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Abstract The genome integrity of all organisms is con-

stantly threatened by replication errors and DNA damage

arising from endogenous and exogenous sources. Such base

pair anomalies must be accurately repaired to prevent

mutagenesis and/or lethality. Thus, it is not surprising that

cells have evolved multiple and partially overlapping DNA

repair pathways to correct specific types of DNA errors and

lesions. Great progress in unraveling these repair mecha-

nisms at the molecular level has been made by several

talented researchers, among them Tomas Lindahl, Aziz

Sancar, and Paul Modrich, all three Nobel laureates in

Chemistry for 2015. Much of this knowledge comes from

studies performed in bacteria, yeast, and mammals and has

impacted research in plant systems. Two plant features

should be mentioned. Plants differ from higher eukaryotes

in that they lack a reserve germline and cannot avoid

environmental stresses. Therefore, plants have evolved

different strategies to sustain genome fidelity through

generations and continuous exposure to genotoxic stresses.

These strategies include the presence of unique or multiple

paralogous genes with partially overlapping DNA repair

activities. Yet, in spite (or because) of these differences,

plants, especially Arabidopsis thaliana, can be used as a

model organism for functional studies. Some advantages of

this model system are worth mentioning: short life cycle,

availability of both homozygous and heterozygous lines for

many genes, plant transformation techniques, tissue culture

methods and reporter systems for gene expression and

function studies. Here, I provide a current understanding of

DNA repair genes in plants, with a special focus on A.

thaliana. It is expected that this review will be a valuable

resource for future functional studies in the DNA repair

field, both in plants and animals.
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Introduction

All organisms are constantly exposed to environmental

stresses as well as genotoxic products from endogenous

metabolic processes that induce, either directly or indi-

rectly, DNA damage [1]. Another source of DNA damage

includes base–base mismatches produced by the incorpo-

ration of a non-complementary Watson–Crick base and

unpaired nucleotides caused by misalignment of the two

DNA strands, both generated during DNA synthesis. These

DNA biosynthetic errors differ from typical DNA damage

in that they involve undamaged bases and exist only tran-

siently provided that the DNA remains double-stranded [2].

To counteract these genome integrity threats, all organisms

have evolved the DNA damage response (DDR) [3, 4]. The

DDR is a pathway that transduces the DNA damage signal

into activation of various pathways that leads to DNA

repair, cell cycle checkpoint and programmed cell death.

Plant DDR also includes endoreduplication. Endoredupli-

cation involves replication of the nuclear DNA without

cytokinesis [5]. Here, I only focus on DNA repair mech-

anisms in mammals and plants. Plants are distinctly

different from mammals in that they lack a reserved germ

line and are sessile. Gametes arise from meristem cells that

& Claudia P. Spampinato

spampinato@cefobi-conicet.gov.ar

1 Facultad de Ciencias Bioquı́micas y Farmacéuticas, Centro
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have been exposed to the continuous effect of environ-

mental and endogenous mutagens and have divided many

times. Thus, plants have evolved particularly efficient

DNA repair mechanisms. Advancements in this field have

been provided by the Arabidopsis genome sequence [6].

Plants have orthologs of most of the genes involved in

mammalian DNA repair pathways [7–9]. However, several

interesting features may be noted: the presence of unique

genes, the presence of multiple gene copies and the

absence of well-characterized genes in plant genomes

[9, 10]. Such differences suggest plant-specific DNA repair

pathways. Provided here is a review of major findings over

the last decade related to mammal and plant DNA repair

mechanisms, with a special focus on DNA repair genes

from A. thaliana.

Photoreactivation

Photoreactivation is the direct reversal of major lesions

induced by ultraviolet (UV) light on two adjacent pyrim-

idine bases, such as cyclobutane pyrimidine dimers (CPDs)

and pyrimidine (6-4) pyrimidones (6-4 photoproducts or

6-4 PPs). The history of the discovery of this repair system

has been recently reviewed [11]. Photoreactivation relies

on single light-activated flavoenzymes called photolyases.

Photolyases belong to the photolyase/cryptochrome family

and have been classified into three related subfamilies

known as class I CPD photolyase, class II CPD photolyase,

and 6-4 photolyase, based on their sequence homology and

substrate specificity [12–14]. Multiple sequence alignment

analysis of members from the three subfamilies indicates a

highly functional conservation of a photolyase-homologous

region (PHR) domain that binds the chromophore FAD

(flavin adenine dinucleotide) [15, 16]. Class I CPD pho-

tolyases have been reported in diverse microbial organisms

such as archaea, eubacteria, and fungi; class II CPD pho-

tolyases have been found not only in archaea, eubacteria,

some viruses, but also in higher organisms such as animals

and plants; and 6-4 photolyases have been identified in

cyanobacteria and certain eukarya [15, 17]. Humans and

other placental animals have lost photolyase activities. All

photolyases use the energy of visible or blue light

(k = 320–500 nm) for the catalytic cleavage of the pho-

toproducts and contain the fully reduced FADH- as the

catalytically active cofactor [13, 14]. All photolyases

characterized to date also contain a second chromophore,

such as methenyltetrahydrofolate found in the majority of

the enzymes or 7,8-didemethyl-8-hydroxy-5-deazari-

boflavin, FAD or FMN (flavin mononucleotide) in others

that functions as a photoantenna to enhance light absorp-

tion [14, 18–20]. Upon blue light absorption, the excitation

energy is efficiently transferred from the photoantenna to

FADH- by Förster resonance energy. The resulting

FADH-* donates an electron to the DNA lesion with the

generation of two canonical pyrimidines [12, 14, 19–21].

Photoreactivation in plants

Arabidopsis thaliana contains two specific class II CPD

photolyases [PHR1, also named UVR2 (At1g12370) and

PHR2 (At2g47590)] and one 6-4 photolyase [UVR3

(At3g15620)]. The FAD-binding domains of plant PHR2

proteins are smaller and less conserved than in the other

subfamilies [15]. Several articles provide a summary of the

molecular cloning, the tissue-specific and light-dependent

regulation and the characterization of mutants of CPD

photolyase and 6-4 photolyase genes from various plant

species (e.g., A. thaliana, Oriza sativa, Sinapis alba)

[22–24]. Recent evidence suggests that AtPHR1 expression

induced by UV-B is primarily regulated by the UVR8 (UV

RESISTANCE LOCUS8)-dependent pathway but is also

mediated by a UVR8-independent pathway [25]. The latter

one was found to be correlated with UV-B-induced CPD

levels [25].

