericyte regulation of endothelial cell survival

In addition to their role in promoting vascular stability

and integrity, pericytes can promote EC viability through

the production of the pro-survival cytokines ANG1 [30]

and VEGF-A [108]. A protective role for pericytes was

suggested by early studies, which showed that the level

of pericyte investment determined retinal vessel sensi-

tivity to hyperoxia-induced regression [109]. However,

extensive studies using more specific markers for peri-

cytes have since shown that all retinal vessels are

covered by pericytes, including those that are sensitive

to hyperoxia-induced apoptosis [110]. Nonetheless, EC

apoptosis during retina angiogenesis increases dramati-

cally in the absence of pericytes [31], and pericyte-

specific deletion of the BH3-only gene Bim leads to an

increase in EC number in retinal vessels, likely due to

increased pericyte numbers [111]. In the retina, pericytes

promote TIE2 signaling, which, in turn, suppresses

FOXO1 activation [31]. While FOXOs are transcrip-

tional inducers of apoptosis, FOXO1 upregulation is

unlikely to be the cause of increased EC apoptosis

observed in the absence of pericytes, because the

expression of constitutively active FOXO1 in ECs

in vivo does not cause increased EC apoptosis [112].

Loss of pericytes causes significant vascular abnormali-

ties in the angiogenic retina and the temporal sequence

of these events and EC apoptosis needs to be determined

to better understand the relationship between pericytes

and EC survival in this context [31]. While pericytes are

typically regarded as being a major source of ANG1, this

appears not to be the case in the retina, where pericytes

appear instead to promote TIE2 signaling by regulating

the expression of angiopoietin receptors on the surface

of ECs [31]. The sensitivity of tumor-associated ECs to

apoptosis following VEGF-A inhibition has also been

suggested to depend on pericyte coverage [113]. How-

ever, tumors grown in mice deficient in pericytes did not

show enhanced sensitivity to VEGF-A inhibition [114]

and pericyte coverage does not determine the sensitivity

of normal blood vessels to VEGF-A inhibitors [14].

Pericytes have also been found to promote EC apoptosis

in some contexts. In hyaloid vessels, pericytes produce

ANG2, which reduces pro-survival ANG1/TIE2 signaling

on hyaloid ECs [81]. During retina angiogenesis, pericytes

have been proposed to promote apoptotic vessel regression

through the production of endosialin [115]; however, the

increased vessel density reported in endosialin-/- mice

needs to be reconciled with the reduced vessel density seen

in the absence of pericytes themselves [31] and the lack of

a vessel regression defect in EC-apoptosis resistant mice

[20].

BCL2-pathway regulation of endothelial cell apoptosis

There is strong evidence that the BCL2 pathway regulates

EC survival during normal angiogenesis and vessel

regression. The BH3-only protein BIM is an essential ini-

tiator of EC apoptosis, consistent with its ability to bind to

all pro-survival BCL2 family proteins. BIM is required for

hyaloid vessel regression [19, 21], tumor-associated EC

apoptosis in response to VEGF-A inhibition [23], and EC

apoptosis during retina angiogenesis [19, 21, 111].

Hyperoxia-induced vaso-obliteration of central retina ves-

sels is also prevented in Bim-/- mice [19], but interestingly

not in EC- or pericyte-specific Bim mutants, suggesting that

death of several cell types in the neurovascular unit may

contribute to overall vessel regression in this model [111].

While in vitro studies have suggested that FOXO3 (a

negatively regulated target of PI3K/AKT signaling) pro-

motes the expression of Bim in ECs [116], retina EC

apoptosis was not altered in Foxo3-/- mice [21]. Redun-

dancy with other FOXO family members is unlikely as

retina EC apoptosis was also not affected in mice in which

the FOXO binding sites were mutated in the BIM promoter

[21], or in mice where ECs expressed a constitutively
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nuclear FOXO1 [112]. These results argue against an

essential requirement for FOXO regulation of BIM during

normal angiogenesis in vivo. Loss of BIM does not protect

against all EC apoptosis, however [19, 21], likely due to

redundancy with other BH3-only proteins. Other BH3-only

proteins expressed in blood vessels in vivo include BIK in

hyaloid endothelium [117] and PUMA in retinal endothe-

lium [118]; however, loss of BIK did not impair hyaloid

vessel regression [117], and PUMA reportedly has an

unusual pro-survival, pro-proliferative role in ECs [118].

