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Abstract The scanning model for eukaryotic mRNA

translation initiation states that the small ribosomal sub-

unit, along with initiation factors, binds at the cap structure

at the 50 end of the mRNA and scans the 50 untranslated
region (50UTR) until an initiation codon is found. How-

ever, under conditions that impair canonical cap-dependent

translation, the synthesis of some proteins is kept by

alternative mechanisms that are required for cell survival

and stress recovery. Alternative modes of translation ini-

tiation include cap- and/or scanning-independent

mechanisms of ribosomal recruitment. In most cap-inde-

pendent translation initiation events there is a direct

recruitment of the 40S ribosome into a position upstream,

or directly at, the initiation codon via a specific internal

ribosome entry site (IRES) element in the 50UTR. Yet, in
some cellular mRNAs, a different translation initiation

mechanism that is neither cap- nor IRES-dependent seems

to occur through a special RNA structure called cap-inde-

pendent translational enhancer (CITE). Recent evidence

uncovered a distinct mechanism through which mRNAs

containing N6-methyladenosine (m6A) residues in their

50UTR directly bind eukaryotic initiation factor 3 (eIF3)

and the 40S ribosomal subunit in order to initiate transla-

tion in the absence of the cap-binding proteins. This review

focuses on the important role of cap-independent

translation mechanisms in human cells and how these

alternative mechanisms can either act individually or

cooperate with other cis-acting RNA regulons to orches-

trate specific translational responses triggered upon several

cellular stress states, and diseases such as cancer. Eluci-

dation of these non-canonical mechanisms reveals the

complexity of translational control and points out their

potential as prospective novel therapeutic targets.
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Introduction

Protein synthesis—or mRNA translation—is the most

energy-consuming process in the cell and is essential for

gene expression regulation [1]. Translation involves the

coordinated interaction of mRNA, auxiliary factors, ribo-

somes, and tRNAs, and is tightly controlled [1–4].

Misregulation of the translation machinery may lead to

several disease states, including carcinogenesis [5–7].

Regulation of mRNA translation occurs at all steps of the

process—initiation, elongation, termination and recycling

[1–4]. Also, it is generally accepted that translation initi-

ation is the rate-limiting step and the most tightly regulated

[1, 4–9]. Translation initiation of most eukaryotic mRNAs

occurs through a mechanism that has been named ‘‘cap-

dependent scanning’’ [7–12]. This canonical mechanism

requires that the small ribosomal subunit, together with

several eukaryotic initiation factors (eIF), recognizes the

m7GpppN cap structure at the 50 end of the transcript,
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previously bound to the trimeric complex eIF4F, and scans

the 50 untranslated region (50UTR) until it reaches the first

initiation codon (usually AUG) in a favorable context

[11, 13–15].

Although this mechanism is used in most circumstances,

under various stress conditions, canonical translation ini-

tiation is impaired and overall protein synthesis is

drastically reduced [4, 5, 7, 16]. However, repression of

global protein synthesis is often accompanied by selective

translation of mRNAs that encode proteins that are crucial

in cell survival and stress recovery [4, 5, 7]. Synthesis of

these stress-responsive proteins can occur through alter-

native mechanisms of translation initiation that are

evolutionarily conserved and greatly impact translation in

organisms as diverse as yeast or humans. This translational

reprogramming is achieved through mechanisms that can

involve specific mRNA features, such as small structural

elements that interact with trans-acting factors, upstream

open reading frames (uORFs), or other cis-acting RNA

regulons [4, 17]. Moreover, translational reprogramming

occurs via a cap- and/or scanning-independent mechanism

of ribosomal recruitment [18–22]. However, non-canonical

translation initiation can also occur via a cap-dependent but

scanning-free mechanism. Examples of this include those

taking place on mRNAs with extremely short 50UTRs or

with highly complex 50UTRs that promote ribosome

shunting, as well as those that may occur in transcripts with

50UTRs that form highly stable structures such as RNA

G-quadruplexes or pseudoknots [23–32]. Nevertheless,

many oncogenes, growth factors and proteins involved in

stress response and in the regulation of programmed cell

death are encoded by mRNAs that have alternatives to the

cap-dependent mechanisms of translation initiation to

sustain protein synthesis under stress conditions or disease

[4, 6, 7, 33, 34]. The most widely described cap-indepen-

dent mechanism of translation initiation consists of 40S

ribosomal subunit recruitment into a position that is either

on or upstream the initiation codon, via a specific internal

ribosome entry site (IRES) element [21, 22]. However,

cap-independent translation initiation can also occur in the

absence of an IRES. One distinct mechanism, known as

‘‘cap-independent translational enhancer (CITE)-mediated

translation’’, is utilized by some cellular mRNAs under

apoptotic conditions and remains dependent on 50 end

scanning [35–37]. Notably, it has also been recently

described that mRNAs containing N6-methyladenosine

(m6A) in their 50UTR can also be translated in a cap-in-

dependent manner [38–40].

As stated above, not only is selective translation by cap-

independent initiation mechanisms important for cellular

survival under stress, but it also is used by cells in disease

states, such as autoimmune diseases, neurodegeneration

and cancer [5–7, 34, 41, 42]. Interestingly, many proteins

encoded by IRES-containing mRNAs play decisive roles in

cell survival (BAG1 [43], XIAP [44], Bcl-xL [45], cIAP1

[46], Bcl-2 [47]), proliferation (FGF2 [48], Myc [49],

PDGF2 [50], IGF2 [51]), cell cycle (p27 [52], p53 [53],

PITSLRE [54]) and angiogenesis (VEGF-A [55], HIF1a
[56])—all these processes are vital in cancer onset and

progression.

Here, we will review the mechanisms of cap-indepen-

dent translation initiation, how these alternatives work

individually or cooperate with other 50UTR cis-acting RNA

regulons, contributing to the selective translation of pro-

teins that are required for stress recovery and cell survival.

In addition, we will illustrate how cap-independent trans-

lation of selected transcripts plays a major role in cancer.

Overview of the canonical translation initiation
mechanism

Translation initiation is a complex process involving

ribosome loading, scanning, and start codon selection,

before elongation commitment [1–4] (Fig. 1). Translation

initiation starts with the formation of the ternary complex,

which consists of eukaryotic initiation factor 2 (eIF2)

binding to both Met-tRNAi and GTP (Fig. 1a) [57]. Its

assembly is controlled by the guanine nucleotide exchange

factor eIF2B [58]. GTP is hydrolyzed after AUG start

codon recognition; this results in GDP-bound eIF2, whose

affinity for Met-tRNAi is tenfold lower [59].