The crystal structure of a UVR2 homolog has recently

been determined in rice and compared with prokaryotic

class I CPD photolyases [26]. Results indicate that both

enzymes recognize CPD damage in similar active sites but

create a different conformational distortion in the DNA

duplex [26]. The crystallographic structure and molecular

mechanism of A. thaliana 6-4 photolyase have also been

determined [27, 28]. After light excitation, there is initially

a forward electron transfer followed by a cyclic proton

transfer involving an active-site histidine residue [28]. This

proton transfer is the determinant step in the repair and

determines the overall quantum yield (A = number of

dimers repaired per number of photons absorbed) [28]. For

comparison, the reported A for CPD and 6-4PP repair are

0.82 and 0.1, respectively, and the whole catalysis reaction

takes less than a nanosecond for CPD repair or tens of

nanoseconds for 6-4PP repair [29]. The complete photo-

cycle in real-time from the initial 6-4 PP to several

intermediates and subsequent conversion to two thymine

bases catalyzed by the A. thaliana (6-4) photolyase has

been recently well reviewed [21, 29].

Base excision repair

Base excision repair (BER) recognizes and repairs lesions

such as deaminated, oxidized and alkylated bases, abasic

(apurinic and/or apyrimidinic, AP) sites and single-strand

breaks (SSBs). BER occurs in several steps (Table 1A; see

references [30–32] for recent reviews in mammalian BER).

(1) Lesion recognition and removal by DNA glycosylases.
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DNA glycosylases hydrolyze the N-glycosidic bond of the

damaged base, leaving an AP site. Different DNA glyco-

sylases exist, each one with broad or narrow substrate

specificities. Enzymes can be classified as monofunctional

or bifunctional. Monofunctional glycosylases perform base

excision only, whereas bifunctional glycosylases also have

lyase activity. Biochemical mechanisms of DNA glycosy-

lases have been the subject of recent reviews [33, 34]. (2)

Cleavage of the sugar–phosphate backbone at the AP site.

Cleavage is catalyzed either by an AP endonuclease or by

the intrinsic AP lyase activity of a bifunctional DNA gly-

cosylase. AP endonucleases and lyases generate different

types of DNA termini. AP endonucleases release a 30 OH
and a 50 deoxyribose–phosphate moiety (50 dRP), while AP
lyases release a 30 phospho a,b-unsaturated aldehyde (30

PUA) or 30 phosphate by b- or bd-elimination reactions,

respectively, and a 50 phosphate. (3) Processing of uncon-

ventional ends to conventional 30 OH and 50 phosphate

moieties. This step involves different enzymes depending

on whether the modified terminus is processed from the 50

or 30 end. The intrinsic dRP lyase activity of DNA poly-

merase b removes the 50 dRP; the 30 phosphodiesterase
activity of the AP endonuclease eliminates the 30 PUA,
whereas polynucleotide kinase 30 phosphatase (PNKP)

processes the 30 phosphate moiety. Additional SSB end

cleaning enzymes are aprataxin and tyrosyl DNA phos-

phodiesterases (TDP) that process abortive ligation or

topoisomerase reactions, respectively [35]. (4) Gap-filling

and nick sealing. The short-patch or single nucleotide (SN)

BER involves the incorporation of only a single nucleotide

by the DNA polymerase b. The long-patch (LP) BER

requires DNA synthesis mediated by DNA polymerases d
and e and assisted by proliferating cell nuclear antigen

(PCNA). The newly synthesized DNA displaces the

downstream 50 DNA end to form a flap structure containing

2–13 nucleotides. The displaced strand is then processed by

a flap endonuclease (FEN). The choice of the pathway

depends on the specificity of the DNA glycosylase and the

proliferation status of the cell. Recent findings suggest that

DNA polymerase k can substitute for DNA polymerase b

Table 1 Overview of steps (A) and A. thaliana required factors (B) involved in BER

A B

Step Schematic representation Gene a AGI locus
code b,c

i) Lesion recognition and removal OGG1 At1g21710
FPG At1g52500
NTH1 At2g31450
NTH2 At1g05900
DME At5g04560
ROS1 At2g36490
UNG At3g18630
DML3 At4g34060

MBD4L At3g07930
ii) Cleavage of the sugar–phosphate 

backbone at the AP site d
ARP At2g41460

APE1L At3g48425
APE2 At4g36050

iii) Processing of unconventional ends 
to 3′ OH and 5′ phosphate

ZDP At3g14890

TDP1 At5g15170

iv) Gap-filling and nick sealing XRCC1 At1g80420
SAV6 At5g26680

PARP1 At2g31320
PARP2 At4g02390
Pol δ See Table 2
Pol ε See Table 2
LIG1 See Table 2

OH   P

a Genes encoding bifunctional glycosylases are listed first, followed by monofunctional glycosylases
b AGI Arabidopsis genome initiative
c AGI locus code for components involved in DNA metabolic pathways is shown in Table 2
d Bifunctional DNA glycosylases with associated b-elimination activity are not detailed

Protecting DNA from errors and damage 1695

123



in filling single-nucleotide gaps and can perform gap filling

in long-patch BER [36]. Poly ADP-ribose polymerase 1

(PARP1) and X-ray cross-complementation group 1

(XRCC1) also have roles in BER. PARP1 protects SSBs

from the formation of more deleterious double-strand

breaks (DSBs) [35] and XRCC1 is involved in the orga-

nization of BER-proficient multiprotein complexes [37].

Finally, the nick is sealed by a DNA ligase.