Therefore, which BH3-only proteins other than BIM may

be important for EC apoptosis remains unclear. The

importance of the BCL2 pathway to EC apoptosis was

further demonstrated in mice in which ECs were engi-

neered to be apoptosis resistant through genetic

inactivation of the apoptosis effectors BAK and BAX.

These mice were generated through the EC-specific dele-

tion of Bax on an otherwise Bak-/- background (referred

to as Bak-/-BaxEC/EC mice) [20]. EC apoptosis that nor-

mally occurs during retina angiogenesis was completely

blocked in Bak-/-BaxEC/EC mice, while hyaloid vessel

apoptosis and regression was significantly impaired [20].

Endothelial cell survival during angiogenesis depends

on pro-survival BCL2 family proteins

Knockout mouse studies have revealed a diverse range of

cell types and contexts in which individual pro-survival

BCL2 family proteins promote cell survival [119]. Because

ECs are diverse in terms of their identity, function and

environmental context, it is unlikely that a single pro-sur-

vival protein will be responsible for the survival of all ECs

in all circumstances. Recent studies investigating the role

of BCL2 family proteins during angiogenesis have sug-

gested that distinct pro-survival BCL2 family proteins do

indeed have context-specific roles for promoting EC

survival.

MCL1 has been shown to act as a dose-dependent sur-

vival factor for ECs during angiogenesis. EC-specific

deletion of Mcl1 resulted in an increase in EC apoptosis

and a reduction in vessel density during retina angiogenesis

[120]. However, the reduction in vessel density was not a

consequence of increased vessel regression. Instead, the

location of the apoptotic ECs in the mutants likely holds

the key to explaining the reduction in vasculature observed.

In MCL1 mutants, the distribution of apoptotic ECs was

substantially altered, with large numbers of apoptotic ECs

in the proliferative regions of the sprouting front and the

remodeling veins, areas in which EC apoptosis does not

normally occur [120]. There are several ways in which the

ectopic apoptosis in these growth regions may impact on

vessel density. First, MCL1 may be essential for the sur-

vival of proliferating ECs themselves. Second, loss of

MCL1 may reduce the number of ECs available to prolif-

erate. Finally, ectopic apoptosis in the sprouting front could

deplete tip cells, thereby reducing new vessel growth. Tip

cell numbers determine vascular density: over-production

of tip cells results in the growth of excessive vessels [121],

while a deficiency in tip cells results in sparse vasculature

[122].

In vitro studies on the pro-survival effects of VEGF-A

and FGF2 found that they induced the expression of BCL2

in ECs [72, 96, 123, 124]. Mice lacking VE-cadherin are

embryonic lethal, with extensive EC apoptosis attributed to

the downregulation of BCL2 due to reduced PI3K/AKT

signaling by VEGF-A [72]. Furthermore, over-expression

of BCL2 enhances EC survival [96, 123, 124]. While these

data suggest that BCL2 may promote EC survival in

response to angiogenic cues, in vivo data have suggested

that this role may be context-specific. EC-specific deletion

of Bcl2 had no effect on sprouting angiogenesis in the

neonatal retina or on neovascularization in the OIR model,

but it was required for the angiogenic response during

laser-induced choroidal neovascularization [125]. While

BCL2 was not required for vessel growth or EC prolifer-

ation during sprouting angiogenesis, EC-specific BCL2

mutants did show increased EC death and fewer ECs at

later time points when a reduction in overall EC density is

normally occurring [125]. This would suggest that while

BCL2 is dispensable for normal angiogenic vessel growth,

it is required during late-stage vessel maturation and for

certain cases of pathological angiogenesis.

