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Abstract Metabolomics is an analytical technique that
investigates the small biochemical molecules present
within a biological sample isolated from a plant, animal, or
cultured cells. It can be an extremely powerful tool in
elucidating the specific metabolic changes within a bio-
logical system in response to an environmental challenge
such as disease, infection, drugs, or toxins. A historically
difficult step in the metabolomics pipeline is in data
interpretation to a meaningful biological context, for such
high-variability biological samples and in untargeted
metabolomics studies that are hypothesis-generating by
design. One way to achieve stronger biological context of
metabolomic data is via the use of cultured cell models,
particularly for mammalian biological systems. The bene-
fits of in vitro metabolomics include a much greater control
of external variables and no ethical concerns. The current
concerns are with inconsistencies in experimental proce-
dures and level of reporting standards between different
studies. This review discusses some of these discrepancies
between recent studies, such as metabolite extraction and
data normalisation. The aim of this review is to highlight
the importance of a standardised experimental approach to
any cultured cell metabolomics study and suggests an
example procedure fully inclusive of information that
should be disclosed in regard to the cell type/s used and
their culture conditions. Metabolomics of cultured cells has
the potential to uncover previously unknown information
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about cell biology, functions and response mechanisms,
and so the accurate biological interpretation of the data
produced and its ability to be compared to other studies
should be considered vitally important.
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What is metabolomics?

Metabolomics studies frequently state that the metabolome
is a closer reflection of the phenotype of an organism,
tissue or cell than the other ‘omics analyses of proteomics,
transcriptomics and genomics [1-4]. When taking the
‘omics cascade (Fig. 1) into consideration, it is easy to see
why this is a widely accepted view. Within a biological
system the genome, transcriptome and proteome lead into
the many biochemical reactions that occur inside different
compartments within a cell. These chemical reactions that
produce one or more small molecules are important in
maintaining cellular homeostasis and are essential for
metabolism. The small molecules that are shuffled around
the vast network of metabolic pathways are termed
metabolites. There are many thousands of metabolites
within a single-cell-type system, the whole collection of
which is referred to as the metabolome. The composition of
metabolites in the metabolome dictates the status of the
cell’s function directly related to its purpose and response
to its environment. Metabolomics attempts to measure
changes in the metabolome of a given biological system in
response to a challenge to normal cellular homeostasis.
These challenges can be from physiological or infectious
disease, changes in environment, exposure to toxins,
interactions by drugs or other external stressors.
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Fig. 1 The ‘omics cascade.
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and is happening

Metabolomic analyses rely on the latest advances in the
field of separation sciences: nuclear magnetic resonance
(NMR) spectroscopy and mass spectrometry (MS).
Reviews of both techniques are available [5—-10], especially
on the use of MS in metabolomics. The development of
new MS techniques has provided a multitude of different
platforms for the analysis of metabolites in biological
samples, and the use of MS in metabolomics continues to
grow in popularity due to its flexibility of application to
different types of samples, relatively low set-up cost
compared to NMR, robust reproducibility, and extremely
high sensitivity. A search of the literature on the US
National Centre for Biotechnology Information (NCBI)’s
‘PubMed’ citations database (www.ncbi.nlm.nih.gov/
pubmed) with the search terms in “All Fields” defined as
“cell culture OR in vitro AND metabolomics AND mass
spectrometry” resulted in 422 citations listed in the past
decade of 2007-2016 inclusive: 99 citations in the first half
of the decade (years 2007-2011) and 323 citations in the
second half (2012-2016). Figure 2 clearly displays the
increasing popularity of research in this area, especially in
the most recent half of the past decade, and so it is
important to validate the methods currently used by the
many different applications of cell culture metabolomics,
so that results may be compared and meaningfully inter-
preted. This search was inclusive of both targeted or
‘specific monitoring’ and untargeted or ‘scanning’
approaches to sample analysis by MS. Metabolomic studies
can consist of either of these approaches; however, it is the
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untargeted style of analyses that is the most exciting in
terms of discovering ‘biomarkers’ or elucidating metabolic
profiles, especially when used in a well-defined biological
system, such as cultured mammalian cells. This review
focuses on the use of MS-based, untargeted metabolomic
analyses in cell culture studies and the importance of
interpreting biological insights from the vast amounts of
data that are collected.