BER in plants

Most of the BER proteins found in animal cells have been

described in plants [38, 39]. Tables 1B and 2 show an

overview of described factors involved in BER mechanism

in A. thaliana. Plants contain several DNA glycosylases:

8-oxoguanine DNA glycosylase (OGG1), formamidopy-

rimidine DNA glycosylase (FPG), NTH, and uracil DNA

glycosylase (UNG) [38–44]. The enzymes OGG1 and FPG

recognize oxidized purines; NTH, oxidized pyrimidines

and UNG, U:G mismatches. Both NTH homologs (NTH1

and NTH2) were co-localized to nucleoids within Ara-

bidopsis chloroplasts, thus indicating the existence of a

BER pathway in these organelles to deal with photo-ox-

idative stress [44]. Plant genomes, in contrast to mammals,

also encode specific 5-methyl-cytosine (5-meC) glycosy-

lases that are involved in DNA demethylation [DEMETER

(DME) and Repressor of Silencing 1 (ROS1)] [45–48].

These proteins show preference for 5-meC as substrate but

can also process T:G mispairs. It has been reported that

ROS1 has a very low turnover [46], with the recognition of

pyrimidine modifications being the rate-limiting step [49].

An additional activity against T:G mispairs is displayed by

MBD4L (methyl binding 4 DNA glycosylase-like) [50].

This enzyme was demonstrated to act on both U:G and T:G

mispairs and to excise both U and T more efficiently at a

CpG context. Roles of OGG1, ROS1 and MBDL4 in

Arabidopsis tolerance to oxidative DNA damage have also

been described using mutant or overexpression plants

[51–53]. Other downstream proteins of the BER pathway

have been characterized in plants. The Arabidopsis genome

contains three genes encoding AP endonuclease-like pro-

teins: APE1L (abasic endonuclease-1-like), APE2 (abasic

endonuclease 2) and ARP (abasic endonuclease-redox

protein) [54]. All three enzymes were found to exhibit AP

endonuclease activity in vitro [55], with ARP representing

the major activity in Arabidopsis cell extracts [56]. Based

on the available DNA sequence data, a wheat homolog of

AtAPE1L has been cloned and characterized [57]. Ortho-

logues of human PNKP (named AtZDP), TDP1, XRCC1

and DNA ligase I were also functionally characterized in

Arabidopsis [42, 55, 56, 58–61]. Finally, it has been

demonstrated that AP sites may be processed in plants

through both SN- and LP-BER [41] and that DNA ligase I

restores the continuity of the repaired DNA strand during

both SN- and LP-BER [56]. Recent studies identified and

characterized a gene named SAV6 (shade avoidance

mutant), a homolog of human FEN1 [62]. Compared to the

animal FEN1, SAV6 shows both flap and gap endonuclease

activities, but lacks exonuclease activity.

Nucleotide excision repair

Nucleotide excision repair (NER) is responsible for the

processing of bulky helix-distorting damage, such as CPDs

and 6-4PPs induced by UV irradiation. Deficiencies in

NER are associated with several human autosomal reces-

sive disorders, namely xeroderma pigmentosum (XP),

cockayne syndrome (CS) and trichothiodistrophy (TTD)

among others. XP, CS and TTD have provided the names

of some of the genes involved in the pathway (XPA

through XPG, XPV, CSA, CSB and TTDA). NER is a

multistep process which comprises four steps (Table 3A).

(1) Damage recognition. Two different modes of damage

recognition coexist: global genome NER (GG-NER) and

transcription-coupled NER (TC-NER). GG-NER detects

damage occurring throughout the genome and is specifi-

cally initiated by a heterotrimeric XPC-HR23B-CEN2

complex (XPC and HR23A/HR23B are the human homo-

logs of yeast and plant RAD4 and RAD23 proteins,

respectively), with the assistance in some cases of DDB

(damaged DNA-binding) protein complex. DDB, a het-

erodimeric complex comprising DDB1 and DDB2

subunits, specifically binds CPDs and 6-4PPs with mod-

erate or high affinity, respectively, and stimulates

significantly XPC binding to UV-damaged lesions. GG-

Table 2 Components involved in DNA metabolic pathways in A. thaliana

Gene EXO1 PCNA POL d POL e RFC LIG1

AGI locus code At1g29630 At1g07370

At2g29570

At1g09815

At2g42120

At5g63960

At1g08260

At2g27120

At5g22110

At1g21690

At1g63160

At1g77470

At5g22010

At5g27740

At1g08130

At1g49250
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NER in mammalian cells has been covered in recent

reviews [63, 64]. TC-NER is responsible for the recogni-

tion of lesions in the transcribed strand of active genes and

is initiated by RNA polymerase stalled at a lesion, with the

help of specific factors CSA, CSB, and XPA binding pro-

tein 2 (XAB2) whose function is not clear. Many aspects of

mammalian TC-NER can be found in some recent reviews

[64–66]. (2) Formation of a stable preincision complex

around the damage site. After DNA recognition, GG-NER

and TC-NER converge into the same pathway. The tran-

scription factor II H (TFIIH) is recruited to the lesion.

TFIIH is a multiprotein complex composed of ten subunits

arranged in two functional subcomplexes: the core sub-

complex containing the DNA helicase XPB, p62, p52, p44,

p34 and p8 (TTDA) and the CAK [cyclin dependent kinase

(CDK)-activating kinase] subcomplex containing CDK7,

cyclin H (CYCH) and the assembly factor ménage-à-trois-1

(MAT1); both subcomplexes are bridged by the DNA

helicase XPD [67, 68]. The result of the TFIIH activity is

the partial unwinding of the DNA duplex that leads to the

recruitment of XPA, RPA (replication protein A), and the

endonuclease XPG. Then, XPA interacts and recruits the

second endonuclease, ERCC1 (excision repair cross com-

plementing 1)–XPF. (3) Excision of the damaged

nucleotide. The damaged nucleotide is removed by dual

incisions 50 and 30 to the lesion by endonucleases XPF and

XPG, respectively, generating a 24–32 oligonucleotide

single-strand fragment containing the damaged site. There

Table 3 Overview of steps (A) and A. thaliana required factors (B) involved in NER

A B

Step Schematic 
representation Gene AGI locus 

code a,b

i) Damage recognition RAD4 At5g16630
RAD23A At1g16190
RAD23B At1g79650
RAD23C At3g02540
RAD23D At5g38470