The other members of the pro-survival sub-family

(BCLW, A1, and BCLxL) have each been implicated in EC

survival; however, detailed investigation into their func-

tional requirement during angiogenesis in vivo has to date

been lacking. BCLW is reportedly increased in ECs by

‘intracrine’ VEGF-A signaling [126], although the signifi-

cance of this is not immediately clear given that Bclw-/-

mice are viable and healthy well into adulthood [127],

whereas EC-specific VEGF-A mutants are not [75]. Fur-

thermore, ‘intracrine’ VEGF-A promotes EC survival by

preventing autophagic cell death, not apoptosis [76],

whereas the inhibition of pro-survival BCL2 proteins only

triggers autophagy as a downstream consequence of

apoptosis induction [128]. A1 is upregulated in ECs by

VEGF-A and the inflammatory cytokines TNFa and IL-1,

and can inhibit apoptosis caused by TNFa stimulation

when over-expressed [123, 129, 130]. Investigation of A1’s

roles in vivo has been hampered by gene duplication events

and only recently has a mouse lacking all isoforms of A1

been generated and shown to be viable [131]. BCLxL is

induced by EPO via PI3K/AKT [95], but not by VEGF-A,

which also promotes EC survival via activation of PI3K/

AKT [123, 124]. BCLxL is also downregulated concurrent

with increased EC apoptosis in Ets1/2 double knockouts

Endothelial cell apoptosis in angiogenesis and vessel regression 4393

123



in vivo [132], and by Angiotensin-II in vitro [133]. Bclx-/-

mice are embryonic lethal with neural and hematopoiesis

defects [134]. Thus, while there is evidence for these pro-

survival proteins in EC survival, their role during angio-

genesis has yet to be determined.

The data for pro-survival BCL2 family proteins to date

suggest a model in which MCL1 is required for the survival

of ECs during the growth phase of angiogenesis, particu-

larly in those regions of the vasculature where proliferation

and sprouting are occurring, whereas BCL2 appears to be

required for EC survival during the later stages of vessel

maturation. Other cell types, particularly lymphocytes, are

known to switch their dependence on pro-survival proteins

depending on their stage of development or maturation

[135–137] and the above studies suggest that ECs will do

the same.

Death receptor regulation of endothelial cell apoptosis

Death receptors have also been investigated for their

involvement in angiogenesis and blood vessel regression.

Studies in the rat using FasL-neutralizing antibodies have

suggested that Fas-dependent EC apoptosis was required

for vessel pruning during normal retina angiogenesis and

hyperoxia-induced retinal vaso-obliteration [138]. In mice,

however, both retina vessel development and vaso-oblit-

eration were reportedly normal in Fasl loss of function

mutants (Faslgld/gld) [139, 140]. Despite having apparently

normal vessel regression, Faslgld/gld mice did show an

increase in neovascular tuft formation and fewer TUNEL?

cells within the tufts in the OIR model, suggesting that Fas

signaling may limit neovascularization by inducing EC

death [139, 140]. Laser-induced choroidal neovasculariza-

tion was also increased in both Faslgld/gld and Fas mutant

(Faslpr/lpr) mice, again suggesting that Fas-induced EC

death may prevent pathological angiogenesis in the eye

[141].

TRAIL has been reported to either cause EC apoptosis

or promote angiogenic behavior in in vitro assays. These

divergent outcomes have been suggested to depend on the

concentration of TRAIL used, with higher doses favoring

apoptosis [142]. Mice have a single death-inducing TRAIL

receptor, DR5, which is expressed on normal retinal ECs,

OIR-induced neovascular tufts and tumor-associated ECs

in vivo [143, 144]. In vivo administration of cross-linked

TRAIL to tumor-bearing mice caused extensive tumor

hemorrhage with accompanying EC apoptosis [144]. While

Trail-/- mice exhibited a small, transient reduction in the

capillary free area around retinal arteries, they did not show

any impairment in hyperoxia-induced vaso-obliteration

[143]. Trail-/- mice showed increased neovascularization

in the OIR model, along with delayed tuft regression,

suggesting that like Fas, EC apoptosis by DR5 may limit

neovascularization and promote its spontaneous regression

[143].

Mice lacking caspase 8 (on an Mlkl-/- background)

have also been investigated to assess the sum of death

receptor-induced apoptosis on the angiogenic vasculature.

While these mutants showed normal levels of EC apoptosis

in the retina at P5, there was possibly a small reduction at

P6; however, this may have been an indirect consequence

of reduced weight gain in the mutants at this age [20].