Biological insights from metabolomics data

Metabolomics is well regarded in the scientific community
for its potential to discover new information or previously
unknown ‘biomarkers’, and provide a huge amount of data
which can be interpreted in many areas of investigation [7].
It is the ability of these data to provide valuable biological
insights that have come into inquiry in recent reviews,
which state that the major current bottleneck in metabo-
lomic data handling is biological interpretation [6, 11, 12].
This is a logical argument when considering the ever-
changing and constantly updated knowledge-bases on
metabolic pathways, intracellular signalling pathways and
the vast network of control mechanisms. It is also impor-
tant to acknowledge that metabolomics is currently unable
to detect every form of every known metabolic interme-
diate involved in all biochemical pathways, from a single
analysis using a single platform. This is a well-documented
issue that has been somewhat accounted for in well-
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designed metabolomic experiments, but the concern of
accurate biological interpretation of data remains. One
suggestion to provide a more streamlined approach to the
interpretation of metabolomic data is to attempt to link the
expected metabolome to the phenotype of the biological
system under investigation, before any metabolomic
experiments and analysis are carried out. Web-based
databases such as  MetaboAnalyst  (http://www.
metaboanalyst.ca/) and the Kyoto Encyclopaedia of
Genes and Genomes (KEGG, http://www.genome.jp/kegg)
are useful tools in exploring metabolic pathways for
comprehensive interpretation of metabolomic data [13].
Untargeted metabolomics studies may expose a group of
metabolites that have unexpectedly changed from the
normal metabolome, and from there they can be further
investigated and the pathways they might be involved in
can be teased apart—but this might not always be the case.
There might not be any vast differences in abundance of
metabolites, but rather subtler changes in accumulation.
Attempting to biologically interpret these subtle changes
can raise many challenging questions. As metabolic path-
ways are highly regulated and controlled via many
different mechanisms, it is widely accepted that a fully
integrative analysis combining metabolomics with tran-
scriptomics and proteomics will provide a fuller
understanding of the processes taking place that result in a
change to the metabolome. There is also acceptance that
any such study would be a substantial investment of
resources and time, and therefore it is reasonable that this
cannot be undertaken with every study with currently

Publication year

available technology. There are several ways to justify the
use of metabolomics-only investigations, primarily to do
with experimental design and careful choice of what type
of sample to analyse [6, 12].

The benefits of untargeted, cultured cell
metabolomics

It is not always possible in metabolomic studies for the
researcher to have strict control over the number and type
of samples that are available for analysis, such as in clinical
or animal studies. One increasingly popular application of
metabolomics, where the samples are more easily con-
trolled and experiments can be more carefully designed
specifically for metabolomic interpretation is the use of
cultured mammalian cells [14, 15]. Using established cell
lines, whether animal or human-sourced, typically has no
ethical concerns which may limit control groups or num-
bers of replicates. There are more opportunities to control
variables in the growth and sampling stages using cell
culture, compared to animal studies or clinical samples.
This feature of cell culture adds strength to metabolomic
data, as the number of external variables that may con-
tribute to a change in the metabolome (other than the
variable of interest) can be adequately controlled and
essentially eliminated from analyses of the data.
Metabolomics of cultured cells has the potential to
produce information about cell biology, functions and
response mechanisms [14]. Areas of research where
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mammalian cell metabolomics has been used are presented
in Fig. 3, showing that it is central to a number of different
biological applications. Cell culture metabolomics has
already provided unique biological insights in specific
applications such as energy metabolism dysfunctions
[16, 17], metabolic flux between cells and tissues [15, 18],
metabolic pathways involved in cancer cell development
and response to treatment [19-21], and cellular response to
chemical toxins for mechanism of action studies or to test
the toxicology of unknown compounds [22-26]. Very
recently, metabolomics of single-cells has become possible
with a huge increase in sensitivity capabilities of instru-
mentation and constantly advancing technologies. Single-
cell metabolomics is a unique application within the greater
field of in vitro metabolomics, with specific protocols for
culturing and extracting metabolites from single-cells
[27, 28]. In cell culture metabolomics, it is possible to
measure both intracellular metabolites from isolated cells,
as well as the extracellular metabolites from the cell culture
medium. This makes cell culture metabolomics unique in
that the release of metabolites from the cells can also be
studied. Extracellular metabolite analysis can potentially
give a better understanding of the metabolic state inside the
cell and so provides a more complete biological interpre-
tation of metabolic data [29].