CEN2 At4g37010
DDB1A At4g05420
DDB1B At4g21100
DDB2 At5g58760
CSA At1g27840

At1g19750
CHR8 At2g18760
CHR24 At5g63950

ii) Formation of a stable preincision XPB1 At5g41370
complex around the damage site XPB2 At5g41360

UVH6 At1g03190
TFIIH1 At1g55750

At1g61420
GTF2H2 At1g05055
TFIIH3 At1g18340
TFIIH4 At4g17020
TTDA At1g12400

At1g62886
CDKD;1 At1g73690
CDKD;2 At1g66750
CDKD;3 At1g18040
CYCH;1 At5g27620
MAT1 At4g30820

iii) Excision of the damaged 
nucleotide UVH3 At3g28030

UVH1 At5g41150
ERCC1 At3g05210

RPA See Table 4
iv) Completion of DNA synthesis PCNA See Table 2

followed by ligation RFC See Table 2
Pol δ See Table 2
Pol ε See Table 2
LIG1 See Table 2

a AGI Arabidopsis genome initiative
b AGI locus code for components involved in DNA metabolic pathways is shown in Tables 2 and 4
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is a defined order of the two incisions. The 50 incision by

the heterodimer ERCC1–XPF is performed first; repair

synthesis is initiated followed by the 30 incision by XPG

[69]. (4) Completion of DNA synthesis followed by liga-

tion. The repair synthesis is carried out by DNA

polymerases d, e, or j depending on chromatin accessi-

bility of the damaged site [70]. NER is completed by nick

sealing by DNA ligase I or IIIa.

NER in plants

This pathway has been primarily studied in Arabidopsis

and rice [7]. In Arabidopsis, four genes, namely RAD23,

DDB1, CSA and XPB have been duplicated (Table 3B)

[7, 71]. Interestingly, RAD23 was also found to be dupli-

cated in rice, Populus and Sorghum and many times in

Arabidopsis [7, 71]. Although Arabidopsis mutants

affecting the expression of individual RAD23 genes

exhibited pleiotropic developmental defects (rad23b) or no

obvious phenotype (rad23a, rad23c, and rad23d), higher-

order mutant combinations indicated that the RAD23

family is essential in Arabidopsis [72]. The two DDB1

homologs, DDB1A and DDB1B, were expressed through-

out plant development with DDB1B showing the lowest

levels [73, 74] but playing a crucial role because ddb1b

null alleles appear lethal ([73] and references therein).

Overlapping expression patterns were also observed for the

two CSA homologs. Both homologs share significant

sequence identity and likely form heterotetramers in plants

[75]. Decreased levels of several of these genes, namely

DDB1A, DDB1B, CSA or XPB1 affected UV plant toler-

ance [75–79]. A difference in sensitivity upon exposure of

UV radiation was also observed for plants defective in

DDB2, UVH6 (defective in the human XPD homolog) or

CSB homologs (CHR8 and CHR24) [76, 77, 80–82]. It

should be mentioned that some plant homologs of the

human XP genes were initially named after the UV

hypersensitive (uvh) phenotype of the mutants. On the

other hand, overexpression of DDB1A conferred increased

resistance to UV-induced DNA damage [78].

The interaction of XPC-CEN2 (AtRAD4-AtCEN2) and

validation of some in silico predicted TFIIH subunit tran-

scripts were also reported in plants [7, 83–87]. Human

TFIIH components p62, p44, p34 and p52 correspond to

TFIIH1, TFIIH2 (AtGTF2H2), TFIIH3 and TFIIH4 in A.

thaliana, while CDK7 is encoded by three CDKDs

(Table 3B). Homologs of the human RPA complex, het-

erotrimer composed of three associated subunits RPA1,

RPA2 and RPA3, were also functionally characterized in

Arabidopsis [88]. However, in contrast to other eukaryotes,

multiple genes encode the RPA subunits in A. thaliana

(Table 4) [88, 89]. A phylogenetic tree based on RPA1

protein sequences revealed three evolutionary groups [90].

Group A is composed of RPA1A; group B, of RPA1B and

RPA1D and group C, of RPA1C and RPA1E proteins.

These authors propose that group C includes proteins

involved in DNA damage repair [90]. No apparent XPA

homolog exists in plants [10].

Mismatch repair

The mismatch repair (MMR) system is best known for its

role in the recognition and correction of single base–base

mismatches and unpaired nucleotides that arise through

replication errors, deamination of 5-methylcytosine, and

recombination between divergent sequences. Eukaryotic

MMR has been studied in great detail and has been covered

in several recent reviews [2, 91–94]. Also, an overview of

the history of eukaryotic MMR has been recently reported

[95]. The pathway involves several steps (Table 5A). (1)

Lesion recognition by MutS proteins. In eukaryotes, MutS

proteins function as heterodimers composed of related, but

distinct MutS homologs (MSH) subunits. To date, eight

MSH subunits were discovered [96], of which MSH2,

MSH3 and MSH6 are involved in nuclear MMR in human

cells. These MSHs subunits assemble as MSH2-MSH6

(MutSa) and MSH2-MSH3 (MutSb). MutSa recognizes

base–base mismatches and short insertion/deletion loops

(IDLs) while MutSb mediates the repair of IDLs up to 16

nucleotides [97]. The molecular basis of substrate speci-

ficities has been investigated. A series of crystal structures

of human MutSa in complex with different DNA substrates

showed an extensive interaction of a conserved pheny-

lalanine residue in the MSH6 subunit with the DNA

mispair [98]. MSH3 lacks the phenylalanine residue that

makes protein-mispair contact. Instead, MutSb binds the

sugar–phosphate backbone of the IDL [99]. DNA is

severely bent and the unpaired bases are flipped out and

solvent exposed as revealed by the crystal structure of

human MutSb complexed with DNA containing IDLs of

varying size [99]. In addition to crystal reports, abilities of

MutSa and MutSb to process base–base mismatches and

IDLs were explored. The results indicate that MutSa and

MutSb differ in DNA substrate recognition and that the

MutSb–IDL interaction is greatly stimulated by an excess

Table 4 RPA proteins in A. thaliana

Gene RPA1 RPA2 RPA3

AGI locus code At2g06510 (A)