Nonetheless, the potential reduction seen at P6 was mini-

mal compared to that seen in Bak-/-BaxEC/EC mice.

Overall, the above studies would suggest that any contri-

bution by death receptors to EC apoptosis during normal

angiogenesis and vessel regression is likely minor by

comparison to mice in which BCL2-pathway apoptosis is

inhibited. Instead, the role appears more directed to

restricting pathological angiogenesis, and given that death

receptors can activate pro-inflammatory signaling path-

ways with the potential to impact pathological

angiogenesis responses, the contribution of EC survival

regulation in this context is not always clear.

Can endothelial cell apoptosis initiate vessel

regression?

Studies of the pupillary membrane that overlies the

developing lens suggested that apoptosis could initiate

vessel regression. In those vessels, dying ECs were

observed to protrude into the vessel lumen obstructing

blood flow, followed by synchronous death of the

remaining ECs in the affected vessel due to the disruption

to blood flow shear [145]. However, while EC apoptosis

occurs in the pupillary membrane vessels, more recent

studies have suggested that it may not be essential for

initiating their regression. Mice with germline deletion of

the apoptosis effectors BAK and BAX do not show per-

sistent pupillary membrane vessels, despite a block in EC

apoptosis [22]. Instead, vessel stretching during growth of

the lens may provide the stimulus for pupillary membrane

vessel retraction [146].

Apoptosis likely initiates vessel regression in the context

of the hyaloid network. Hyaloid vessel regression is

dependent both on macrophage-derived Wnt7b [147] and

ANG2 [81]. Mice lacking Wnt7b or Ang2 have persistent

hyaloids and less EC apoptosis [80, 81, 147]. Consistent

with a role in preventing EC apoptosis, high levels of

retinal VEGF-A can also lead to persistent hyaloids

[148, 149]. Mice in which EC apoptosis is blocked through

genetic inactivation of BAK and BAX contain persistent,

perfused hyaloid vessels [20, 22]. The presence of perfused

hyaloids in these mice raises the possibility that the model

originally proposed in the pupillary membrane vessel

regression of apoptotic EC causing the initial vessel
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blockage may apply in the hyaloid network. However,

definitive proof for this will require live-imaging of hyaloid

regression. While these results strongly suggest that

apoptosis can initiate hyaloid vessel regression, this

requirement may not be absolute as some hyaloid vessel

regression still occurs in Bak-/-BaxEC/EC mice [20].

The role of endothelial cell apoptosis

during angiogenesis

The presence of dying ECs during angiogenesis has been

recognized since the 1960s [150]. While not referred to

specifically as apoptotic death (a term not coined until 1972

[151]), subsequent molecular analysis using methods such

as the detection of activated caspase 3 has confirmed the

presence of apoptosis. However, the role that this plays

during angiogenesis, particularly in regard to vessel prun-

ing, has until recently remained unclear.

Apoptosis during angiogenic vessel pruning

During angiogenic maturation of the retinal vasculature,

characteristic avascular zones form around maturing

arteries. This has been attributed to a reduction in Vegfa

expression around arteries, likely due to the diffusion of

oxygen from arterial blood, causing vessels in this region to

regress [152]. Consistent with this, VEGF-A inhibition or

exposure of pups to increasing levels of oxygen widens the

avascular zone [43, 152]. As hyperoxia causes apoptotic

vaso-obliteration concurrent with reduced VEGF-A

expression [16], the reduction in vessel density around

arteries has similarly been attributed to EC apoptosis [152].

In line with this hypothesis, EC apoptosis in the neonatal

retina is frequently observed in regressing vessels around

maturing arteries [20, 32, 115, 120]. Several mouse

mutants are also consistent with a role for EC apoptosis in

vessel pruning. Reduced EC apoptosis in mice lacking

Endosialin [115] or the BH3-only protein BIM [19] was

associated with increased retinal vessel density. Con-

versely, EC-specific deletion of the angiopoietin receptor

TIE1 [79] or Wnt pathway genes [37, 153] or over-ex-

pression of FGD5 [154] each showed reduced vessel

density correlated with increased EC apoptosis.