Once the ternary complex is assembled and active, it

must bind to the 40S ribosomal subunit. According to

current models based on studies in reconstituted eukaryotic

systems, this binding is aided by eIF1, eIF1A, eIF3 and

eIF5 (Fig. 1b) [59–64]. Although eIF1 and eIF1A promote

scanning, eIF1—and possibly the C-terminal domain of

eIF1A—must be displaced from the P decoding site to

permit base-pairing between Met-tRNAi and the AUG

codon, as well as to allow subsequent phosphate release

from eIF2–GTP [12, 65]. On the other hand, a large factor,

such as eIF3, might distort the conformation of the entire

40S subunit to allow easier access of eIF2 with its attached

Met-tRNAi [66]. eIF5 also affects ternary complex

recruitment as it is crucial for the assembly of the

eukaryotic pre-initiation complex, working as an adaptor

between 40S subunit-bound eIF3 and the ternary complex

[66]. The binding of the ternary complex to the 40S ribo-

somal subunit, together with the aforementioned initiation

factors, is known as ‘‘43S pre-initiation complex’’ (PIC)

(Fig. 1b).

Once assembled, the 43S PIC must bind to the cap

structure at the 50 end of the mRNA molecule (Fig. 1c), so

that it is able to scan the UTR until the correct initiation

codon in the proper context is recognized. eIF4F (eIF4E/
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eIF4G/eIF4A) is essential for 43S to recognize the m7G cap

structure [67]. Apart from being the cap structure-binding

protein, eIF4E stimulates eIF4A helicase activity. eIF4A is

a DEAD-box RNA helicase, whose ATPase activity is

required for duplex unwinding in vitro [68]. It is held in its

active conformation by eIF4G, which enables it to unwind

the 50UTR of the mRNA, producing a single-stranded

binding site for the 43S PIC near the 50 cap [69–71]. eIF4G

is a high molecular weight protein that acts as a scaffold for

binding eIF4E and eIF4A. In addition, eIF4G helps recruit

the 43S PIC by directly interacting with eIF3 through

eIF3c, -d, and -e subunits [72, 73]. Altogether, at the 50 end
of the mRNA, the binding of the PIC to the mRNA

involves the cooperative activities of eIF4F, eIF3 and

eIF4B. Recent findings demonstrated an eIF4A-indepen-

dent role for eIF4B in addition to its function as eIF4A

cofactor in promoting PIC attachment or scanning on

structured mRNAs [74].

After proper assembly at the 50 end of the mRNA, the

PIC needs to scan the mRNA to find the initiation codon

(Fig. 1d) [10, 11]. If the 50UTR is unstructured, a minimal

43S complex (comprising only a 40S, eIF1, eIF2-Met-

tRNAi and eIF3) is capable of scanning without any

requirement for ATP hydrolysis or factors associated with

it. Nevertheless, if—as in most cases—the 50UTR is at least

mildly structured, this scanning process requires the

hydrolysis of ATP, eIF1, eIF1A, and DHX29—a protein

that binds directly to the 40S subunit and eIF1A [75, 76]. In

addition, hydrolysis of ATP helps eIF4A or DDX3/Ded1p

(both DEAD-box family members with helicase activity) to

either actively translocate the ribosome in a 50 to 30

direction, or simply to unwind the structures in the mRNA,

allowing a diffusive movement of the ribosome that is

prevented from backsliding due to reforming of the

unwound structures behind it [77]. Then, scanning stops

when the PIC finds the first initiation codon in a favorable

context, i.e., a purine in position -3 and a guanine in

position ?4 (Fig. 1d) [10].

Once the AUG codon is in the ribosomal P site, it

becomes base-paired with all three nucleotides in the

anticodon of the tRNAi, stabilizing the conformation of the

tRNAi while allowing it to displace the basic loop of eIF1

[65]. This results in a stable complex, known as ‘‘48S

initiation complex’’. Furthermore, eIF1 has a major role in

start codon selection, as it is needed for 43S PIC to dis-

criminate between cognate and non-cognate initiation

codon [78]. eIF5B is then required to stabilize Met-tRNAi

in the P site, operating only after AUG recognition and

release of eIF2–GDP from the 48S initiation complex [79].

After the AUG codon is recognized, several events take

place so that the 60S subunit may join and form the 80S

ribosome (Fig. 1e). This reaction requires eIF5B, which

hydrolyzes eIF2–GTP, thereby releasing the initiation

factors, including eIF2–GDP, from the small ribosomal

subunit, but keeping the initiator tRNAi bound to the start

codon [80]. Following eIF2–GDP dissociation, eIF5B–

GTP binds to the 40S subunit and accelerates the rate of

60S subunit joining [81–83]. At this stage, 80S ribosomal

complex is assembled and ready to start decoding the

mRNA sequence and eventually originate a polypeptide

(Fig. 1f).

As soon as the ribosome starts the elongation phase,

eIF2 released from the ribosome is bound to GDP, which

must be replaced by GTP to again allow ternary complex

formation, so that another round of translation may take

place [83, 84]. As eIF2 has a greater affinity for GDP,

eIF2B works in promoting guanine nucleotide exchange

(Fig. 1g). The formed eIF2–GTP is not stable unless Met-

tRNAi joins in to form the ternary complex. This is one of

the rate-limiting steps of translation initiation [58].

Rate-limiting steps in canonical translation
initiation mechanism

Canonical translation initiation may be impaired at differ-

ent stages under stress conditions. Regulation of protein

synthesis is partly influenced by phosphorylation of eIF2

(via the a subunit), which is a part of the eIF2–GTP–Met-

tRNAiMet ternary complex [85]. When the a subunit of the

heterotrimeric eIF2 is phosphorylated at serine-51, it acts

as a competitive inhibitor of eIF2B, by binding and

sequestering eIF5B (reviewed in Ref. [2]). Since the cel-

lular level of eIF2B is thought to be lower than that of

eIF2a, only partial phosphorylation of eIF2a may be suf-

ficient to inhibit all of the eIF2B, resulting in a failure of

eIF2a to exchange GDP for GTP [9]. This occurs if there is

amino acid starvation, heme deficiency, a viral infection, or

bFig. 1 Model of canonical translation initiation in eukaryotic cells.

a Translation initiation starts with the formation of the ternary

complex, composed of eIF2 bound to Met-tRNAi and GTP. b Once

the ternary complex is assembled and active, it must bind the 40S

ribosomal subunit with the aid of eIF1, eIF1A, eIF3 and eIF5, forming

the 43S pre-initiation complex. c Then, the 43S pre-initiation complex

must bind the cap structure at mRNA 50 end, so it can scan the mRNA

to find the initiation codon. d The scanning stops when the 43S

complex finds the first initiation codon in a favorable context, thus

forming a stable complex known as 48S initiation complex. e, f After
the 48S initiation complex is formed, several events take place so that

the 60S subunit may join and form the 80S ribosome. This reaction

requires eIF5B, which hydrolyzes the eIF2–GTP, thereby releasing

the initiation factors, including eIF2–GDP, from the small ribosomal

subunit, leaving the initiator tRNAi bound to the start codon.