Cell culture metabolomics has become an attractive
application for untargeted, screening-type analysis. Due to
the hypothesis-generating style of untargeted metabo-
lomics, it is understandable that such an approach might
not be attractive to the researcher, if only a limited number
of clinical or animal samples are available. Cultured cell or
in vitro samples can more easily accommodate re-visiting
the sample-set, if any interesting or previously unknown
metabolites are highlighted by an untargeted study.
Untargeted metabolomics has been suggested to be the

Fig. 3 Research areas where
metabolomic analysis of
cultured mammalian cells has
been used
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future of all metabolomic investigations [12], as the tech-
nological platforms used and the potential to collect vast
amounts of data in a short time window continue to
advance. Handling the vast amounts of data that untargeted
studies can produce has presented problems with the
strategy which are important to acknowledge, such as
distinguishing ‘right” and ‘wrong’ features, and how to deal
with missing values. These issues have been thoroughly
investigated and useful approaches have been developed to
fairly correct and adjust untargeted metabolomic data so
that it can be meaningfully interpreted [10, 30-33]. It has
been postulated that targeted metabolomics studies will be
made redundant, as the same information might be col-
lected at the same time as vast amounts of unknown
information, potentially unearthing previously unknown
trends. Using cultured cell models where the number of
controls and replicates can be easily manipulated in the
experimental design will be a forefront in the development,
validation and standardisation of untargeted metabolomics
studies in the future.

Standardisation of cell culture protocols
for metabolomics analysis

The need for standardisation of a procedure for in vitro
metabolomics experiments has been well documented
[34-36]. Interestingly, since these first requests for a
standardised technique, there have been many published
cell culture metabolomics studies that follow their own
direction despite this need being identified. Many recent
papers state in their concluding comments that a stan-
dardised procedure is still needed, some even referencing
these earlier published articles. And so the argument
remains, should there be more effort in the metabolomics
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community to undertake the task of developing an effec-
tive, robust standard procedure to generate cultured cell
samples for metabolomic analysis? With the use of cul-
tured cell models in metabolomics becoming more
widespread and applicable to many areas of medical
research, and the new applications continuing to be iden-
tified, the answer is clearly ‘yes’. The application of
metabolomics to cultured cell studies has been thoroughly
discussed in a number of proceedings, perhaps most nota-
bly when applied to toxicity testing of existing and newly
developed chemicals [37-40], where the potential for cul-
tured cell metabolomics has been suggested as a viable
alternative to the use of animals in toxicology testing which
are the current standard for establishing reference doses
that are considered safe to human health. In a potentially
high-impacting area of research such as this, it would be
necessary for efforts to be focused on a standard procedure
for cultured mammalian cell metabolomics that can be
easily followed, used and interpreted by research bodies
worldwide.

van der Werf et al. [35] identified the “need for a
minimal set of reporting standards that allow the scientific
community to evaluate, understand, repeat, compare and
re-investigate metabolomics studies” in the context of
microbial and in vitro experiments. This study was sup-
ported by a subgroup of the Metabolomics Standards
Initiative (MSI) (http://www.metabolomics-msi.org/), a
program set up in 2005 by the Metabolomics Society, with
the aim to standardise multiple aspects of metabolomic
studies including chemical analysis, metabolite identifica-
tion, data processing, ontology, as well as providing a clear
description of the biological system studied in order to
provide biological context. The subgroup was given the
task of producing a document of recommended minimal
reporting standards specifically for in vitro-based metabo-
lomic experiments. The document titled “Core Information
for Metabolomics Reporting (CIMR): In vitro Biology/
Microbiology Context” (http://cosmos-fp7.eu/system/files/
presentation/invitro.pdf) contains considerable information
to guide experimental design, as well as descriptive
reporting standards. The subsequent publication [35] was
an effort to share this information with the greater meta-
bolomics community, with the aim of generating feedback
for future editions. The authors stress that the most
important aim of metabolomic studies is not data genera-
tion, but translating that data into biologically relevant
information. To do this with cultured cell studies, it is of
utmost importance to generate a snapshot of the metabo-
lome at a given point in time, and so metabolism
quenching, adequate harvesting and storage procedures for
cells are important in preserving the composition of
metabolites in the metabolome. The report covers all
aspects of a biological experiment starting from defining

@ Springer

the exact biological question through experimental design,
sample generation and preparation, up until the stages
immediately preceding chemical analysis by NMR or MS.
The reporting standards for chemical analysis procedures
in metabolomic studies have already been well established
in a partnering document provided by the MSI (available at
http://cosmos-fp7.eu/msi), and also by other reporting
standards efforts by multiple associations.