At5g08020 (B)

At5g45400 (C)

At5g61000 (D)

At4g19130 (E)

At2g24490 (A)

At3g02920 (B)

At3g52630 (A)

At4g18590 (B)
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amount of MutSa [97]. Besides DNA-binding activity, all

MutS proteins contain highly conserved ABC-ATPase

domains that are essential for MMR ([100] and references

therein). Communication between the DNA and the ATP-

binding/hydrolysis sites appears to play an important role

in the molecular functions of both MutSa and MutSb
[97–99, 101]. In addition to the significant differences

between MutSa and MutSb in substrate recognition and

ATP binding and hydrolysis, MutSa differs from MutSb in

the manner that it interacts with PCNA, with MutSa-PCNA
complex playing only a limited role in mismatch removal

but MutSb-PCNA complex being highly relevant to small

IDLs processing [102]. Finally, current evidence suggests

that mammalian MSH2 and MSH6 are transcriptionally

and translationally up-regulated in a cell cycle-dependent

manner [103, 104], but MSH3 is not cell cycle regulated

[104]. (2) DNA repair complex assembly. Subsequent to

mismatch binding, MutL proteins are recruited to the MutS

proteins/DNA complex in an ATP-dependent manner. Like

MutS proteins, MutL proteins function as heterodimers in

eukaryotes. The major activity is associated with MutLa
(heterocomplex of MLH1-PMS2 in humans but MLH1-

PMS1 in yeast and plants). Each subunit of MutLa contains

a highly conserved N-terminal region and a weakly con-

served C-terminal domain connected by a long flexible

linker arm. The N-terminal regions bind and hydrolyze

ATP and bind to DNA ([100] and references therein). The

C-terminal domains are essential for dimerization [92]. In

addition, the C-terminal domains of the PMS subunits have

a metal-binding site and an endonuclease activity that is

required for MMR [105]. Linker arms vary in length and

sequence and are important for MutLa–DNA interactions [

[106] and references therein]. The presence of these linkers

has been associated with large asymmetric conformational

changes following sequential ATP binding and hydrolysis

[107]. (3) Strand discrimination. Identification and dis-

crimination of the newly synthesized DNA strand in

eukaryotes are attributed to strand breaks involved in the

leading- and lagging-strand synthesis. Replication factor C

(RFC) specifically recognizes 30 termini at the replication

fork and loads PCNA asymmetrically onto these sites, with

the same side facing towards the strand discontinuity [108].

PCNA loaded at these breaks is required for MutLa
endonuclease activation, apparently through protein–pro-

tein interaction [109]. Once activated, MutLa incises the

strand containing the preexisting strand break due to the

loading polarity of PCNA [109]. MutLa endonuclease can

also be activated on DNA that contains a MutSb recog-

nizable lesion but, while MutSa can interact independently

with MutLa and PCNA, interactions of MutSb with MutLa
and PCNA were found to be mutually exclusive [102].

These results suggest important differences in the repair

mechanisms of single base–base mismatches and IDLs. (4)

Strand excision and re-synthesis. Multiply incised mole-

cules are substrates for the 50–30 activity of MutSa-
activated exonuclease I (Exo1) [110]. Once the mismatch is

excised, MutSa and RPA regulate Exo1 activity that leads

to excision termination [111]. The repair reaction is com-

pleted by a correct DNA re-synthesis by DNA polymerase

d, followed by ligation. In the absence of Exo1, MMR can

still be detected suggesting the existence of one or more

Exo1-independent modes of mismatch repair. The mecha-

nism most likely involves a strand displacement synthesis

by DNA polymerases d that is strongly stimulated by RPA

Table 5 Overview of steps (A) and A. thaliana required factors (B) involved in MMR

A

Step

i) Lesion

ii) DNA r

iii)

iv)

B
Schematic 

representation Gene AGI locus
code a,b

recognition MSH2 At3g18524
MSH3 At4g25540
MSH6 At4g02070
MSH7 At3g24495

epair complex assembly MLH1 At4g09140

PMS2 At4g02460
Strand discrimination RFC See Table 2

PCNA See Table 2
Strand excision and resynthesis EXO1 See Table 2

RPA See Table 4
POL δ See Table 2

a AGI Arabidopsis genome initiative
b AGI locus code for components involved in DNA metabolic pathways is shown in Tables 2 and 4
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[112]. Exo1-dependent and independent MMR has been

the subject of a recent review [113].

MMR in plants

Arabidopsis and other plants encode homologs of MutS

and MutL proteins found in other eukaryotic organisms,

but also contain a unique MSH polypeptide (MSH7)

[114, 115] (Table 5B). MSH7 forms a heterodimer with

MSH2 and the protein complex is designated MutSc.
Quantitative analysis of transcript levels of representative

genes (MSH2 and PMS1) of the pathway indicated that

these genes show a higher expression in calli than in

seedlings from A. thaliana, thus confirming the essential

genome maintenance function performed by MMR system

in rapidly dividing tissues [116, 117]. Further knowledge of

Table 6 Overview of steps (A) and A. thaliana required factors (B) involved in HR

A B

Step Schematic 
representation Gene AGI locus 

code a,b

i) DNA end resection and MRE11 At5g54260
nucleoprotein filament formation RAD50 At2g31970

NBS1 At3g02680
COM1 At3g52115

RECQ4A At1g10930
RAD51 At5g20850

RAD51B At2g28560
RAD51C At2g45280
RAD51D At1g07745
XRCC2 At5g64520
XRCC3 At5g54750

BRCA2A At4g00020
BRCA2B At5g01630
RAD54 At3g19210

ii) DNA homology search and 
strand invasion RAD51 At5g20850

RAD54 At3g19210

iii) DNA heteroduplex extension POL δ See Table 2
PCNA See Table 2
RFC See Table 2

iv) Resolution of the D-loop

SDSA SRS2 At4g25120
FANCM At1g35530

DSBR EME1A At2g21800
EME1B At2g22140
MUS81 At4g30870
GEN1 At1g01880

SEND1 At3g48900

HJ dissolution RECQ4A At1g10930

TOP3α At5g63920

RMI1 At5g63540

a AGI Arabidopsis genome initiative
b AGI locus code for components involved in DNA metabolic pathways is shown in Table 2
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the role of a given plant MMR protein came from in vivo

studies. Using a yeast system, we have found that AtMutSc
is able to specifically recognize G/T, A/C, T/C, G/A, T/T,

or A/A mismatches and/or neighboring sequences con-

taining T [118] and that the expression of AtMutLa
affected the repair of IDLs in microsatellite sequences

[119]. The functionality of plant MutS and MutL homologs

was also assessed using A. thaliana (reviewed in [114]),

tomato [120], rice [121] and Nicotiana [122] mutant plants.