Following eIF2–GDP dissociation, eIF5B–GTP binds to the 40S

subunit and accelerates the rate of 60S subunit joining by its

hydrolysis. g Once the initiation step is finished and the ribosome has

entered the elongation phase, eIF2 is recycled to enable, yet again,

ternary complex formation for another round of translation
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an unfolded protein response and subsequent endoplasmic

reticulum stress [85].

Binding of the cap by eIF4E is often considered the rate-

limiting step of cap-dependent initiation, and the concen-

tration of eIF4E is a regulatory nexus of translational

control [2]. Naturally, a small percentage of this initiation

factor is phosphorylated. Another regulator is 4E-BP,

which binds to the initiation factor eIF4E and inhibits its

interactions with eIF4G, thus preventing cap-dependent

initiation [85]. Hyper-phosphorylation of the 4E-BPs

decreases their affinity for eIF4E and therefore enables the

latter to bind to eIF4G and recruit an mRNA for translation

[85]. 4E-BPs are phosphorylated by mTOR, which, in turn,

is regulated through a complex net of signal transduction

pathways (reviewed in [86]). Depending on the extent of

4E-BPs phosphorylation, cap-dependent initiation can be

severely or only partially inhibited [85]. However, several

mRNAs may be translated without the involvement of

eIF4E, and thus evade this regulatory mechanism. Such

mRNAs are translated via cap-independent translation

initiation mechanisms as covered in the following

paragraphs.

Cap-independent translation initiation
mechanisms

Although the canonical scanning model is widely accepted

as the most important mechanism of translation initiation in

eukaryotes, it fails to explain how some proteins continue

to be translated under conditions that impair m7G cap

structure recognition at mRNA 50 end. Aiming to answer

this question, most studies have shown that cap-indepen-

dent initiation mechanism involves recognition of an IRES

in the mRNA [22, 87]. However, some cellular mRNAs

capable of cap-independent translation do not seem to

contain any IRES elements. Below, we review the known

cap-independent mechanisms that help circumvent diffi-

culties in the normal initiation of eukaryotic translation.

IRES-mediated translation

In 1988, Pelletier and Sonenberg [88] discovered that some

viral mRNAs from polioviruses are translated by a mech-

anism that enables ribosomes to initiate translation

effectively on highly structured regions located within the

50UTRs. Up until then, the only known mechanisms of

translation initiation were dependent on the binding of

eIF4E to the 50 cap of mRNAs, but these authors showed

that some mRNAs have a mechanism to bypass the need

for eIF4E binding. This mechanism was called IRES-me-

diated translation [88, 89] (Fig. 2a). This mode of

translation initiation is generally independent of 50 cap

structure recognition, but it may involve scanning in search

of an initiation codon or directly recruit the 40S ribosome

to the vicinity of the initiation codon. The 40S subunit

recruitment can occur either in the complete absence of any

other protein factors (dicistrovirus intergenic IRES) or with

the aid of various combinations of canonical initiation

factors (such as eIF4G and eIF3) and auxiliary proteins

(reviewed in Ref. [90]). Since these discoveries, it has been

found that many viruses contain IRES sequences in their

mRNA 50UTRs. Such sequences can direct translation of

viral proteins without the aid of all translation initiation

factors [90, 91]. These viruses are able to hijack the host

eukaryotic translation machinery by cleaving factors nec-

essary for canonical cap-dependent translation initiation

but dispensable for IRES-mediated, free 50 end-indepen-
dent translation [88]. In this way, viral mRNAs are able to

surpass eukaryotic mRNAs for ribosome binding and, in

many cases, become the most abundant transcript being

translated [88]. Most viral IRESs possess defined sec-

ondary and tertiary structures that account for their efficient

interaction with the 40S ribosome. This interaction may be

direct, or partially indirect, requiring the assistance of some

canonical initiation factors and IRES trans-acting factors

(ITAFs) [92]. ITAFs are known to assist in recruiting the

40S ribosomal subunit onto the mRNA through specific

interactions or stabilization of specific active conforma-

tions of the IRES [4, 22, 90, 91, 93] (Fig. 2a). Based on (1)

their need for factors; (2) the proposed secondary structure

of the IRES; (3) the location of the start codon in relation to

the IRES, and (4) the IRES’ ability to operate in rabbit

reticulocyte extract (with or without supplementation), the

viral IRESs are divided into four groups [94]. Group 1

comprises the IRES RNAs that bind directly to the ribo-

some and require neither protein factors nor Met-tRNAi,

and are highly structured and compactly folded, operating

essentially as an all-RNA-based ribosome recruitment

apparatus [95]. Group 2 includes IRES RNAs that also bind

directly to the 40S subunit, but can use a subset of

canonical eIFs (eIF3, eIF2) as well as Met-tRNAi; such

IRESs are mostly extended, but maintain some structured

and tightly packed regions [96]. Group 3 contains IRES

RNAs that require some canonical eIFs, Met-tRNAi and

ITAFs; they work in rabbit reticulocyte lysate and initiate

translation at the 30 end of the IRES; they are extended and

largely flexible IRES RNAs [94, 96]. Finally, group 4 IRES

RNAs require some canonical eIFs, Met-tRNAi and ITAFs;

this type of IRES works efficiently in rabbit reticulocyte

lysate only when it is supplemented with extracts from

other cell types, and initiate at an AUG codon somewhat

downstream of the IRES [94]. The more structured and

packed the IRES, the lower the requirement for ITAFs and

canonical factors [95]. The need for ITAFs on the less-

structured viral IRES RNAs raises the question of ITAF
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function. One hypothesis is that they stabilize a specific

IRES RNA conformation that enables binding of other

factors or the ribosome [95]. This is supported by the fact

that the more structured IRESs (which are assigned to

group 1 or 2), such as the HCV-like IRESs, do not need

ITAFs to bind the ribosome or eIFs [96]. Also, it is known

that binding of PTB and ITAF45 to the foot-and-mouth

disease (FMDV) IRES induces structural changes in the

IRES, and synergistically enhances eIF4G and eIF4A

binding [97].

Several eukaryotic cellular mRNAs can also be trans-

lated in an IRES-dependent way. The first cellular IRES in

eukaryotes was discovered by Macejak and Sarnow [98] in

the mRNA encoding the immunoglobulin heavy-chain

binding protein (BiP). Since this discovery, many tran-

scripts containing IRES structures within their 50UTRs
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Fig. 2 Model of internal ribosome entry site (IRES)-dependent

translation initiation, and distribution of IRES-containing transcripts

by functional gene families. a IRES-mediated translation. Strong

mRNA secondary structures (represented by stem loops) can directly

recruit the 40S ribosomal subunit to the initiation codon (AUG) of the

open reading frame (ORF) or its vicinity, skipping, or not, the

scanning process. This interaction may be direct, or partially indirect,

requiring the assistance of some canonical initiation factors (eIFs)

and/or IRES trans-acting factors (ITAFs). b Distribution of the known

IRES-containing transcripts according to functional gene families.