In this review, recent mammalian cell culture metabo-
lomics studies will be compared for their cell culture and
sample preparation procedures, prior to metabolite analysis
by NMR or MS. Both targeted and untargeted studies are
incorporated in this comparison, so that multiple classes of
metabolites are included. These studies will also be com-
pared to the suggested minimal reporting standards
presented by van der Werf et al. [35], so that a combined,
optimal procedure of cell culture practices and sample
preparation specific for untargeted metabolomics studies
can be suggested. It is anticipated that this suggested
standard procedure be applicable to a wide variety of dif-
ferent cell types and be easily manageable for varying
quantities of cells required, and for multiple types of pre-
dominantly MS-based analytical platforms.

Area for improvement 1: reporting of cell culture
procedures

This review presents a summary of mammalian cell culture
metabolomics studies published in the period 2011-2016.
Table 1 summarises these studies that are selected specif-
ically for their application of metabolomics to mammalian
cell lines, and so includes different analytical platforms
utilised (i.e., NMR, GC- and LC-MS). A general obser-
vation from this comparison is that reporting standards are
not conserved in current cell culture metabolomics studies,
and many call for such a strategy to be established. This is
understandable as there are some aspects of cell culture
which would potentially affect the results of detected
metabolites. The minimum reported conditions for any cell
culture study should be growth environment, medium
constituents, passage numbers used and number of cells
seeded or level of growth confluence reached. However,
these basic components are absent from some published
metabolomics studies. The use of cell culture models in
biology has traditionally involved either recombinant DNA
experiments to assess expression levels, protein extraction
to identify function, or fractionation of cells to isolate
specific components. The importance of passage numbers
used has not been demonstrated in these studies, an
observation which may have simply been extended to
untargeted metabolomics experiments. The screening
approach of untargeted metabolomics means that there is


http://www.metabolomics-msi.org/
http://cosmos-fp7.eu/system/files/presentation/invitro.pdf
http://cosmos-fp7.eu/system/files/presentation/invitro.pdf
http://cosmos-fp7.eu/msi
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Comments

Analytical
platform

Extraction

Quenching

Cell
washing

Samples

Cell line/s

Table 2 continued

References

@ Springer

Compares a direct quenching and

Cells scraped into quenching methanol — added extraction solvent NMR

100% methanol

Ice-cold

MCF-7, Cells

Teng et al. [69]

collection method with trypsinisation
before quenching and extraction.

methanol:chloroform:water (4:4:2.85) — only aqueous phase

collected — dried in vacuum concentrator

PBS

MDA-

MB-231

Concludes that direct quenching and
collection of samples exhibits much

greater recovery of metabolites than

the conventional trypsinisation

method (approx. 50-fold higher)

potential for differences associated with passage number to
be detected in the metabolome. In order to assess whether
this is the case there is the need for a study that specifically
addresses the effect (if any) of passage number on the
metabolome. This would allow for more accurate inter-
pretation of the data when analysing the true response of
the metabolome to a particular challenge, by minimising
any variability of the data that may be due to passage
number. This is one aspect of cell culture metabolomics
where there is evidence for further development into a
standardised protocol, which would benefit the data and
allow for an easier comparison not only between groups
within a single study, but between multiple studies of a
similar application.

Area for improvement 2: metabolite extraction
procedures

Most recent cell culture metabolomics studies share the
same emphasis on the importance of the metabolite
extraction procedure. However, there are many variations
of the process which do not seem to be dependent on any
characteristic of the cells themselves, but are often directed
towards specific metabolites. For example, a specific
extraction technique may not be reproducible for all cell
types in terms of the level of metabolite recovery. It would
be reasonable to assume that cells from membranous or
fibrous tissues, such as epithelial cells or keratinocytes, or
cells that produce lots of extracellular matrix such as
fibroblasts or hepatocytes, may be more difficult to extract
small metabolite molecules from than other cell types.
Current metabolite extraction techniques appear to adopt
something of a ‘one-size-fits-all’ approach regardless of the
cell line used. By comparing multiple cultured cell meta-
bolomics studies, the optimal techniques for specific types
of cells may be determined. An ideal extraction procedure
for metabolomics of cultured cells should immediately
quench metabolism and quantitatively collect and extract
all metabolites. However, this is a significant challenge
given the range of classes of metabolite compounds and
their varying stability. Recent studies have attempted to
optimise and validate extraction protocols for the meta-
bolomics of cultured cells. Although these extraction
processes are diverse in their methodologies, some have
conserved or similar steps. These processes have been
extensively reviewed [1, 61, 62]. A common conclusion
from the attempts to review cell metabolomics extraction
procedures is that there now needs to be an attempt to
standardise the procedure, and for those standardised
operating protocols to be made widely available. This will
allow future cell culture metabolomics studies to be more
easily compared.
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Table 3 Recommended experimental design, procedures and minimum reporting standards of a mammalian cell culture metabolomics study,
adapted from van der Werf et al. [35], with examples given of each step