Suppression ofMSH2, PMS1 or MLH1 was associated with

microsatellite instability, an increase in homeologous

recombination relative to wild-type plants and a broad

spectrum of mutant phenotypes in their progenies. Inacti-

vation of MSH7 led a modest increase in the frequency of

recombination between Solanum lycopersicum and a dis-

tantly related species (Solanum lycopersicoides) [120],

while in A. thaliana, the inactivation of MSH7 did not

affect the rates of somatic homologous or homeologous

recombination, but influenced the rates of meiotic recom-

bination [123]. Finally, somewhat comparable to

mammalian proteins, we demonstrated that msh2 mutant

plants showed an altered expression pattern of cell cycle

marker genes after induced DNA damage in comparison to

wild-type plants and we experimentally validated MSH6 as

an E2F target gene [124].

Double-strand break repair

Double-strand break (DSB) repair uses two main strategies:

a homology-dependent, error-free homologous recombi-

nation repair (HR); a potentially error-prone, classical, Ku-

dependent non-homologous end-joining (C-NHEJ) and a

recently identified error-prone repair pathway, named

alternative non-homologous end-joining pathway (A-

NHEJ). The choice between these pathways depends on the

phase of the cell cycle and the initiation of DNA end

resection [125–127].

Homologous recombination

HR is favored during the S/G2 phase of the cell cycle,

when sister chromatids are available as homologous tem-

plates [128, 129]. This mechanism was the subject of

several recent reviews [130–132]. In this pathway, four

steps are required (Table 6A). (1) DNA end resection and

nucleoprotein filament formation. Initial processing of the

ends involves the trimeric complex MRE11-RAD50-NBS1

(MRN) and the CtBP (C-terminal binding protein) inter-

acting protein (CtIP) [133, 134]. Further resection involves

the 50–30 exonuclease EXO1 or the combined helicase/

nuclease activities of the BLM/DNA2 (Bloom Syndrome

RecQ Like Helicase/DNA replication helicase/nuclease2)

[135]. The 30 single-strand DNA (ssDNA) tails generated

are initially bound by ssDNA-binding protein RPA [136].

Subsequently, RPA is replaced by another ssDNA-binding

protein, RAD51, which forms a nucleoprotein filament on

the DNA. The replacement of RPA by RAD51 requires

several mediator proteins, such as BRCA2 (protein enco-

ded by the breast cancer-associated gene 2) and RAD54

[137–139]. Human cells have two RAD54 homologs,

RAD54 and RAD54B, which display similar biochemical

activities [140]. Evidence also suggests that RAD51 par-

alogs, such as XRCC2, XRCC3, RAD51B, RAD51C, and

RAD51D, function in promoting and/or stabilizing RAD51

nucleofilaments [131, 141]. However, unlike RAD51 that

self-assembles, RAD51 paralogs form at least four differ-

ent heterodimeric and heterotetrameric complexes. (2)

DNA homology search and strand invasion. The RAD51

nucleoprotein filament begins searching for a homologous

DNA sequence and then invades the intact double-stranded

DNA molecule to form a heteroduplex DNA structure

termed the displacement loop (D-loop). D-loop formation

is stimulated by RAD54 [131, 132]. Besides ssDNA

binding, RAD51 also interacts with dsDNA and associates

with the newly formed heteroduplex DNA. (3) DNA

heteroduplex extension. The invading strand in the D-loop

structure is then extended by several components of the

replication machinery, namely DNA polymerase d, PCNA
and RFC [142]. (4) Processing of the D-loop. HR can take

several different steps: synthesis-dependent strand anneal-

ing (SDSA), Holliday junction (HJ) resolution (the DSBR

model) and HJ dissolution [130, 132]. SDSA involves the

displacement of the newly synthesized strand by DNA

helicase(s), followed by strand annealing, DNA synthesis

and ligation. DSBR is characterized by the capture of the

second end of the DSB, formation of a double HJ (dHJ)

structure and resolution by specialized resolvases (e.g.,

GEN1, MUS81-EME1, SLX1-SLX4). Alternatively, the

dHJ can be dissolved by the BTB complex consisting of

BLM helicase, DNA topoisomerase IIIa and BLAP75.

Regulation of HJ processing enzymes has been covered in

recent reviews [143, 144]. Depending on the pathway

employed for HJ processing, different recombination out-

comes are generated. SDSA and HJ dissolution lead to the

formation of non-crossover while HJ resolution contributes

to the formation of non-crossover or crossover. The for-

mation of non-crossover recombinants is promoted in

mitotic cells, in contrast with that occurring in meiotic

cells.

An alternative process that involves recombination

between regions of homology at both sides of the break can

also occur. This process, known as single-strand annealing

(SSA), requires HR proteins involved in DNA end resec-

tion and annealing and also RPA, but is independent of

RAD51 [130–132, 145]. After DNA end resection, the 30
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ssDNA tails generated can reveal complementary sequen-

ces on both sides of the break. These sequences anneal

forming a branched structure. The 30 tails are then removed

and the nicks are ligated. This process inevitably results in

a deletion at the repair junction.