According to what has been described in the literature, most IRES-

containing transcripts encode transcription factors or transcription-

related genes, transporters, receptors or channels, and growth factors;

nevertheless, several other classes of proteins have been described as

synthesized via an IRES-dependent mechanism of translation initi-

ation. The latter include apoptosis-related genes, heat-shock proteins,

tumor suppressors, cytoskeleton-associated proteins, gap junction

proteins, oncogenes, RNA-binding proteins, cyclins, and translation

factors. All these proteins need a fine-tune regulation of their

synthesis, inasmuch as they are somehow involved in crucial

processes of cell fitness and survival

1664 R. Lacerda et al.

123



have been described, and it has been estimated that

10–15% of the cellular mRNAs could be translated by an

IRES-dependent mechanism [99]. Accordingly, recent data

from a systematic screen for IRES-mediated translation

activity have shown that about 10% of human 50UTRs have
the potential to be translated by this cap-independent

mechanism [100]. Apart from the most recent discoveries,

they are included in the IRESite, which presents carefully

curated experimental evidence of many viral and cellular

IRES elements [101]. Much like viral IRES-containing

mRNAs, cellular mRNAs containing IRES elements were

found to be preferentially translated under conditions of

inhibition of cap-dependent initiation, such as endoplasmic

reticulum stress [102], hypoxia [103], nutrient limitation

[104], mitosis [105], and cellular differentiation [106].

Also, the reduced need for canonical initiation factors and/

or requirement for specific ITAFs (often shared by viral

and cellular IRESs), appear to be quite similar in viruses

and eukaryotic cells [107, 108]. A striking feature of many

ITAFs is that they belong to the group of heterogeneous

nuclear ribonucleoproteins (HnRNP A1, C1/C2, I, E1/E2,

K and L) known to shuttle between the nucleus and the

cytoplasm [107, 109, 110]. Although the exact mecha-

nism(s) underlying ITAF function remain(s) unknown,

hypotheses include: (1) remodeling of IRES spatial struc-

tures to produce conformations with higher or lower

affinity for components of the translation apparatus; (2)

building or abolishing of bridges between the mRNA and

the ribosome, in addition to those provided by canonical

initiation factors; and (3) taking the place of canonical

factors in building bridges between the mRNA and the

ribosome [107, 109, 110]. Depending on the IRES, one out

of three mechanisms of cellular IRES-mediated translation

can be selected: (1) most, if not all, canonical initiation

factors and many ITAFs are required; (2) a limited number

of canonical factors and ITAFs are required; and (3)

canonical factors are dispensable, but some ITAFs may be

required. Several ITAFs, such as La, PTB, Unr or ITAF45

are common to viral and cellular IRESs [106, 108], as they

are responsible for sensing changes in cellular metabolism

and influence IRES activity [107, 109, 110]. Also, several

canonical factors like eIF2, eIF3, eIF4A, eIF4G, eIF4B,

eIF1A can be used as ITAFs by several picornaviral IRESs

[111]. However, cellular IRES elements are often less

structured than their viral counterparts [107, 108]. In 2006,

Baird and collaborators found that length, number of

upstream AUGs (uAUGs) and %GC content of 50UTRs of
the human transcriptome have a similar distribution to

those of published IRES-containing UTRs [112]. Thus,

none of these criteria is specific enough to be used in

further identification of putative IRES sequences. IRESs

tend to be found in longer 50UTRs. However, half of all
50UTRs from human transcripts are at least 150 bases long,

which means that a large portion of 50UTRs are long

enough to contain IRES elements [112]. Upstream AUGs

are common in 50UTRs and, although IRES-containing

50UTRs might have more uAUGs than what is observed in

a normal distribution, IRES-containing 50UTRs with no

uAUGs are also common [112]. It is often stated that IRES-

containing 50UTRs tend to have greater levels of secondary

structure. Although uORFs and specific inhibitory

stable RNA structures may hinder the cap-dependent

scanning mechanism for translation, it is not clear whether

all IRES-containing 50UTRs include these elements [112].

The overall %GC content appears no different for IRES-

containing 50UTRs from that found in the normal distri-

bution of %GC content with 50UTRs of human transcripts

[112]. Moreover, a common Y-shaped structure has been

predicted for cellular IRESs [113]. This pattern has been

adapted for PatSearch—a flexible and fast pattern matcher

that can find specific combinations of oligonucleotide

consensus sequences, secondary structure elements and

position–weight matrices [114]—to annotate putative IRES

motifs. Unfortunately, this pattern is as common in known

IRES-containing 50UTRs as in all 50UTRs. Overall, in sil-

ico identification of IRES elements, based on such

unspecific characteristics only, is neither easy nor

trustworthy.

By using a high-throughput bicistronic assay, a recent

systematic analysis of sequences mediating IRES-depen-

dent translation in human and viral genomes revealed that

the fraction of sequences that mediate IRES-dependent

translation is higher in viruses than in the human genome

and that, in general, viral IRESs are more active than

human counterparts, as previously predicted [100, 115].

Furthermore, this recent analysis also revealed that viral

50UTRs with IRES activity have lower GC content and

higher minimal free energy compared to their human

counterparts. On the other hand, analysis of GC content

and minimal free energy for all active and inactive 50UTRs,
from both human and viral origins, unexpectedly revealed

that active 50UTRs have lower GC content and higher

minimal free energy [100]. This apparent contradiction

remains to be understood. This study also revealed that

there are two functional classes of IRESs: (1) those for

which expression is reduced only when a specific position

is mutated; and (2) IRESs for which mutation in most

positions greatly reduces expression [100]. These two

classes may represent differences in the underlying IRES

activity mechanism. IRESs can either act through a short

sequence motif—such as ITAF-binding sites, in which only

mutations in a specific motif reduce activity (local sensi-

tivity)—or involve the formation of a secondary structure,

in which mutations at various positions can disrupt the

overall structure and result in reduced activity (global

sensitivity) [100].
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The mechanism of IRES-mediated translation has been

further investigated using the XIAP mRNA as a model

[115]. XIAP protein is encoded by two mRNA splice

variants that differ only in their 50UTR regions. The most

abundant transcript is shorter and produces the majority of

XIAP protein under normal growth conditions via cap- and

eIF2a-dependent translation [116]. However, during cel-

lular stress, the longer transcript, containing the IRES

element, directs efficient translation despite attenuation of

global, cap-dependent translation [113]. Upon serum

deprivation, the XIAP IRES-dependent translation switches

to an alternative, eIF5B-dependent mode to circumvent

attenuation due to eIF2a phosphorylation [117]. The cell’s

ability to evade ternary complex requirements suggests that

cells have developed an alternative, eIF2a-independent
mechanism of tRNA delivery to support a ‘‘rescue mech-

anism’’ for translating critical survival proteins under

conditions when the ‘‘normal mechanism’’ is unavailable

[117].

