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Abstract Cystic fibrosis transmembrane conductance reg-

ulator (CFTR) channel gating is predominantly regulated by

protein kinase A (PKA)-dependent phosphorylation. In

addition to regulating CFTR channel activity, PKA phos-

phorylation is also involved in enhancing CFTR trafficking

and mediating conformational changes at the interdomain

interfaces of the protein. The major cystic fibrosis (CF)-

causing mutation is the deletion of phenylalanine at position

508 (F508del); it causes many defects that affect CFTR

trafficking, stability, and gating at the cell surface. Due to

the multiple roles of PKA phosphorylation, there is growing

interest in targeting PKA-dependent signaling for rescuing

the trafficking and functional defects of F508del-CFTR.

This review will discuss the effects of PKA phosphorylation

on wild-type CFTR, the consequences of CF mutations on

PKA phosphorylation, and the development of therapies that

target PKA-mediated signaling.
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Introduction

Cystic fibrosis (CF) is caused by mutations in the cystic

fibrosis transmembrane conductance regulator (CFTR)

gene. The gene encodes for CFTR, an anion channel that

consists of two membrane-spanning domains (MSDs), two

nucleotide-binding domains (NBDs), and a unique regula-

tory (R) domain. The interface between the MSDs and the

NBDs is conferred by intracellular loops (ICLs) that extend

from the MSDs and connect with the NBDs via coupling

helices (CHs). Channel gating of CFTR is regulated pri-

marily by protein kinase A (PKA) phosphorylation, although

several other serine/threonine kinases and tyrosine kinases

have also been implicated in its regulation [1–3].

The major CF-causing mutation is the deletion of

phenylalanine at position 508 (F508del). The mutation

disrupts the thermostability of NBD1 and the interface

between ICL4 and NBD1, leading to defects in CFTR

assembly, processing and channel gating [4, 5]. Drug dis-

covery efforts have resulted in the first Food and Drug

Administration (FDA)-approved drug known as

KALYDECO� (VX-770), a potentiator that enhances

CFTR channel gating at the cell surface. VX-770 was

initially approved for CFTR gating mutations such as

G551D (the mutation of glycine to aspartic acid at position

551). A few years later, it was approved for patients with

the F508del mutation in combination with VX-809, a

corrector compound that partially rescues the misfolded

mutant protein and promotes its trafficking to the cell

surface. Together, the potentiator VX-770 and corrector

VX-809 drug cocktail is marketed as ORKAMBITM. Our

intention for this review is to highlight recent insights on

the PKA-dependent regulation of CFTR functional

expression, the effects of CF-causing mutations and the

activity of recently approved modulators.
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CFTR synthesis, trafficking and stability are
modified by PKA-mediated phosphorylation

PKA phosphorylation regulates CFTR expression

and trafficking via the biosynthetic pathway

The promoter region of the CFTR gene contains a cyclic

adenosine monophosphate (cAMP)-response element

(CRE) [6, 7]. McDonald and colleagues hypothesized that

PKA phosphorylation may regulate CFTR gene expression

by activating this regulatory region and/or promote CFTR

synthesis by increasing the mRNA stability of the CFTR

gene (Fig. 1) [6, 7]. After its synthesis, CFTR possesses

multiple PKA consensus sites which have low basal levels

of phosphorylation. Previous radioactivity and mass spec-

trometry-based studies have shown that nine dibasic PKA

consensus sites are located in the regulatory insertion (RI)

of NBD1 (Serine 422 or S422), the regulatory extension

(RE) in the amino-terminus of the R domain (S660) and the

remainder of the R domain [8–17]. These sites exhibit low

levels of phosphorylation in the resting (i.e., inactive) state

of the protein and increased levels of phosphorylation after

the addition of cAMP agonists (particularly at S660, S700,

S737, S768, S795 and S813) [8–17].

One of the roles of constitutive phosphorylation relates

to CFTR protein trafficking from the endoplasmic reticu-

lum (ER) to the Golgi apparatus. After exiting the ER,

partially assembled CFTR protein interacts with b-coat
protein (COP), a component of the COPI complex that

mediates ER retention [18, 19]. Co-immunoprecipitation

studies show that phosphorylation decreases the interaction

of CFTR with b-COP by enhancing its affinity to 14-3-3

(the b and e isoforms), a protein involved in the forward

trafficking of CFTR from the ER to the Golgi and cell

surface (Fig. 1) [18].