However, other lines of evidence do not support a role

for EC apoptosis in angiogenic vessel pruning. No corre-

lation between vessel regression and EC apoptosis could be

found during retina angiogenesis in the rat [36], and while

the majority of apoptotic ECs are found in regressing

vessels during mouse retina angiogenesis [20], only 5% of

all regressing vessels actually contain apoptotic ECs [32].

Although some reports suggested that EC apoptosis was

responsible for the reduced vasculature in Wnt pathway

mutants [37, 153], others have not supported this [155].

The direct correlation between EC apoptosis and vessel

regression reported in many mutants affecting retina

angiogenesis is not always observed. Mice lacking the pro-

survival protein MCL1 in ECs did not show an increase in

vessel regression, despite increases in EC apoptosis to

levels that exceeded that of other mutants [120]. Given that

the genes in those mutants that showed a direct correlation

between apoptosis and regression regulate processes other

than just apoptosis, it seems likely that the disruption of

those functions, not cell survival control, will be respon-

sible for the regression phenotypes observed. In contrast,

MCL1 appears to regulate only apoptosis in ECs [120].

Despite Bim-/- mice having increased retinal vasculature

[19], this may be independent of a reduction in apoptosis as

ECs isolated from these mice show increased migratory

activity [156, 157], and Bim also regulates pericyte num-

bers which, in turn, could influence vascular patterning

[111]. Finally, time-lapse imaging studies in zebrafish have

shown that EC apoptosis is not common during vessel

pruning [33, 158, 159].

Endothelial cell migration, not apoptosis drives angiogenic

vessel pruning

Analysis of retina angiogenesis in the EC apoptosis-resis-

tant Bak-/-BaxEC/EC mice has directly tested whether

apoptosis is required for vessel pruning. Despite the lack of

EC apoptosis in these mice, vessel pruning around arteries

still occurred, albeit with delayed kinetics [20]. In the

capillary plexus region, where apoptosis is infrequent,

blocking apoptosis was not found to have any effect on

vessel pruning [20]. Apoptosis was also found to be largely

dispensable for vessel regression in zebrafish when it was

associated with vessel pruning [158]. These results strongly

argue that apoptosis does not cause vessel regression dur-

ing angiogenic vessel pruning. This is further supported by

the finding that increased EC apoptosis in the MCL1

mutants did not result in an increase in vessel regression, as

would be expected if apoptosis caused vessel regression

[120].

Detailed, time-lapse imaging in a range of vessel beds in

zebrafish has shown that during vessel pruning, ECs

migrate out of regressing vessel segments and into neigh-

boring, perfused vessels, eliminating the need for apoptotic

disposal of ECs [33, 158, 159]. The steps involved in the

dissolution and regression of the vessel segment (i.e., loss

of lumen and disassembly of cell–cell junctions) appear to

be the reverse of those involved in anastomotic vessel

assembly [32, 159]. These studies showed that differences

in blood flow shear between neighboring vessels promoted

the movement of ECs out of the vessel with the lower

shear, leading to its regression [33]. EC migration also

occurs in response to hemodynamic cues during vessel
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remodeling and pruning in the mouse retina [32], with the

sensitivity of ECs to flow being dependent on non-canon-

ical Wnt signaling [155]. In the absence of non-canonical

Wnt signaling, ECs showed a heightened sensitivity to flow

that resulted in premature vessel pruning and a subsequent

reduction in retinal vasculature [155]. Therefore, EC

migration as the mechanism of vessel regression during

angiogenic vessel pruning appears to be highly conserved

both between species and across vessel networks.

Apoptosis removes endothelial cells deprived of blood flow

during vessel regression

Blood flow shear has important survival-promoting effects

on ECs. For example, vessel non-perfusion precedes the

onset of EC apoptosis in mice and rats subjected to

hyperoxia-induced vaso-obliteration [36, 43], and abundant

EC apoptosis occurs in non-perfused hyaloid vessels.