Interestingly, a limited investigation of other cellular

IRES-containing mRNAs (Bcl-xL, cIAP1, Apaf-1, and p97/

DAP5) suggests that not all cellular IRESs use eIF5B-de-

pendent mode of tRNA delivery during serum deprivation

[118]. Nonetheless, in order to better understand how

IRESs allow direct association of the mRNA with the

ribosome without the requirement of eIF4E, a different

study revealed that BCL2 IRES-dependent translation

involves the association of DAP5 protein (an eIF4G

homolog) with eIF2b and eIF4AI [105]. Likewise, a pre-

vious study revealed that eIF4A elicits potent activity on

the lymphoid enhancer factor-1 (LEF-1) IRES, and, on the

contrary, hippuristanol inhibition of eIF4A stalls LEF-1

IRES-mediated translation [119].

Recent discoveries revealed that a eukaryotic viral

IRES—cricket paralysis virus intergenic region IRES

(CrPV IGR IRES)—can initiate translation in living bac-

teria [120]. Using crystal structure-solving data, these

authors revealed that, in spite of differences between bac-

terial and eukaryotic ribosomes, this IRES binds directly to

both and occupies the space normally used by tRNAs

[120]. CrPV IGR IRES domain 3 is a precise mimicry of

the anticodon loop-codon structure of an initiator tRNA.

This suggests that docked CrPV domain 3 can form all the

specific intermolecular contacts that occur between the

ribosome and an authentic anticodon loop–mRNA complex

within the decoding center [121]. This is an interesting

observation given that the tRNA affinity for the ribosome

reaches its highest value in the P site [122]. In bacteria, the

P site performs a diverse set of functions through very

specific contacts with the codon–anticodon structure [123].

The authors propose that the structured IRES RNA forms

interactions with bacterial ribosomes that are transient and

weaker than the highly tuned interactions that occur in

eukaryotes, but allow internal ribosome entry into the

message. Recruited subunits or ribosomes are repositioned

to a downstream start codon where protein synthesis ini-

tiates [120]. This primitive mechanism suggests that RNA

structure-driven or structure-assisted initiation may poten-

tially be used in all domains of life, driven by various

RNAs—perhaps possessing tRNA-like character or

decoding groove-binding capability, thus bridging billions

of years of evolutionary divergence.

The existence of IRES in capped cellular mRNAs raises

the question of their pathophysiological function and of the

advantage of a cap-independent translation [115]. In fact,

several reports have demonstrated that cellular IRESs work

in various physiological processes including spermatoge-

nesis, neuron plasticity, and cell differentiation

[20, 124–126]. Yet, reports have shown that some IRESs

are also activated during cell cycle mitosis [127, 128] and

apoptosis [7, 129], or are aberrantly activated in tumor

cells, and are thus involved in dysregulation of gene

expression in cancer [6, 20, 34, 41, 130]. Furthermore,

cellular IRES activity is stimulated during various cellular

stresses when cap-dependent translation is blocked

[5, 7, 20, 56, 115, 131, 132]. Hence, perhaps cellular IRESs

exist to play a crucial role in decisive moments of cell life,

when cap-dependent translation initiation is compromised,

in order for the cell to cope with environmental changes

that affect its viability. As IRES-containing transcripts

occur throughout every functional class of protein-encod-

ing genes, we decided to search in PUBMED and cluster

them according to the encoded protein’s function, in order

to understand which proteins are more prone to be trans-

lated via an IRES-dependent mechanism (Fig. 2b). Data

showed that most IRESs described so far were found in

transcription factor mRNAs (21%), in messages encoding

growth factors (15%), and in mRNAs encoding trans-

porters, receptors and channels (22%). Transcription

factors like c-MYC and HIF1a, for instance, are key

players in gene expression regulation, since they respond to

quick environmental changes and adapt transcription levels

to the cells’ needs in a specific context [133, 134]. As for

growth factors (e.g., FGF and VEGF protein families), they

are of the utmost importance for the growth of specific

tissues and play a major role in promoting cell proliferation

and differentiation, and in regulating cell survival

[133–137]. Transporters, receptors and channels (CAT-1,

voltage-gated potassium channel, estrogen receptor a,
among others) are the main vehicle for cell–cell commu-

nication, and play a critical role in signal transduction.

Consequently, they are fundamental elements in cellular

homeostasis, as they respond to extracellular environmen-

tal alterations. The greater relative proportion of IRES

elements in these protein families can be a consequence of

the high number of proteins (over 1000 transcription
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factors [138] and receptors [138], and over 100 growth

factors [139]) belonging to each of these functional classes

in human cells. On the other hand, although there are few

proteins in other functional classes, as is the case of cyclins

(11 proteins [140] and corresponding subfamily members),

3% of these transcripts contain an IRES element, which

account for the accurate gene expression regulation these

proteins must suffer. Thus, disturbance in their function

and expression is associated with profound alterations in

cellular function and significantly contribute to the devel-

opment and progression of disease [135]. All gene families

presented in this graph (Fig. 2b) include proteins with

pivotal roles in cellular processes that demand a fine-tuned

regulation and whose expression levels need adjustment, in

response to external cues that interfere with regular

mechanisms of translation initiation and concomitant pro-

tein synthesis. Furthermore, alterations of their expression

levels may account for many cancer types in human pop-

ulation, as will be further discussed below.

CITE-mediated translation

Some cellular mRNAs previously thought to contain IRESs

fail to pass stringent control tests for internal initiation,

thus raising the question of how they are translated under

stress conditions. Terenin and co-workers [36] showed that

the insertion of an eIF4G-binding element from a viral

IRES into 50UTRs of mRNAs that are strongly translated

via the canonical mechanism greatly reduces their cap

requirement in mammalian cells. This mechanism has been

proven to be different from the internal entrance, because

these mRNAs fail the bicistronic test, meaning they need a

free 50 end for the pre-initiation complex to bind [36].

Thus, although this is a cap-independent mechanism, it is 50

end-dependent and involves special elements, the so-called

‘‘cap-independent translation enhancers’’ (CITEs) [35]

(Fig. 3). CITEs are located within the untranslated regions

of mRNAs and attract key initiation factors, in order to

promote the assembly of translation initiation complexes

[35, 37].

Most CITEs have been described within the 30UTRs
(30CITEs) of plant viral mRNAs and are thought to func-

tion by establishing long-distance base-pairing interactions

between 30 and 50UTRs to allow the 43S complex to entry

the mRNA and to scan the 50UTR until the former reaches

the AUG (Fig. 3) [141–145]. In the case of 50CITEs, a
CITE is located within the 50UTR and is capable of addi-

tional, presumably rather weak, interactions with initiation

factors of the scanning machinery [35]. Although cap

recognition by eIF4E still plays a major role in mRNA

recruitment, the primary mRNA binding is also possible in

the absence of this interaction, solely due to some interplay

of key initiation factors (or the 40S ribosomal subunit

itself) with 50CITEs. Some components of the translation

apparatus, for example eIF4G and eIF3 are able to be

directly or indirectly recruited onto the 50UTR via RNA–

protein interactions with concomitant recruitment of other

components of the scanning apparatus [37, 146]. In this

way, the 50UTR of an mRNA creates in its vicinity a high

concentration of translational components. This also helps

to overcome the competition for factors from other cellular

mRNAs.