Nuclear magnetic resonance (NMR) studies have shown

that PKA phosphorylation of S768, S795 and S813 in the R

domain led to binding of CFTR to the 14-3-3b isoform in

the ER [18]. A recent study by the Ottmann group shows

that the R domain cooperatively binds to 14-3-3 using

NHERF1

Fig. 1 The deletion of phenylalanine at position 508 (F508del) alters

phosphoregulation of cystic fibrosis transmembrane conductance

regulator (CFTR) trafficking. Left panel: protein kinase A (PKA)

phosphorylation promotes CFTR gene expression via the cyclic

adenosine monophosphate (cAMP) response element. Phosphoryla-

tion also enhances interactions of wild-type CFTR (Wt-CFTR)

protein with 14-3-3, which facilitates CFTR exit from the endoplas-

mic reticulum (ER) and promotes its forward trafficking to the cell

surface. Zoom in of the cell surface: phosphorylation enhances the

interaction between CFTR and the Na?/H? exchanger regulatory

factor (NHERF1)–ezrin–actin complex which stabilizes the protein at

the cell surface. Ezrin also brings PKA closer to CFTR which is

essential for regulating channel gating. At the cell surface, CFTR can

be internalized by endocytosis into early endosomes which can then

recycle back to the cell surface or undergo lysosomal degradation.

PKA phosphorylation can also enhance cell surface expression of

CFTR by promoting recycling. Right panel: the major population of

F508del-CFTR is retained in the ER and undergoes ER-associated

degradation via the proteasome. A limited number of F508del-CFTR

protein can escape the ER and reach the Golgi apparatus; however,

aberrant exposure of ‘‘retention motifs’’ redirects the protein back to

the ER. F508del-CFTR may also have impaired interactions with

14-3-3 due to defective phosphorylation of the mutant, resulting in

decreased forward trafficking. Zoom in of the cell surface: the small

population of F508del-CFTR that reaches the cell surface is

unstable and is targeted for degradation via the peripheral protein

quality control, possibly due to defective interactions with the

NHERF1–ezrin–actin complex. The phosphorylation defect also

results in reduced recycling leading to decreased cell surface

expression of F508del-CFTR. Not depicted for clarity: CFTR trafficks

within vesicles in the cell
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fluorescence polarization-binding assays with R domain

constructs containing individually phosphorylated PKA

sites [20]. Their results suggest that phosphorylation of

S768 in the R domain created the strongest binding site of

CFTR to 14-3-3, and this ‘‘anchor’’ facilitated binding of

additional sites (S712, S753, S795, S813) to 14-3-3 [20].

Role of PKA phosphorylation in cell surface stability

of CFTR

CFTR residence at the cell surface is determined by mul-

tiple factors, including its relative affinity to cytoskeletal

and scaffolding proteins as well as endocytic proteins

(Fig. 1). Phosphorylation has been found to play a role in

increasing the abundance of CFTR at the cell surface by

enhancing its interaction with cytoskeletal scaffolding

proteins such as the Na?/H? exchanger regulatory factor

(NHERF1) and the ezrin/radixin/moesin (ERM) complex.

NHERF1 and ezrin interacts with the actin cytoskeleton

(NHERF1-ezrin-actin complex); together the complex

binds to CFTR via its PDZ motif [21–24]. Ezrin has also

been shown to tether PKA to the CFTR-containing com-

plex, thereby amplifying its functional expression as a

channel [25–27]. Taken together, these studies suggest that

phosphorylation promotes interactions between CFTR and

the cytoskeleton, increasing the abundance and stability of

CFTR at the cell surface [23, 24, 28–30].

PKA phosphorylation also enhances cell surface resi-

dence of CFTR by promoting recycling of CFTR via

endosomes to the cell surface as assessed in recent fluo-

rescence detection technology studies applying fluorogen-

activating proteins (FAPs) [31]. This technology enables

efficient labeling of CFTR at the plasma membrane in live

epithelial cells [31]. The Wt-CFTR protein residing in

Rab11-positive recycling endosomes was actively deliv-

ered to the cell surface following activation of PKA [31].

Hence, the steady-state residence time for Wt-CFTR at the

cell surface is enhanced by PKA through two mechanisms:

decreased internalization via endocytosis and increased

exocytosis via recycling endosomes.