Category

Detail

Example

1. Cell culture general
growth

2. Characteristics of
cells during
experimental growth

3. Particulars of the
treatment conditions

4. Quenching details

5. Sample collection

Cell line/s used and their source
Configuration of cellular growth

Medium and substrates used inclusive of type, supplier,
concentrations, additions, supplementations, serum
percentage, etc.

Growth containers used inclusive of type, supplier, size

and geometry

Inoculation procedures used, splitting procedures,
seeding densities and levels of confluence achieved

Environmental conditions of growth
Growth containers, growth phase of differentiated state

Numbers of culture passage/s and biological replicates

Cell density (optical density or cell number)
Depletion of nutrients at treatment time

Any phenotypic characteristics specific to the question
under study

Nature of the treatment itself e.g. physical stressor,
chemical, etc.

Dose/s of treatment and vehicle

Treatment times or intervals

Purity concentration of treatment agent
Details of any pre-treatment procedure

The time of sample removal, temperature, and time
until metabolic activity ceased

Description of quenching technique

Discrimination of extracellular from intracellular
metabolites

Method of collection and storage

SH-SYS5Y human neuroblastoma, sourced from ECACC
Adherent layer

DMEM:Ham’s F-12 (1:1) supplemented with 1% v/v
2 mM L-glutamine, 1% v/v 10,000 U/mL penicillin and
streptomycin, and 10% v/v FCS, all sourced from Sigma
Aldrich

Cells were grown in 75 cm? tissue culture flasks (sourced
from Corning) with 10 mL volume of medium

For passaging confluent cells and cell counting during
experimentation, cells were detached with addition of
1 x trypsin/EDTA after first removing the medium and
washing the cells with pre-warmed 1x PBS

Cells were kept in a humidified incubator at 37 °C and 5%
CO,

Cells were cultivated in six-well tissue culture plates (sourced
from Corning)

Cell culture passage numbers 28-32 were used for
experimentation with four biological replicates per
treatment group

Cells seeded at a density of 4 x 10° cells/well in 2 mL of
medium

Plates were left for 24 h to allow for cell adhesion before
treatment

If carried out, such as differentiation

Chemical treatment was the neurotoxin insecticide,
permethrin

Permethrin was added as a solution in 100% methanol to a
final concentration of 100 pg/mL per well, or 0.25 mM

Exposure to permethrin was for 6 and 24 h

Permethrin (mixture of cis- and trans-isomers) was purchased
at 99.5% purity

Following 24 h post seeding, cells were left for 24 hin 1 mL
of serum-free medium before treatment was added

Immediately following exposure time, cell number and
viability were determined using the cell number samples,
and samples for metabolomics analysis were removed from
incubation and cellular activity halted by placing the plates
directly onto ice

Addition of 1 mL 4 °C 1x PBS to each well

1 mL of medium from each well was collected into one
microcentrifuge tube for analysis of extracellular
metabolites. Remaining medium removed and adhered cell
washed with PBS, before collecting for analysis of
intracellular metabolites

Quenching PBS removed as a wash step, adhered cells were
then collected by scraping into 100 pL of additional PBS
and transferring into one microcentrifuge tube. All
collected samples were immediately snap-frozen and
freeze-dried and stored at —80 °C
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Table 3 continued

Category Detail

Example

6. Metabolite
extraction procedure

Composition of extraction solution

Description of extraction process

If present, details of multiple phases collected

80% methanol, 20% water solution containing 2.6 pg/mL of
13C¢-sorbitol as an internal standard compound

500 pL of extraction solution added to each freeze-dried
sample and homogenised in a tissue lyser for 40 s. Extracts
were centrifuged and supernatant collected into a fresh
microcentrifuge tube. Extracted metabolites were
concentrated by evaporating the methanol in a vacuum
concentrator

Single-phase (methanol/water) extraction was collected

If known, knowledge of the expected recovery rate and If known, should include recovery rate of the metabolites,

stability of extracted metabolites

7. Biomass
normalisation
data normalisation

8. Sample handling

How the sample are stored when not in use

9. Quality control

samples the analysis

10. Expected
metabolite detection
information

Any additional clean-up steps undertaken for
purification or to protect from degradation

If known, any information on the detection limits, or
stability of metabolites expected in the samples

either targeted for or untargeted, dependant on class of
compound, stability in the sample preparation procedure,
etc.