This mechanism has been described as the one that the

human APAF-1 mRNA uses to initiate translation under

conditions of suppression of the cap-binding factor eIF4E

[37]. Indeed, it has been shown that APAF-1 50UTR can

mediate an m7G cap-independent but 50 end-dependent

scanning, even under apoptosis [37]. APAF-1 plays a

central role in DNA damage-induced apoptosis, and thus,

its depletion contributes to malignant transformation [147].

Indeed, inactivation of APAF-1 gene is implicated in dis-

ease progression and chemoresistance of some

ORF
m6A

m7G

STOP

uORF
AUG STOP 

CU-rich G4

5’UTR 3’UTRMain ORF

AAA(A)n

AUG

Fig. 3 Schematic mRNA with a 50 untranslated region (50UTR),
coding region (ORF) 30UTR, cap structure (m7G), and poly(A) tail,

showing different cis-acting elements involved in translational

control: cap-independent translation enhancer (CITE), N6-

methyladenosine (m6A)-induced ribosome engagement site (MIRES),

upstream open reading frame (uORF), G-quadruplex (G4), and

oligopyrimidine (TOP) motif
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malignancies, such as metastatic melanomas [148]. In this

regard, CITE-mediated translation under apoptosis may

contribute extensively to the maintenance of APAF-1

protein levels, and to its tumor suppressor activity in stress

conditions. It has been previously shown that APAF-1

50UTR also has IRES activity that is triggered by UV-

induced apoptosis [149]. How these data can be reconciled

is yet to be determined.

m6A-mediated translation

A feature of many eukaryotic mRNAs is N6-methy-

ladenosine (m6A), a reversible base modification, seen in

the 30UTR, the coding region, or the 50UTR [150, 151].

Although the biological function of the m6A in 30UTRs has
been explored [151–154], the role of m6A in the 50UTRs
has just recently been unveiled [39]. Data have shown that

m6A in the 50UTR works as a 50 cap alternative to stimulate

translation initiation at sites called ‘‘m6A-induced ribo-

some engagement sites’’ (MIRES) [39] (Fig. 3). In

addition, data have shown that the m6A in the 50UTRs can
bind eIF3, which is sufficient to recruit the 40S ribosomal

subunit to initiate translation in the absence of the cap-

binding factor eIF4E [39]. It seems, however, that the m6A-

mediated translation initiation involves a 50 end-dependent
50UTR scanning mechanism [39], as opposed to internal

ribosomal entry [22]. As m6A-mediated cap-independent

translation initiation still requires 50UTR scanning, it seems

to behave similarly to what has been previously described

for mRNAs with eIF4G-binding viral IRES domain within

their 50UTRs [36, 37, 39]. How m6A is recognized by the

translation machinery and facilitates cap-independent ini-

tiation needs deeper research, though. The importance of

50UTR m6A residues has been observed in both ribosome

profiling datasets and individual cellular mRNAs. Data

using HSP70 mRNA revealed that a single m6A modifi-

cation site in its 50UTR enables 50 end N7-methylguanosine

cap-independent translation initiation, providing a mecha-

nism for selective mRNA translation under heat-shock

stress [39, 40]. Since it has been previously shown that

HSP70 50UTR also possesses IRES activity [155–157], it

remains to be examined whether both features/properties

cooperate to increase cap-independent translation follow-

ing heat shock. In addition, it will be of great importance to

know whether m6A-mediated translation is involved in

triggering disease states, such as carcinogenesis, and/or in

the corresponding response to chemotherapeutics. Putative

cellular IRESs often lack the complex structural elements

that exist in viral IRESs [22, 87] and many assays that test

cellular IRES function have inherent flaws. Most of these

assays have been based on plasmid DNA transfections and,

consequently, until it is definitively proven that there are no

monocistronic FLuc mRNAs generated from the bicistronic

DNA construct with a given IRES sequence, we cannot be

sure whether the measured luciferase production is the

result of an IRES or, for example, a consequence of cryptic

promoter(s), or alternative splice sites, that are at the origin

of monocistronic mRNAs [22, 158] (for a review on the

tests required to truly validate an IRES element, see Ref.

[22]). Considering this, the utility of m6A in the 50UTRs
may be an additional and/or alternative mechanism to

explain the occurrence of cap-independent translation. In

addition, it is interesting to note that 50UTR methylation in

the form of m6A is dynamic, and UV-, interferon-c- and
heat shock-inducible [38–40]. It will be important to ana-

lyze whether other stress-response pathways also induce

m6A modifications in 50UTRs, and therefore use such

modified sequences to mediate cap-independent translation

initiation under stress conditions. Thus, stress-inducible

50UTR methylation with promotion of cap-independent

translation initiation establishes a new pattern of transla-

tional control. Of note, recent data have revealed that RNA

cytosine hydroxymethylation can favor translation in

Drosophila cells [159]. Also, YTH domain-containing

proteins have been identified as a class of RNA-binding

proteins that preferentially bind m6A-methylated RNA in

mammals and yeast [153, 160]. Interestingly, while the

presence of the YTH domain of Arabidopsis AtCPSF30 (a

protein shown to be involved in oxidative stress responses

[161] and required for programmed cell death and immu-

nity [162]) is dependent on alternative splicing, the YTH

domain is completely absent in yeast and mammalian

CPSF30 homologs [163]. These stress-responsive functions

are independent of the YTH domain and raise questions

about the possible roles of YTH domain-containing

AtCPSF30 in regulating m6A-containing RNAs [164]. It

remains to be determined whether this RNA modification

also occurs in mammalian cells and mediates cap-inde-

pendent translation.

Cooperation between IRESs and other cis-acting

RNA regulons

mRNA regulatory elements, often within 50 and 30UTRs,
are the focus of many studies aimed at understanding

translational regulation. However, the field is only now

beginning to appreciate the rich regulatory information that

directs selective translation of transcripts [165]. This is of

great importance if we consider the variety of cis-acting

regulatory elements, which include terminal oligopyrim-

idine tracts, pyrimidine-rich translational elements,

cytosine-enriched regulator of translation, RNA secondary

structures, G-quadruplexes, translation inhibitory elements

(TIEs), uORFs and IRESs, among others (Fig. 3)

[165–167]. These sequence motifs or structures can drive

regulation through processes as diverse as cap-dependent
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recognition and scanning, cap-independent translation, start

codon usage, translation elongation rates, localization, and

transcript stability [33, 165, 168]. Primarily, these

sequence/structure motifs confer transcript-specific trans-

lational control. Here, using specific examples, we will

discuss how IRES-driven cap-independent translation may

be affected by the presence of other cis-acting RNA

regulons.