Regulation of CFTR channel gating by PKA
phosphorylation

ATP-dependent (liganded) gating is regulated

by PKA-mediated phosphorylation

There have been many informative studies of phosphory-

lation and nucleotide-dependent gating of the chloride

channel activity of CFTR [12, 32–35] that are discussed in

recent reviews [35–38]. Our current understanding of the

molecular basis for ATP regulated channel gating of CFTR

has been guided by biophysical studies of CFTR channel

gating [35, 36, 39, 40], biochemical and ATPase activity

studies by our laboratory [41–45] and mechanistic insights

provided by similar ATP-binding cassette (ABC)

prokaryotic proteins [46–49].

PKA-mediated phosphorylation of the R domain is

absolutely required for nucleotide-dependent gating

(Fig. 2) [12, 13, 50]. Following this obligatory modifica-

tion, ATP binds to two sites at the NBD1:NBD2 interface

[51]. Site 1, which is comprised of the Walker A and B

motifs of NBD1 and the non-canonical Walker C motif of

NBD2 (LSHGH), binds but does not hydrolyze the

nucleotide [41]. Site 2, which is comprised of the Walker A

and B motifs of NBD2 and the canonical Walker C motif of

NBD1 (LSGGQ), binds and hydrolyzes ATP (i.e., confers

ATPase activity) [41].

Recent studies by Csanády and colleagues support a

model wherein ATP binding to both nucleotide-binding sites

enhances dimerization of NBD1 and NBD2 which is obli-

gatory for channel opening [52]. ATPase activity at site 2

subsequently promotes destabilization of the NBD dimer,

leading to channel closure [52]. This scheme is supported by

mutagenesis studies which show that disruption of key

residues in the putative catalytic base (e.g., mutation of

glutamic acid to glutamine at position 1371 or E1371Q)

inhibited ATPase activity of purified full-length CFTR and

decreased the rate of channel closure [35, 36, 41, 53]. This

model mostly conforms to the generally accepted mecha-

nism underlying the transport activity of ABC proteins [46].

The mechanisms underlying PKA-mediated regulation of

ATP-dependent gating remain unclear. Patch clamp studies

conducted by Szellas and Nagel show that PKA activation

decreased the Michaelis–Menten constant (KM) of the Mg–

ATP-dependent channel opening by two-fold [54], sug-

gesting that it enhances nucleotide affinity to one or both

sites. Our group showed that PKA phosphorylation increases

the apparent affinity of Mg–ATP in ATPase activity mea-

surements using purified and reconstituted CFTR protein

[55], suggesting that phosphorylation enhances nucleotide

affinity to the catalytic site (Site 2). A recent study suggests

that PKA phosphorylation stabilizes the post-catalytic tran-

sition state rather than modifying a pre-catalytic state [56].

Hence, fundamental questions regarding the regulation of

ATPase activity and channel gating of CFTR by PKA

phosphorylation remain unanswered.

ATP-independent (unliganded) gating is regulated

by PKA phosphorylation

Primarily through studies of the ATP-binding mutant,

G551D-CFTR, and the NBD2 deletion mutant (deletion of

residues 1172–1480), it became clear that CFTR could

mediate ATP-independent (or unliganded) channel
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openings. These unliganded channel openings appear to be

regulated by phosphorylation, potentially via allosteric

interactions between the R domain and the membrane

domains and/or intracellular loops [57]. Future studies are

required to understand the molecular basis for such ATP-

independent gating and its regulation.

Conformational changes underlying
phosphorylation-regulated channel activation

As a result of elegant biochemical, structural and computa-

tional studies, the R domain has been modeled as a flexible,

disordered region of the protein that undergoes dynamic

interactions with other CFTR domains [58, 59]. Although the

R domain is disordered, it possesses regions with the

propensity to form alpha helices in the non-phosphorylated

state [59–62]. PKA phosphorylation was found to reduce this

propensity: results from biophysical and computational

studies suggest that the isolated R domain becomes less

compact with phosphorylation [59–62]. There is a growing

consensus that these phosphorylation-dependent dynamic

changes in the R domain allosterically modulates

intramolecular interactions in CFTR that are critical for its

activity as an anion channel [59–64]. In the next paragraphs,

we will discuss studies of phosphorylation-mediated changes

in domain:domain interactions in the context of isolated

domains and in the context of the full-length protein.