During angiogenic vessel pruning, the failure of ECs to

integrate into adjacent, perfused vessels would be expected

to deprive them of the survival-promoting effects of blood

flow shear, causing them to undergo apoptosis. Indeed, EC

apoptosis in the mouse retina frequently occurs during the

regression of longer vessel segments [32]. These cells

likely die because they fail to relocate into neighboring

vessels where they would receive the protective benefit of

blood flow [32]. EC apoptosis is also observed in vascular

segments that become disconnected from the circulation

due to excessive pruning [36]. Consistent with this, per-

sistent ECs were observed isolated from the circulation in

the retinas of apoptosis-resistant Bak-/-BaxEC/EC mice

[20]. Such cells were also found in the remnant hyaloid

network of Bak-/-BaxEC/EC mice, suggesting a flow-dis-

rupting event that is independent of apoptosis can initiate

the regression of some hyaloid vessel segments, followed

by the apoptotic clearance of the ECs from the flow-dis-

rupted vessel [20]. It appears then that during angiogenic

vessel pruning, EC apoptosis does not initiate the vessel

regression event, and only removes ECs from a minority of

vessels undergoing regression. In those few instances

where EC apoptosis does occur during vessel pruning

(most notably in vessels around arteries), it serves first to

improve the overall efficiency with which vessel pruning

occurs, and second to clear away ECs that become isolated

from the circulation. This would imply that during angio-

genic vessel pruning, EC apoptosis is a consequence of

vessel regression, not a cause.

Causes of endothelial cell apoptosis during angiogenic

vessel pruning

The findings that EC apoptosis does not drive vessel

pruning raises the question of why it is so prominent in the

regressing capillaries and side branches around maturing

arteries. As discussed in the previous section, EC apoptosis

is often found in longer regressing segments in cells that

probably fail to integrate into neighboring, perfused vessels

[32]. As these longer regressing segments are frequently

located around arteries [32], this may be one explanation

for the concentration of EC apoptosis in that area. This

explanation may not explain all EC apoptosis around

arteries, as longer segments are not the only ones that

regress in that region. Another possible cause is the low

level of pro-survival Vegfa expressed around the oxygen-

rich arteries [152]. However, while inhibiting VEGF-A

widens the avascular zone around arteries, it does not cause

wide-spread capillary regression, and, therefore, cannot be

solely responsible for the localized distribution of EC

apoptosis [43]. Based on computer modeling, arterial side

branches in the retina experience higher blood flow

velocity and wall shear than plexus capillaries [32, 160],

which may make the ECs in these vessels particularly

sensitive to the loss of blood flow that occurs during

pruning. In culture, ECs alter their expression of apoptosis

regulators depending on the strength of flow [161]. How-

ever, this also may not fully account for why apoptosis is

focused around arteries as the same computer modeling

suggested that some venous side branches near the central

retina also experience higher blood flow and wall shear

than plexus capillaries [160]. The decision of some arterial

side-branch ECs to undergo apoptosis may prove multi-

factorial. For example, the effect of pruning a high-flow

vessel in a low VEGF-A environment could trigger EC

apoptosis, as the sum of survival-promoting signals drops

below a minimum threshold. Such a threshold would be

less likely to be crossed by ECs located in plexus and

venous regions, either because of higher levels of VEGF-A

or because the ECs are pre-conditioned to a low-flow

environment. The decision of arterial side-branch ECs to

undergo apoptosis during vessel pruning is, therefore,

likely to be complex and may depend on a number of

factors such as extracellular milieu, flow status prior to

regression, and their capacity to successfully migrate into a

protective environment during regression.

Apoptosis reduces endothelial cell density during vessel

maturation

During the later stages of vessel maturation in the retinal

vasculature, the distribution of EC apoptosis becomes more

wide-spread [20]. This occurs concurrently with a reduc-

tion in overall EC density [20, 34]. This reduction in EC

density fails to occur in the apoptosis-resistant Bak-/--

BaxEC/EC mice, leading adult retinal vessels to contain a

higher than normal number of ECs [20]. The increase in

EC density had the consequence of increasing the diameter
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of capillaries, but interestingly, not larger caliber vessels

(radial artery and vein) [20]. Whether the increased vessel

cellularity and capillary diameter has any consequences for

vessel or neural retina function has yet to be determined,

but these findings show that the reduction in EC density

that accompanies vessel maturation requires their active

removal by apoptosis. Survival of ECs during this stage of

maturation may be dependent on the pro-survival activity

of BCL2, as EC apoptosis was increased at this time in

mice lacking BCL2 in ECs [125].