Details of parallel samples set up next to experimental One extra well per treatment was seeded parallel along with
samples for determination of cell number to use for

metabolomics samples, for cell counting and viability

Extracted metabolites were protected from degradation by
addition of water and further snap-freezing and freeze-
drying

Once completely dry, metabolite extracts were stored at
—80 °C

Details of constituents of QC samples and their use in One extra sample from all treatment groups was pooled during

extraction procedure and separated into equal volumes for
QC samples

Any expected features in the cell samples (e.g. specific sugars,
lipids etc.) that are in relatively high abundance or trace
levels, and if it is known if there will be endogenous
metabolites that are easily degraded or converted into
structurally different features during the analytical process

ECACC European Collection of Cell Cultures, DMEM Dulbecco’s Modified Eagle Medium, FCS foetal calf serum, EDTA ethylenedi-

aminetetraacetic acid, PBS phosphate buffered saline

Table 2 provides a comparison of recent studies with the
specific aim of optimising a quenching, extraction and
sample preparation procedure for metabolomic analysis of
cultured mammalian cells. The most common extraction
protocol summarised from these studies is as follows:
following the discard of culture medium, cells are washed
with cold PBS to both quench metabolism and wash the
cells of any presence of metabolites carried over from the
culture medium, an important process for the effective
detection and separation of intracellular from extracellular
metabolites and other medium components. Some optimi-
sation studies recommend against the use of 100%
methanol as a quenching solution, due to potential mem-
brane leakage and thus decreased metabolite recovery
compared to buffered, isotonic solutions [63-65]. Despite
this, there are still studies that used methanol in the
quenching step for cells [66—-69]. This is one step of the
extraction procedure that could be relatively easily stan-
dardised. Following washing and quenching, the cells are
collected for extraction in either the quenching solution or
directly in extraction solvent. A recent trend for adherent
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cells is to add the extraction solution directly to the cells on
the surface of the culture plate or flask immediately after
removing the culture medium, and to scrape the cells into
the solvent for collection. Cells that are collected in a
buffered solution are centrifuged or concentrated, before
having extraction solvent added to them. It is generally
now accepted amongst most studies that trypsinisation of
adherent cells is not recommended for metabolomic anal-
ysis, due to the poor recovery of some metabolites that leak
through cell membranes during the trypsinisation process
[63, 69-72]. Cell scraping into quenching or extraction
solutions is an accepted alternative, as it has been shown to
have far superior metabolite recovery rates than
trypsinisation.

The composition of extraction solvent used is varied
amongst many studies, and can be the most difficult
component to optimise due to the many variations that are
available to extract different classes of metabolite. Many
studies state that the choice of extraction solvent should be
study-dependent with regard to the cell line being used, and
whether the metabolomic analysis targets specific
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metabolites or metabolite classes, or is an unbiased (as far
as possible), untargeted analysis. Despite this aspiration,
many studies used the same extraction solvent, methanol
and water in an 80:20% ratio, respectively. This gives a
single-phase extraction supernatant and allows for the
whole extraction to be collected. Also common is the use
of a dual-phase (polar and non-polar) extraction using
methanol, chloroform and water (or acetonitrile). The ratio
of these components is not as conserved, but is most
commonly used at 1:1 methanol and chloroform, with a
smaller proportion of water or acetonitrile. This results in a
separation of (more) polar and non-polar extraction phases,
which can be collected separately. Many studies collect
only the aqueous or polar fraction of the extraction and
discard (or at least do not report the analysis of) the non-
polar fraction.

Following addition of an extraction solvent, it is now
common practice for cells to undergo a tissue-homogeni-
sation step, to ensure that all cells are lysed and the
metabolites released into solution, maximising the
metabolite recovery rate. Homogenisation is typically
carried out either by mechanical lysis (tissue lysis mill) or
sonication (probe or bath). Studies that have compared cell
and tissue homogenisation techniques have found that any
homogenisation step greatly increases the recovery of
metabolites compared to no homogenisation [63, 68].
Following this, the cellular debris needs to be separated
from the metabolites now in solution. This is achieved
through centrifugation and the supernatant, which is now
the sample extract, is collected. The pellet of cells may be
subject to a repeat extraction and homogenisation step, to
ensure maximum recovery of metabolites [65, 66]. To
increase detection by the instrument, the extract needs to be
concentrated so that the maximum amount of metabolites
can be analysed in a small volume. This can be done by
vacuum concentration, or freeze-drying in an aqueous
solution. This is the last step in the metabolite extraction
procedure of cultured cells, and from here the dried sam-
ples can be prepared for the chosen analytical platform.