Classical non-homologous end-joining

C-NHEJ functions throughout the cell cycle but is domi-

nant in G1 and G2 [129]. Several recent reviews have

focused on C-NHEJ [146–150]. Three different steps are

involved in this pathway. (1) DNA end recognition and

tethering. The initial step is the recognition and binding of

DSBs by the Ku protein (heterodimer of KU70-KU80 in

eukaryotes) in a sequence-independent manner. Recent

evidence suggests that only two Ku molecules are present

at a DSB in vivo, presumably one at each end of the DSB

[151]. The Ku-DNA complex then interacts with the DNA-

dependent protein kinase (DNA-PK) catalytic subunit

(DNA-PKcs) forming a very stable and functional DNA-

PK complex. This complex remains tethered to the end and

prevents end access. The DNA-PK activated protein

undergoes extensive autophosphorylation in vivo [152].

This results in a conformational change that opens the

central DNA-binding cavity and releases the autophos-

phorylated DNA-PKcs from DNA ends [152]. Structures

and functions of the Ku protein and the DNA-PK have

been recently reviewed [153–155]. (2) DNA end process-

ing. Depending on the nature of the DNA damage, one or

more enzyme activities are involved in DNA end pro-

cessing. For example, the 50-dRP/AP lyase activity of the

Ku protein excises abasic or 50-dRP/AP sites [156, 157],

the tyrosyl DNA phosphodiesterase activity of TDP2

hydrolyzes 50 phosphotyrosyl-DNA bonds [158], and the

30-DNA phosphatase and 50-DNA kinase activities of the

polynucleotide kinase/phosphatase (PNKP) generate ligat-

able 50-phosphates and 30-hydroxyl ends [159, 160], among

others. In many cases, recruitment of these proteins

depends on their direct interaction with Ku [154]. (3)

Ligation of the DSB. The final step is carried out by DNA

ligase IV, which functions in complex with its cofactors

XRCC4 and XLF (XRCC4 like factor, also known as

Cernunnos) [150]. Recently, a new protein named PAXX

(PAralog of XRCC4 and XLF) has been reported to pro-

mote Ku-dependent DNA ligation in vitro [161].

Alternative non-homologous end-joining pathway

A-NHEJ increases as cells enter S-phase [162]. The

molecular mechanism of A-NHEJ has recently been

reviewed [163–165]. A-NHEJ occurs in the absence of key

C-NHEJ factors and can involve alignment of microho-

mologous sequences; thus, this pathway is also known as

microhomology-mediated end-joining (MMEJ). A-NHEJ

shares with C-NHEJ similar reaction steps. (1) DNA end

recognition and tethering. DSBs are efficiently bound by

PARP1 under Ku defective conditions [166]. In fact Ku

and PARP1 compete for DNA end binding, and Ku also

limits poly ADP-ribose (PAR) synthesis and ssDNA pro-

duction in response to DSBs [166, 167]. Upon DSB

binding, PARP1 gets activated and subsequently auto-

poly(ADP-ribosyl)ated. Auto-modification of PARP1

results in a decreased affinity for nucleosomes and in a

relaxed local chromatin structure, which facilitates chro-

matin remodeling for DNA repair [168, 169]. Overviews of

the involvement of PARP1 in DNA repair have been

published [170–172]. (2) DNA end processing. PARP1-

mediated PAR synthesis then triggers recruitment of the

MRN complex to initiate incompatible end resection

[173, 174]. (3) Ligation of DNA ends. MRN interacts with

the DNA ligase IIIa/XRCC1 complex and stimulates the

joining of DNA ends [175]. Joining junctions involve

microhomologies and deletions [175]. A second pathway

independent of microhomologies that relies on DNA ligase

I has also been suggested [176].

DSB repair in plants

Knowledge of recombination mechanisms in plants has

significantly advanced in recent years, especially because

DSB repair emerged as an important tool to achieve con-

trolled modifications of plant genomes (for recent reviews

see [177–183]). Most of the HR proteins have been iden-

tified and characterized in A. thaliana (Table 6B). Plants

with decreased transcript levels of genes involved in the

initial processing of the ends, namely MRE11 [22], RAD50

[22], NBS1 [184] and COM1 (a homolog of the human

CtIP, [185]) displayed hypersensitivity (measured as a

reduction in root growth, fresh weight or development of

true leaves) to some genotoxic compounds [mitomycin

(MMC) or methylmethanesulfonate (MMS), agents that

produce inter-strand DNA crosslinks or that methylates

DNA, respectively]. Interaction between NBS1 and

MRE11 has been reported for A. thaliana, maize and rice

[184, 186]. The NBS1 region involved in the interaction

was further characterized in A. thaliana and defined

towards the C-terminus [184]. Homologs of BLM, DNA2

and RPA are also conserved in plants. The loss of RECQ4A

(a homolog of mammalian BLM helicase, [187–189], JHS1

(a homolog of human DNA2, [190] or RPA1C and RPA1E

[89] led to hypersensitivity (measured as a reduction in

fresh weight or root growth) in response to a particular

DNA damaging agent [MMS; cisplatin (CPT, an agent that

mainly induces intra-strand DNA crosslinks); hydroxyurea

(an agent that inhibits the ribonucleotide reductase and

consequently reduces the dNTP pool and stalls replication
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forks); zeocin (an agent that induces DSBs) or ionizing

radiation]. The recq4A mutant also exhibited an increased

frequency of HR [187, 189] suggesting a role for the

RECQ4A protein in HR regulation. Suppression of HR is

dependent on both the N-terminal region and the helicase

activity of the protein [189]. A hyper-recombination phe-

notype was also observed for the jhs1 mutant, probably due

to an increased expression of genes involved in DNA

damage repair [190].

Several studies have also addressed the functions of

RAD51 and RAD51 paralogues in plants [191–194]. The

rad51, rad51c or xrcc3 A. thaliana mutants showed a

deficiency in SDSA [192]. Mutants impaired for the other

three RAD51 paralogues (RAD51B, RAD51D, XRCC2)

were also defective for spontaneous HR [191, 193, 195],

although to differing extents [191, 193]. The xrcc2 mutant

was the most affected. A further reduction in the recom-

bination rate has been observed in rad51b/xrcc2 double

mutant and rad51b/rad51d/xrcc2 triple mutant line [193].