Fig. 2 F508del-CFTR exhibits defective phosphorylation-dependent

conformational changes essential for channel gating. Top panel: In

Wt-CFTR, PKA increases phosphorylation at multiple sites which

include S422 in the regulatory insertion (RI) of NBD1, S660 in the

regulatory extension (RE) located at the amino-terminus of the R

domain and other sites in the R domain. CFTR has two adenosine

triphosphate (ATP)-binding sites at the NBD dimers: site 1 is non-

canonical and does not hydrolyze ATP, whereas site 2 is canonical

and exhibits ATPase activity. PKA phosphorylation decreases the

alpha helical content of the RE and RI which removes their steric

hindrances on nucleotide-binding domain 1 (NBD1). This enhances

interactions at the NBD1:NBD2 interface (necessary for ATP

binding) as well as the intracellular loop 1 (ICL1):NBD1 and

ICL4:NBD1 interfaces (necessary for conveying conformational

changes from the NBDs to the membrane spanning domains for

channel gating). Bottom panel: F508del-CFTR exhibits defective

phosphorylation at S660 in the RE. F508del-CFTR may also exhibit

defective phosphorylation at S422 in the RI and/or other phospho-

rylation sites in the R domain, but this could not be confirmed with

our mass spectrometry methods (sites depicted as question marks).

F508del-NBD1 retains aberrant interactions with the RE and RI upon

PKA phosphorylation; this prevents NBD1 from interacting with

NBD2, ICL1 and ICL4 which results in impaired ATP binding/

hydrolysis and defective conformational changes necessary for

channel gating
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Phosphorylation-regulated changes in NBD1

interactions

Although the majority of the canonical, dibasic PKA sites

are located within the R domain of CFTR, there is one

phosphorylation site in the RI of NBD1, S422. S660 is

located in the amino-terminus of the R domain, but was

modeled in X-ray crystallography studies of an NBD1

fragment described as the RE region [65]. Previous NMR

studies on isolated NBD1 and regions of the R domain

reported that in the closed CFTR state, the RE and RI

regions create steric hindrances on NBD1 which prevent it

from interacting with NBD2, ICL1 and ICL4 (Fig. 2)

[59–62]. These NMR studies found that upon phosphory-

lation of S422 and S660, the alpha helical content of the RI

and RE decreases respectively, removing their steric hin-

drances on NBD1 and increasing interactions at the

NBD1:NBD2, ICL1:NBD1 and ICL4:NBD1 interfaces

[59]. Interactions at the NBD1:NBD2 interface are essen-

tial for the formation of the two ATP-binding pockets;

interactions at the ICL:NBD1 interfaces may be important

for relaying conformational changes from the NBDs to the

MSDs upon ATP binding and hydrolysis [59, 60, 62].

Taken together, these interactions are necessary for channel

gating and may also contribute to the stability of full-length

CFTR [59, 60, 62].

Phosphorylation-regulated changes

in intramolecular interactions

Changes in the affinity of domain:domain interactions in

the context of the full-length protein have been assessed by

chemical cross-linking, peptide-mediated competition of

gating transitions and electron microscopy studies of the

purified protein. Consistent with NMR studies discussed in

the previous section, results from cysteine cross-linking

studies suggest that phosphorylation enhances interactions

at the NBD1:NBD2 interface [66, 67] and promotes direct

interactions between specific regions of the R domain and

structure(s) in the membrane domains (the amino- and/or

the carboxy- terminal[s]) [68–70]. Electron microscopy

studies also show that full-length CFTR protein becomes

more compact after phosphorylation, supporting the idea

that this modification regulates intramolecular interactions

[70].

Cysteine cross-linking studies have found that NBD1

interacts with ICL1 (MSD1) and ICL4 (MSD2), while

NBD2 interacts with ICL2 (MSD1) and ICL3 (MSD2)

[48, 67]. However, these studies were unable to detect any

changes at those interfaces upon PKA phosphorylation

[67]. The failure to detect changes in cysteine cross-linking

suggests that the ICL:NBD1 or ICL:NBD2 interfaces may

interact regardless of phosphorylation state; alternatively,

phosphorylation may cause subtle conformational changes

at those interfaces during channel gating, too subtle for

cysteine cross-linking methods to detect [67]. Interestingly,

single channel studies have found that cysteine cross-

linking at the domain-swapping interfaces (ICL4:NBD1

and ICL2:NBD2) inhibited phosphorylation-dependent

channel gating, whereas cross-linking at the interfaces of

the same half of the protein (ICL1:NBD1 and ICL3:NBD2)

did not [48, 67]. Furthermore, Ehrhardt and colleagues

reported that competition with an ICL1 peptide for the

native ICL1:NBD1 interaction abolished channel gating

and ATPase activity [71], suggesting that this interaction

exerts a positive effect on ATP-dependent gating in the

native protein. Together, these studies suggest that

dynamic interactions at the ICL:NBD interfaces are

essential for phosphorylation-dependent channel gating,

yet uncertainty remains regarding the relative role of these

interactions in channel opening and closing.