Area for improvement 3: normalisation strategies
for metabolomics data

Data sets collected from untargeted metabolomics studies
are typically very large, potentially containing thousands of
metabolite ‘features’ across hundreds of samples. The
resulting data matrix is typically constructed using a peak-
picking (deconvolution) software package. Prior to statis-
tical data analysis, the data in the matrix can undergo
various normalisation, scaling and transformation pro-
cesses in order to improve the statistical functionality of the
data [81-83]. Normalisation of the data matrix occurs when

it is required to correct for any variation in the data set that
may have occurred due to non-biological variables that
cannot be controlled, such as variation in instrumental
performance, and differences in the amount of material
being analysed. In the case of instrumental variability, the
addition of an internal standard compound to each sample
to normalise all other peak abundances is a common step in
untargeted metabolomic analysis.

In cell culture studies, especially when testing the
response of a system to a physical challenge, the amount of
material available for metabolomic analysis will likely
differ between sample groups. Only a handful of publica-
tions have focused on the importance of normalising
metabolomics data to the physical amount of the sample
from cell culture studies. A number of differing techniques
have been used, including protein or DNA concentration,
tissue weight or cell number, and these options have been
compared [71, 78, 84, 85]. However, there are still many
cell culture metabolomics studies that fail to report the
normalisation techniques used in data analysis, and so it
remains an issue that should be addressed in the stan-
dardisation of cell culture metabolomics protocols. When
reported, the most common method of normalisation of
sample variation (pre-instrumental analysis) is to the cell
number upon sample harvesting. Despite the need for a
separate, parallel sample to be set up specifically for cell
counting due to the destructive nature of harvesting for
metabolomics, the method of cell number normalisation is
widely considered to be the most appropriate for data
normalisation, and should be considered as a standard
approach when possible.

A study that specifically investigated the use of multiple
measures to normalise metabolomic data from adherent
cell lines recommended the use of DNA quantification of
the usually discarded cell pellet (post metabolite extrac-
tion) in place of other methods [85]. This study compared
total protein concentration, DNA concentration, and cell
number at the time of harvest, and presented their corre-
lation with the number of cells first seeded. Specific
metabolites were selected and quantified over a range of
seeding densities which were then normalised using all
four strategies. The study concluded that DNA concentra-
tion was the best strategy, based on the lowest deviation
from the mean for the normalised peak areas and the ease
of sample collection compared to other methods. When
considering the outcomes of this study, it is important to
note that the study collected the data for other normalisa-
tion methods at the time of cell harvest and compared only
to the number of cells at the time of seeding, rather than at
the time of harvest. Also, if normalising to DNA concen-
tration was applied to a study that investigated the cellular
response to a cytotoxic agent that affects the rate of growth
of cells or directly damages DNA, then the correlation to
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seeding density interpretations suddenly becomes ques-
tionable, a fact acknowledged by Silva et al. [85]. The
authors also stated that cell counting was the preferred
normalisation strategy when dealing with low cell num-
bers, specifically under 500,000 cells, something which is
possible using many current analytical platforms.

Silva et al. [85] concluded that the measurement of
protein concentration was highly variable from metabolite-
extracted samples of the same seeding density, and did not
recommend protein concentration as a normalisation
strategy for metabolomic data of cell culture. A subsequent
study by Rahman et al. [76] reported contradictory results
to this study, supporting the use of protein concentration to
normalise metabolomics data. This later study conducted
both cell number and protein content normalisation of peak
areas to develop a MS method for targeted metabolomics
of three different adherent cell lines. They concluded that
cell number and protein content correlated well, and so
comparable normalisation could be carried out by either
measures. These contradicting recommendations on what is
suitable for data normalisation highlight the problem in
generating consensus for standardisation efforts.