Endothelial cell apoptosis and vessel regression

in diabetes

Diabetes causes endothelial dysfunction and an increased

state of vessel regression and EC apoptosis in complica-

tions such as retinopathy and nephropathy. Diabetes is also

a risk factor for atherosclerosis in which EC apoptosis is

observed due to disturbed flow. During diabetic retinopa-

thy, capillary drop-out is associated with increased EC and

pericyte apoptosis [44]. Pericytes are lost before ECs in

diabetic vessel regression [45], which is preceded by

increased levels of ANG2 and can be reduced in ANG2

mutants [162]. Furthermore, hyperglycemia induces Ang2

expression in ECs [163]. Elegant studies recently showed

that the pericyte loss alone in the mature adult retina is not

sufficient to cause capillary loss or vessel destabilization

[31]. Instead, loss of pericytes is likely permissive for the

progression of diabetic retinopathy when accompanied by

other vascular stresses or insults such as hyperglycemia or

increased VEGF-A found in patients with proliferative

diabetic retinopathy [31, 164]. Endothelial dysfunction and

subsequent loss of vessels is an important contributor to

diabetes pathogenesis in nephropathy [165]. Microvascular

rarefaction has been shown to precede the reduction in

renal function in a rat model of diabetes [166]. Hyper-

glycemia, which is characteristic of diabetes patients, can

trigger EC apoptosis [167–169] and has been shown to

increase the ratio of BAX to BCL2 within HUVECs and

increase cleavage of caspase 3 and apoptosis. VEGF-A and

activated protein C are each able to attenuate hyper-

glycemia-induced EC apoptosis [92, 169]. In accordance

with this, VEGF-A levels were decreased in kidney biop-

sies taken from patients with diabetic nephropathy [170]

and loss of this EC survival factor may be one of the factors

influencing apoptosis of ECs and rarefaction in this disease.

Consistent with this, deletion of VEGF-A in a mouse

model of diabetic nephropathy leads to acceleration of

nephropathy [171]. Similarly, thrombospondin-mediated

production of activated protein C prevents glomerular EC

apoptosis in diabetic mice and activated protein C prevents

EC apoptosis in response to hyperglycemia in vitro [92].

Conclusions and future directions

The recent findings summarized here indicate context-

specific roles for EC apoptosis during vessel remodeling

and regression. While apoptosis is associated with vessel

regression in a range of cases, it has only been shown to be

necessary in cases of vessel ablation. In the context of

angiogenesis, apoptosis removes supernumerary cells from

the network, or occurs as a consequence of vessel regres-

sion, serving to improve the efficiency of the regression

process or to clear away vessel segments and cells that

become isolated from the circulation. It is important to

recognize that this interpretation comes mainly from

analysis of normal angiogenesis in the retina and it is yet to

be established whether it will hold true for vascular

development in other tissues. Furthermore, the precise

contribution of EC apoptosis to stress-induced vessel

regression such as occurs in vascular complications asso-

ciated with diabetes, or disease progression in

atherosclerosis is yet to be fully explored. The limited

existing evidence from apoptosis-resistant animal models

suggests that apoptosis will be required for vessel regres-

sion at least in certain stress-induced contexts, potentially

distinguishing it from the situation of normal angiogenic

remodeling. However, the context-specific role for apop-

tosis in initiating vessel regression along with the diverse

regulatory inputs that govern an EC’s decision to live or die

depending on circumstance means that extrapolations from

one pathological context to another may not be any more

informative than extending observations in developmental

vessel regression to the pathological context in question.

As such, further research is required to fully understand

how apoptosis contributes to pathological vessel regression

on a case by case basis. The recent work on MCL1 and

BCL2 in vivo has demonstrated that pro-survival BCL2

family proteins are required for EC survival during

angiogenesis, in a context-specific manner. These findings

raise numerous questions. Are the other pro-survival BCL2

family proteins important in EC survival? How is the

requirement for particular BCL2 family proteins in distinct

EC subsets regulated? In what pathological contexts are

each required? Are they required for the survival of qui-

escent vasculature, and finally, can this knowledge be

exploited for therapeutic benefit in the treatment of neo-

vascular disease? These questions and others highlight how

much remains to be understood about apoptosis control in

ECs.
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