The ICLs of CFTR may also interact with each other as

there were reports of an ICL tetrahelix bundle based on

homology modeling and cysteine cross-linking studies

[48, 72]. Recent cysteine cross-linking studies have found

that E267 (ICL2) and K1060 (ICL4) interact with each

other; both residues are also in close proximity to the

NBDs and CHs and thus may be involved in conveying

conformational changes to the MSDs for channel gating

[72]. Switching the charge of E267 and K1060 or cross-

linking the cysteine pair (E267C/K1060C) abolished PKA

sensitivity and CFTR gating, suggesting that helix bundle

interactions may be important for mediating phosphoryla-

tion-dependent effects [72].

Molecular consequences of disease-causing
mutations and impact on regulation by PKA-
dependent phosphorylation

G551D-CFTR

The G551D mutation at NBD1 results in defective channel

gating but does not affect trafficking of the mutant protein

to the cell surface [73]. Our iodide efflux studies with

purified and reconstituted full-length G551D-CFTR protein

show that the mutant displays defective phosphorylation-

and ATP-dependent gating [74, 75]. The dysfunction of

G551D-CFTR may be due to the mutation disrupting ATP

binding at site 2, as ATPase activity assays from our lab-

oratory show that the G551D mutation significantly

decreases the apparent affinity of CFTR for ATP [75].

However, it was reported that mutation of the G551 residue

in NBD1 of the human multidrug resistance protein 1 (a

similar ABC transporter) does not affect ATP binding; an

alternative explanation is that the mutation may prevent
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conformational changes upon ATP binding at the

NBD1:NBD2 interface [40, 76]. Furthermore, G551D may

prevent phosphorylation from enhancing interactions at the

NBD1:NBD2 interface which may explain the defective

channel gating and decreased apparent ATP affinity of

CFTR. However, additional studies must be conducted to

test this hypothesis.

F508del-CFTR

The major CF-causing mutation, F508del, causes destabi-

lization of NBD1 and misassembly of ICL:NBD

interactions [4, 5]. These intrinsic molecular defects disrupt

protein assembly and trafficking, resulting in ER-associ-

ated degradation of the mutant protein [77–81]. The limited

number of mutant proteins that reach the cell surface are

intrinsically unstable at 37 degrees Celsius (�C), exhibit
altered channel function and are subject to retrieval from

the cell surface and disposal by lysosomal degradation

(Fig. 1) [82, 83]. In the following paragraphs, we will

discuss how phosphorylation-dependent regulation of

trafficking, surface stability and function is disrupted in

F508del-CFTR.

F508del alters the intrinsic propensity of CFTR

for phosphorylation

Our group has shown that F508del-CFTR can be phospho-

rylated at the ER as detected by immunoblotting and

immunofluorescence microscopy [8]. Selected reaction

monitoring-mass spectrometry (SRM–MS) detected that

phosphorylation of S660 at the RE was significantly reduced

in immuno-purified F508del-CFTR when compared to

immuno-purified Wt-CFTR (Fig. 2) [8]. We interpreted the

reduced propensity for phosphorylation at this site (and

possibly other PKA consensus sites) to reflect the multiple

conformational defects induced by this deletion mutation.

The defective propensity for phosphorylation at S660

may be related to aberrant intramolecular interactions

between NBD1 and NBD2 or between NBD1 and CHs

conferred by ICL1 and/or ICL4 (Fig. 2). Such aberrant

interactions were previously determined in NMR studies

of protein fragments and chemical cross-linking studies

[60, 84, 85]. NMR studies of isolated F508del-NBD1

bearing stabilizing mutations revealed an increased

affinity between the phospho-regulated-RI and the core

of NBD1 [60]. Deletion of the RI partially restored

intramolecular interactions at the ICL4:NBD1 and

ICL2:NBD2 interfaces and improved F508del-CFTR

channel activation [86]. Hence, the effect of the F508del

mutation on these interactions that lead to reduced rates

of phosphorylation may contribute to defective

trafficking and slower rates of phosphorylation-depen-

dent channel activation [87, 88]. Unfortunately, we could

not monitor the phosphorylation propensity of S422 in

the RI with our SRM-MS studies due to its weak signal.