A different strategy for data normalisation presented by
Hutschenreuther et al. [78] compared the cell number with
the measured total ion chromatogram (TIC) area of a
sample to normalise individual peak areas, and concluded
that either could be used as they had a similar number of
resulting “false significants”, as well as an equal correla-
tion with a linear range of sample loadings. The study
suggests that using the TIC area to normalise peak area
would be a suitable replacement for cell number, and
therefore the need to set up replicate cell counting samples
and include a counting step could be omitted from cell
harvesting protocols. Rather than use the area of the TIC,
Cao et al. [84] used the intensities of several, consistently
detected intracellular metabolites to normalise remaining
peak intensities, following analysis by GC—time of flight
(TOF)-MS. The study compared two cell lines using this
method and chose metabolites for normalisation that did
not significantly differ between the two cell lines. The
strategy was implemented to correct the data for variation
between the two cell lines, and was successful under
principal component analysis. This is an important result in
validating the use of multiple different cell lines for the
same experimental tests and being able to compare the data
and effectively interpret the results. However, concern
remains in regard to application in a treatment-response
scenario. The response of these particular metabolites to an
interfering agent may be different between control and
treatment groups, thus ruling out the use of this normali-
sation strategy in toxin-response studies, at least between
the treatment groups within the same cell line.
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Summary of standardised reporting and optimised
extraction methods for cultured cell metabolomics
studies

This review has compared the CIMR report [35] with
recent studies in metabolomics of cultured mammalian
cells (Tables 1, 2) in order to provide a summary of a
standard reporting procedure for untargeted mammalian
cell culture metabolomics studies. The specific steps, out-
lined in Table 3, represent the currently accepted best-
practice for maintaining quality control and sample integ-
rity during a cell culture metabolomics study. As with any
other metabolomics experiment, a full schedule of the
sample processing and analysis protocol that follow these
steps would also be included, relative of course to the
specific analytical platform used in the study.

Conclusion

This review has provided a summary of the current opti-
misation and standardisation efforts for the sample growth
and preparation stages of cultured mammalian cell meta-
bolomics studies. In spite of these efforts, there remain
many individual published studies that conclude with a
request for a standardised approach to be developed. The
reasons for this disconnect are not clear. It is possible that
the relative ease of application of the technologies used in
metabolomics to a wide variety of different biological
systems has meant that researchers have overlooked the
suggested reporting standards. This in itself is an issue—
that these standards are still seen as only a ‘suggestion’. It
is difficult to suggest exactly how an accepted procedure
could be established across a global scientific community.
Such an initiative begins with the conscious effort of
individual studies to conduct experiments with a focus on
quality of reporting. There is also a need for all cultured
cell-based metabolomics studies to be published with full
disclosure of information. Both of these approaches would
lead to a greater quantity of greater quality metabolomics
studies in the literature. Repeatability of studies, including
use of the same procedures in different biological models is
another key aspect of this initiative. This combination of
steps would help move towards the validation of a standard
procedure, which when carried out effectively, across
numerous times and different groups could become an
accepted standard procedure within the wider cultured cell
metabolomics community.

This review highlights some of the current areas for
improvement of recent standardisation efforts, including
improving the detail of reported culture conditions, speci-
fying metabolite extraction procedures, and normalising
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data to tissue weight/cell number. With these areas of
improvement in mind, and adapting from the multitude of
past optimisation studies, this review suggests a procedure
of mammalian cell culture to follow for specific untargeted
metabolomics by mass spectrometry-based experiments.
There may very well be a requirement for specific modi-
fications to the procedure to include further optimised
steps, e.g. extraction procedures specific to the type of cell
line used, or to include specific details of any cell lines that
are modified in their expression behaviour, etc. The overall
aim in suggesting a standardised reporting procedure is to
allow cultured mammalian cell metabolomics studies to be
compared, interpreted, and used to decipher a ‘whole-sys-
tem’ response to variety of challenges. A key advantage of
cultured cell metabolomics is its ability to directly profile
the metabolism of specific cell types with minimal inter-
ference from other factors, compared to animal models or
clinical samples. There is currently no other experimental
design that can provide as much detailed information
directly related to the phenotypical behaviour of a bio-
logical system captured as a single snapshot. Cellular
biochemistry has been extensively studied and much is
known about the mechanisms of cellular metabolism, but
there remain countless interactions that are only theoreti-
cal, particularly in response to a change in environment.
The application of metabolomics to mammalian cell cul-
ture presents the opportunity to uncover these interactions,
and potentially identify new target areas for therapies or
intervention. It is an exciting, new field of cellular bio-
chemistry that deserves to be fully explored, and for the
data it generates to be accurately interpreted. With greater
focus on these efforts, there is no question of the untold
benefits and potential of cultured cell metabolomics in
enhancing our knowledge of cellular biochemistry.
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