G-quadruplexes are special secondary structures formed

by G-rich DNA and RNA sequences that fold into a four-

stranded conformation, and that are involved in many

biological processes, including telomere elongation, tran-

scription regulation, pre-mRNA splicing and translation

[169–171]. G-quadruplex formation decreases cap-depen-

dent translation initiation [170] from 35% in proteins like

neural cell adhesion molecule 2 and thyroid hormone

receptor a, up to 85% for estrogen receptor a [172].

However, there are cases when RNA G-quadruplex for-

mation has been shown to actually promote translation. The

human FGF-2 IRES is 176 nucleotides long, is highly

structured and contains two RNA stem-loops and one

G-quadruplex motif—each of these structural domains

contributes to IRES activity [129, 173]. G-quadruplexes

also promote translation in the human VEGF mRNA [174].

The VEGF 50UTR is 1038 nucleotides long and GC-rich,

and able to initiate translation via IRES. Indeed, this

untranslated region harbors two separate IRESs

[55, 174, 175]. A 293-nucleotide portion, IRES-A, initiates

translation at the canonical AUG and is known to maintain

VEGF translation under hypoxia [55, 175]. This region also

includes a sequence containing more than four G-stretches

(nucleotides 774–790), which provides enough redundancy

to ensure the formation of RNA G-quadruplex structures

[174]. When the sequence is mutated in a way that disrupts

the formation of the G-quadruplex, IRES activity is com-

pletely abolished [174, 175]. This suggests that a

G-quadruplex structure must be formed in order to main-

tain the IRES function and hence promote translation. A

more recent study has shown that the G-quadruplex within

the VEGF IRES is dispensable for cap-independent func-

tion and activation in stress conditions [176]. However,

stabilization of the VEGF G-quadruplex by increasing the

G-stretches length, or by replacing it with the one of

NRAS, results in strong inhibition of IRES-mediated

translation of VEGF [176], i.e., the G-quadruplex ligands

stabilize the VEGF G-quadruplex and inhibit cap-inde-

pendent translation in vitro [176]. These findings have

implications for the in vivo applications of G-quadruplex-

targeting compounds and for anti-angiogenic therapies

[176].

Likewise, a uORF within a transcript’s 50UTR can also

cooperate with an IRES in the same transcript, in order to

control protein synthesis. There are several pieces of

evidence showing that many uORF-containing transcripts

with an IRES element are involved in cell growth and

differentiation, such as platelet-derived growth factor

(PDGF) [177], GATA-6 [178], CAT-1 [179, 180], VEGF-

A [55, 175], and FGF9 [181]. Thus, their expression needs

to be fine-tuned through the interaction between IRES and

uORFs co-existing within the same 50UTR, and even small

alterations in this interaction might have a role in

cancerogenesis. For example, FGF9 protein synthesis is

normally controlled by uORF-mediated translational

repression, which keeps the protein at a low level [181]. In

contrast, it is upregulated in response to hypoxia, through a

switch to IRES-dependent translation [181]. Thus, FGF9

IRES works as a cellular switch to turn FGF9 protein

synthesis ‘‘on’’ during hypoxia, a mechanism likely to

underlie FGF9 overexpression in cancer cells [181]. In

another example, Yaman and colleagues have shown that

the CAT-1 50UTR has a uORF that modulates the activity

of the co-existing IRES [179]. These results suggest a

model for the regulation of the CAT-1 IRES, which is

dependent on uORF translation. In the absence of uORF

translation, the mRNA 50UTR exists in a structure that

locks the IRES in a dormant state [179]. However, trans-

lation of the uORF disrupts this structure, allowing the

sequence to form the IRES structure [179]. Under amino

acid starvation, an ITAF binds the inducible IRES, leading

to increased translation initiation at the CAT-1 ORF [179].

This model suggests that uORF translation plays different

roles in fed and starved cells. In the former, uORF trans-

lation inhibits downstream initiation by preventing the

ribosome from reaching the CAT-1 ORF. In the latter,

uORF translation unfolds the 50UTR, allowing the ITAF

that is synthesized in response to eIF2a phosphorylation to

bind the IRES and initiate CAT-1 protein synthesis [179].

Increased CAT-1 translation during amino acid starvation

requires both GCN2 phosphorylation of eIF2a, which leads

to the increased translation of the transcription factor

GCN4, and the uORF translation within the mRNA 50UTR
[182]. Amino acid starvation also induces translation of a

monocistronic CAT-1 50UTR-containing mRNA, in an

eIF2a phosphorylation-dependent and uORF translation-

dependent manner [182]. The uORF is translated within a

bicistronic mRNA via an IRES that is located downstream

of the uORF initiation codon A-224UG [179]. This model

of CAT-1 translation proposes that the uORF plays the role

of a zipper that opens and closes the IRES [179, 180] and

suggests that the mechanism of induced CAT-1 protein

synthesis is part of the cell’s adaptive response to amino

acid limitation [182]. Likewise, there may be uORFs

translated via an IRES-dependent mechanism. The

expression of GATA-6 and different VEGF-A isoforms is

regulated by a small uORF located within an IRES and is

translated through a cap-independent mechanism [55, 178].
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On the other hand, the uORF may be located upstream the

IRES as is the case of FGF9 [181]. Under normal condi-

tions, the uORF is generally translated in order to repress

the expression of the main ORF and keep a low level of

protein synthesis. Under specific environmental conditions,

such as hypoxia, the high levels of FGF9 expression are

achieved by activating the FGF IRES, which might be due

to a switch of the ribosomes from the uORF AUG to the

AUG of the main ORF. Thus, these two elements play

opposite roles for FGF9 translational control to fine-tune

the level of FGF9 protein expression, either in normoxia or

under hypoxia [181].

Recent evidence have shown that the ribosome itself, at

the level of ribosomal proteins (RP), can also play a highly

regulatory role, as it can stimulate a specialized translation of

specific subpools of mRNAs [18]. Indeed, it has been shown

that the group of mRNAs encoding homeobox (Hox) pro-

teins has a mechanism to recruit ‘‘specialized ribosomes’’

containing the RPL38 protein [18]. This protein is dispens-

able for general cap-dependent translation, but is required for

the translation of a subset of the 11 HoxA mRNAs (Hoxa4,

Hoxa5, Hoxa9, Hoxa11 [18]). It facilitates 80S complex

formation on thesemRNAs, as a regulatory component of the

ribosome, to confer transcript-specific translational control

[183]. Such specialized ribosomes are the result of hetero-

geneity in ribosome composition resulting from differential

expression and post-translationalmodifications of ribosomal

proteins, ribosomal RNA (rRNA) diversity, and the activity

of ribosome-associated factors [184]. They have a unique

composition, or specialized activity, which renders regula-

tory control in gene expression. Examples of heterogeneity

in ribosomes can include: (1) diversity in the composition

and post-translational modifications of subsets of ribosomal

proteins; (2) variations in rRNA sequences; or (3) their

binding to ribosome-associated factors. All these may con-

tribute to the occurrence of specialized ribosomes in

different cell types [184]. In addition, even core ribosome

components that show little variation may exert more spe-

cialized activity by virtue of their interactions with specific

cis-acting regulatory elements in subsets ofmRNAs [184]. In

addition, Hox mRNAs present cis-regulatory TIEs in their

50UTRs, which inhibit cap-dependent translation, and an

IRES is activated relying on the RPL38 protein to promote

Hox translation [18]. These RNA regulatory elements,

together with the specialized ribosomes, provide a new

mechanism of protein expression control, with implications

in organismal development [18, 168].