It would have been particularly interesting to determine

if phosphorylation at S422 is also reduced in the

F508del-CFTR protein given the proposed relevance of

enhanced RI:NBD1 affinity in preventing normal

assembly of this mutant [86].

F508del-CFTR protein targeted to ER from the Golgi

via retrograde trafficking: a potential consequence

of aberrant phosphorylation

A small population of F508del-CFTR can escape ER

quality control and reach the cell surface; however, the

conformational defects of the mutant protein can lead to

the aberrant exposure of dibasic ‘‘retention motifs’’ (RXR)

which promote re-direction of F508del-CFTR from the

Golgi back to the ER (Fig. 1) [89–91]. As previously dis-

cussed, COPI-mediated trafficking is competed by

phosphorylation-regulated interactions between CFTR and

14-3-3 [18]. Due to the limitations of the amount of

F508del-CFTR that could be studied by SRM-MS in our

previous work, we could not monitor the effect of this

mutation on the sites that interact with 14-3-3 (e.g., pS768

and pS753). Hence, it remains unclear whether a defective

interaction between F508del-CFTR and 14-3-3 is a result

of defective phosphorylation at these sites.

Cell surface F508del-CFTR protein is targeted

to the lysosomes and exhibits defective phosphorylation-

regulated endosomal recycling

A small population of F508del-CFTR may escape ER

retention (this amount is increased at low temperature

culture conditions) to reach the cell surface; however, the

mutant protein is rapidly removed by peripheral protein

quality control, primarily via endocytosis and delivery to

lysosomes (Fig. 1). The loss of F508del-CFTR may be due

to its inherent thermal instability and reduced interactions

with the NHERF1–ezrin–actin complex [82]. As previ-

ously mentioned, the NHERF1–ezrin–actin complex is

important for the localization, stability and PKA-regulated

channel activity of CFTR at the cell surface [28, 92]. In

addition, the fraction of F508del-CFTR that is delivered to

the recycling endosomal compartment from the cell surface

exhibits a defect in PKA-regulated exocytosis [31]. Taken

together, defective endosomal trafficking by F508del-

CFTR partially reflects its altered regulation by PKA

phosphorylation [31].
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Impact of mutation-targeted therapies
on phosphorylation-dependent channel gating

Correctors

Low temperature culture conditions (i.e., 27 �C) partially
rescue the misassembly and mistrafficking of F508del-

CFTR [93]. Similarly, small molecule corrector com-

pounds have been identified to partially recapitulate this

rescue effect [4, 5, 94–96]. The mutant protein that is

‘‘corrected’’ by low temperature incubation at the plasma

membrane exhibits a decline in surface expression and

channel open probability with increasing temperatures as

measured in single channel studies [5]. Interestingly,

treatment with the corrector VX-809 or its analog, C18,

maintained the open probability of F508del-CFTR with

increasing temperatures [5]. Previous studies have sug-

gested that correctors may rescue phosphorylation-

dependent channel gating of F508del-CFTR by either sta-

bilizing intramolecular interactions at the ICL:NBD

interfaces [4, 5] or by enhancing interactions with the

NHERF1–ezrin–actin complex [97] that stabilize cell sur-

face expression. Interestingly, SRM-MS studies from our

laboratory showed that the corrector C18 does not signifi-

cantly rescue the intrinsic phosphorylation defect exhibited

by F508del-CFTR, supporting the idea that protein abun-

dance rather than the specific, phosphorylation-regulated

activity of each mutant protein is enhanced by C18 and

related correctors [8].