The triple mutant also exhibited a greater sensitivity to the

DSB-inducing agent bleomycin (BLE) than the single and

double mutants, suggesting a partial functional redundancy

[194]. The redundancy of the two AtBRCA2 genes has been

also investigated [196–198]. Both Atbrca2a and Atbrca2b

mutants showed hypersensitivity against CPT and ionizing

irradiation, further stimulated in the Atbrca2a/Atbrca2b

double-mutant line [196]. Another report indicated that the

double mutant also showed hypersensitivity to MMC and a

defect in somatic HR frequency [197].

The role of other factors involved in the process of

strand exchange or in the stabilization of recombination

intermediates has been elucidated using mutant plants.

Loss of RAD54 reduced SDSA and loss of FANCM

reduced both SDSA and SSA [192]. Proteins involved in

the resolution of the D-loop were characterized in vitro or

in vivo. Recombinantly expressed SRS2 protein showed a

functional 30 to 50 DNA helicase activity that was able to

unwind nicked and partial HJ [199]. Biochemical proper-

ties of MUS81-EME1 complexes and GEN1 were also

determined after cloning, heterologous expression and

purification [200, 201]. Two functional EME1 (EME1A and

EME1B) and two functional GEN1 [GEN1 (XPG-like

endonuclease) and SEND1 (single-strand DNA endonu-

clease1)] homologs have been identified in A. thaliana.

Both complexes, MUS81-EME1A and MUS81-EME1B,

were able to cleave nicked HJs and, with a reduced effi-

ciency, intact HJs [201]. Both GEN1 paralogs

preferentially cleaved HJs near the junction point; slight

differences in sequence preferences have been detected

[200]. The role of MUS81 was also defined in vivo. The

mus81 mutant line showed a strong reduction in dry weight

to MMC, CPT or MMS treatment [188]. Also, altered

sensitivity (measured as a reduction in fresh weight) to

MMC and CPT was observed in recq4A, top3A and rmi1

single mutant lines [202]. These three lines also showed an

enhanced frequency of uninduced somatic HR [202].

In addition to the HR mechanism, KU-dependent and

independent pathways have been also identified in plants.

Arabidopsis encodes KU70 (At1g16970), KU80

(At1g48050), PARP1 (At2g31320) and PARP2

(At4g02390) [22, 203]. A. thaliana impaired in KU80

showed severe root developmental defects after c irradia-

tion [204, 205] and higher levels of DSBs [195]. As with the

ku80 mutant plant, the xrcc1 mutant line also exhibited a

hypersensitivity to c irradiation [205]. Furthermore, anal-

ysis of DSB repair kinetics of ku80 and xrcc1 single mutant

lines and ku80/xrcc1 double mutant line indicated a more

severe repair defect in the double mutant than in single

mutant plants [205]. These observations thus confirm the

existence of both KU-dependent and XRCC1-dependent

pathways in plants [205]. Besides XRCC1, PARP is also

involved in A-NHEJ. In contrast to humans where PARP1 is

the major contributor to the PARP activity in response to

DNA damage, PARP2 is the primary enzyme responsible

for poly(ADP-ribosyl)ation under genotoxic stress in A.

thaliana [203]. Plants impaired in both PARP1 and PARP2

displayed a strong reduction in root length and fresh weight

after treatment with MMS [206]. However, growth of parp1

and parp2 single mutants was not more sensitive to MMS

than wild-type seedlings [206]. Analysis of in vitro end-

joining assays indicated that the parp1/parp2 double mutant

plant had twofold less end-joining products compared with

the wild-type, while the ku70 and ku80 single mutant lines

had almost fourfold more products than the wild-type [206].

These observations suggest a regulation of non-homologous

recombination pathways. Studies in rice also reported that

ku70, ku80, lig4 or xrcc3 mutants showed hypersensitivity

to genotoxic agents and/or altered DSB repair [207, 208].

On the other hand, overexpression of OsRecQI4 (the

AtRecQ4A counterpart in rice), OsExo1 and MtTpd2a

enhanced DSB processing in rice andMedicago truncatula,

respectively [209, 210]. No apparent DNA-PK, XLF, DNA

ligase III or DNA polymerase b homologs exist in plants

[24, 204, 205, 211].

Concluding remarks

Significant progress in plant DNA repair has been made in

recent years. Sequence homology-based analysis allowed

identification of many plant factors, not only in model

organisms but also in some crop species. Most of them

were also functionally validated. Thus, it is clear that DNA

repair pathways are well conserved between plants and

mammals. However, some activities have been particularly

intensified in plants, probably related to a better adaptation
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to variable environmental conditions, from which plants

cannot escape, and/or to maintain genome stability over

multiple generations. Although only limited information on

DNA repair mechanisms from crop plants is available, the

current advances in A. thaliana can well be translated to

gain insights into the challenges of obtaining new varieties

with novel traits.
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35. Dianov G, Hübscher U (2013) Mammalian base excision repair:

the forgotten archangel. Nucleic Acids Res 41:3483–3490

36. Bebenek K, Pedersen L, Kunkel T (2014) Structure–function

studies of DNA polymerase k. Biochemistry 53:2781–2792

37. Hanssen-Bauer A, Solvang-Garten K, Sundheim O, Peña-Diaz J,

Andersen S, Slupphaug G, Krokan H, Wilson DI, Akbari M,

Otterlei M (2011) XRCC1coordinates disparate responses and

multiprotein repair complexes depending on the nature and

context of the DNA damage. Environ Mol Mutagen 52:623–635

38. Balestrazzi A, Confalonieri M, Macovei A, Donà M, Carbonera
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40. Córdoba-Cañero D, Dubois E, Ariza R, Doutriaux M-P, Roldán-

Arjona T (2010) Arabidopsis uracil DNA glycosylase (ung) is

required for base excision repair of uracil and increases plant

sensitivity to 5-fluorouracil. J Biol Chem 285:7475–7483
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42. Córdoba-Cañero D, Roldán-Arjona T, Ariza R (2014) Ara-

bidopsis ZDP DNA 30-phosphatase and ARP endonuclease

function in 8-oxoG repair initiated by FPG and OGG1 DNA

glycosylases. Plant J 79:824–834

43. Duclos S, Aller P, Jaruga P, Dizdaroglu M, Wallace S, Doublié
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