Potentiators

The potentiator, VX-770, was shown to enhance channel

activity of the gating mutant, G551D-CFTR, and F508del-

CFTR (after rescue of its trafficking defect) [98]. Interest-

ingly, and implicit in its potentiation of the ATP-binding

mutant, G551D, VX-770 can potentiate CFTR in an ATP-

independent manner [74, 99]. Hwang and colleagues pro-

posed that VX-770 may bind to the transmembrane regions

of CFTR and shift the equilibrium from the post-hydrolytic

state towards the pre-hydrolytic stage, increasing the open-

ing time of CFTR by allowing ATP molecules to rebind to

site 2 [99]. Our iodide efflux studies of purified and recon-

stituted CFTR protein show that VX-770 directly binds to

full-length CFTR; the addition of VX-770 led to a two-fold

increase in the iodide efflux rate in proteoliposomes con-

taining PKA-phosphorylated CFTR, but had no effect on

non-phosphorylated CFTR. We interpreted these findings as

suggesting that VX-770 potentiation is phosphorylation

dependent [74]. On the contrary, another group reported that

VX-770 can enhance the activity of CFTR with the R

domain removed, suggesting that VX-770 does not act on

the R domain and its activity is phosphorylation independent

[99]. Alternatively, we suggest that the R domain deletion

mutant may mimic the effects of R domain phosphorylation,

a hypothesis that we will be testing in the future.

Targeting PKA-dependent signaling
as a therapeutic strategy

Targeting PKA-dependent phosphorylation

to rescue mistrafficking of F508del-CFTR

Studies have shown that targeting cAMP/PKA phospho-

rylation can promote the interaction of F508del-CFTR with

14-3-3 (b and e isoforms), enhancing the forward traf-

ficking of the mutant protein and stabilizing it at the cell

surface [18]. Recent fluorescence polarization studies have

found that the drug fusicoccin-A, a phytotoxin produced by

the fungus Phomopsis amygdali, significantly increased

binding of the pS753 epitope in a R domain peptide of

CFTR to 14-3-3 [20]. Hence, modification of the PKA-

dependent interaction between F508del-CFTR and 14-3-3

may constitute a potential therapeutic target for rescuing

F508del-CFTR trafficking.

Targeting PKA-dependent phosphorylation

to rescue defects in stability and dysfunction

of F508del-CFTR after correction of its

mistrafficking defect

The groups of Loureiro and Abbattiscianni have assessed

the impact of modulating the phosphorylation-regulated

interaction between F508del-CFTR and the NHERF1–

ezrin–actin complex in enhancing the functional expression

of the mutant after correction of its trafficking defect

[97, 100]. These groups showed that phosphorylation of

ezrin enhanced the interaction of F508del-CFTR with

NHERF1 and actin [97]. Further, ezrin phosphorylation

was found to increase actin polymerization and stabilize

F508del-CFTR at the cell surface of CFBE cells, possibly

by preventing its recognition by the peripheral protein

quality control [97, 100].

The concentration of intracellular cAMP within CFTR-

containing microdomains is regulated by proximal phos-

phodiesterases (PDEs). A recent study introduced the

application of cyclic nucleotide PDE inhibitors to rescue

the dysfunction of F508del-CFTR [101]. The PDE inhi-

bitor, RPL554, was shown to increase CFTR activity in

CFBE cells [101]. RPL554 and other PDE inhibitors,

milrinone and rolipram, were also found to significantly

enhance VX-770 potentiation in CFBE cells [101]. Inter-

estingly, this study has found that RPL554 may be

therapeutically beneficial for CF as it significantly
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increased cilia beating for mucociliary clearance, possibly

by enhancing PKA phosphorylation of the dynein light

chains of cilia [101].

In addition, the cAMP concentrations proximal to CFTR

are regulated by the activity of the multidrug resistance

protein 4 (MRP4), another ABC protein which has been

shown to directly mediate the efflux of cAMP [102–106].

Inhibition of MRP4 using MK-571 led to a localized

increase in cAMP evoked by addition of the beta-adren-

ergic agonist, adenosine, resulting in an increase in Wt-

CFTR channel function in the apical membrane [104].

Future studies are required to evaluate the potential for

MRP4 inhibition to enhance the rescue activity of modu-

lators targeting mutant forms of CFTR after their delivery

to the cell surface.

Concluding statements

In summary, PKA phosphorylation modifies multiple steps

in the life cycle of the CFTR protein, including its

biosynthesis, trafficking, cell surface stability and function.

Disease-causing mutations exhibit defects in one or more

of these steps, and the therapeutic potential of targeting

PKA phosphorylation to ameliorate these defects is being

explored. Given the importance of the location of CFTR in

apical macromolecular complexes for robust regulation by

PKA, therapies targeting F508del-CFTR modification by

PKA will need to be added in concert with other inter-

ventions aimed at first promoting proper assembly and

forward trafficking of CFTR out of the ER. Finally,

phosphorylation by PKA and possibly other kinases offer a

tremendous potential to augment the therapeutic efficacy of

CFTR modulators.
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