As seen above, the interplay between different cis-reg-

ulatory RNA sequences/structures adds another level to

translational regulation mechanisms with crucial roles in

human health and disease, as we will discuss in further

detail for carcinogenesis.

Cap-independent translation and cancer

Cancer is a disease caused by oncogene activation and

tumor suppressor gene inhibition. Deep-sequencing studies

identified numerous tumor-specific mutations, not only in

protein-coding sequences, but also in non-coding sequen-

ces. These coding-independent mutations in regulatory

elements, UTRs, splice sites, non-coding RNAs and syn-

onymous mutations are able to affect gene expression from

transcription, splicing, mRNA stability to translation (re-

viewed in Ref. [185]). In addition, the process of

tumorigenesis involves back-up mechanisms that allow

tumor cells to cope with stress, including those involved in

the synthesis of proteins required for stress adaptation

[6, 7, 34, 186–189]. Many transcripts with relevance in

cancer, but with no specific tumor-associated mutations,

are able to initiate translation through a cap-independent

mechanism, namely through an IRES element. Accord-

ingly, several oncogenes, growth factors and proteins

involved in the regulation of programmed cell death are

translated via IRES elements in their 50UTRs (Fig. 2b). In
this review, we will discuss data supporting the hypothesis

that selective translation of these factors may contribute to

the survival of cancer cells under stress situations induced

within the tumor microenvironment—such as lack of

nutrients, hypoxia, or therapy-induced DNA damage—and

to understand which cancer cells are resistant to conven-

tional therapies.

It is known that 4E-BP activation, in response to

hypoxia and mTORC1 inhibition, dictates a switch from

cap-dependent to cap-independent translation to support

tumor growth and angiogenesis [186, 187]. Indeed,

Braunstein et al. [187] demonstrated that most of the highly

advanced breast cancers overexpress the translation regu-

latory protein 4E-BP1 and the initiation factor eIF4G.

Overexpression of these two proteins leads to cap-inde-

pendent mRNA translation, which promotes increased

tumor angiogenesis and growth at the level of selective

mRNA translation. This switch results in selective trans-

lation of IRES-containing mRNAs. These include a

number of mRNAs that encode proteins involved in signal

transduction pathways, gene expression and development,

differentiation, apoptosis, angiogenesis, cell cycle, or stress

response [6, 7, 20], as is the case of VEGF-A [190], HIF1a
[191, 192] and FGF2 [193], among others. For example,

hypoxia reduces vascular endothelial growth factor C

(VEGF-C) cap-dependent translation via the upregulation

of hypophosphorylated 4E-BP [56]. However, IRES-me-

diated translation initiation of VEGF-C is induced by

hypoxia, but independently of HIF1a signaling [56].

Notably, the VEGF-C IRES activity is higher in metasta-

sizing tumor cells in lymph nodes than in primary tumors,
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most likely because lymph vessels in these lymph nodes

are severely hypoxic [56]. However, some studies assess-

ing IRES activities of HIF1a and VEGF showed very low

translation activity from these elements, suggesting that

cryptic promoter activity in constructs used for those

studies may interfere [22, 158]. Of note, Young et al. [194]

confirmed that VEGF transcripts are selectively translated

under hypoxia, even without significant IRES-mediated

translation, suggesting that selective and alternative IRES-

independent translation mechanisms may sustain VEGF

synthesis under these conditions. Silvera and Schneider

[195] have shown that inflammatory breast cancer cells

have adapted to mimic a state of prolonged hypoxia at the

translational level. Likely, this is to optimize the produc-

tion of proteins required for tumor emboli survival and

dissemination, a state promoted by high levels of eIF4GI

protein coupled with a constitutively active 4E-BP1,

leading to higher rates of translation of IRES-containing

mRNAs, namely VEGF and p120 catenin, which are

responsible for maintaining high rates of angiogenesis and

membrane associated E-cadherin, respectively [196].

Fibroblast growth factors (FGF) play a critical role in

the processes of proliferation and differentiation of a wide

variety of cells and tissues; thus, their translation has to

be tightly regulated, so that the expression levels are

maintained within a range that promotes healthy growth

and development. Some FGFs, such as FGF1 and FGF2,

contain IRES elements within their 50UTRs that allow

cap-independent translation initiation [197, 198]. These

factors have been shown to be expressed at increased

levels in prostate cancer [199]. Moreover, the role of

IRES-mediated regulation of FGF2 translation in

tumorigenesis is considered a critical step, not only in

solid tumors, but also in multiple myeloma, in a way that

the FGF2 IRES is the non-cytotoxic primary molecular

target of thalidomide and should be considered the target

for the development of immunomodulatory drugs in

multiple myeloma [109, 200]. FGF9 is another instance

of an FGF family member, whose aberrant expression

usually results in human malignancies [201]. Overex-

pression of FGF9 has transforming potential in fibroblasts

and stimulates the invasion of epithelial and endothelial

cells, suggesting it might result in uncontrolled cell pro-

liferation and malignancy [181, 201]. Under normoxia,

FGF9 protein levels are maintained low due to the pres-

ence of a uORF that represses its expression [181]. In

response to hypoxia, FGF9 protein expression is upregu-

lated through a switch to IRES-dependent translational

control, which may be the likely mechanism underlying

FGF9 expression in cancer cells, namely colon cancer

cells [181].

Another case of a protein whose expression is upregu-

lated during tumorigenesis by activation of IRES-mediated

translation is specificity protein-1 (Sp1). It is accumulated

during hypoxia in an IRES-dependent manner and is

strongly induced at protein, but not mRNA, level in lung

tumor tissue, suggesting that translational regulation might

contribute to the accumulation of Sp1 during tumorigenesis

[202]. Further studies have revealed that IRES-mediated

translation of Sp1 occurs through the recruitment of

nucleolin to the 50UTR of Sp1 mRNA [203].

CDKN2A/p16INK4a is an essential tumor suppressor

gene that controls cell cycle progression and replicative

senescence, and is the main melanoma susceptibility gene.

Its mRNA is also subjected to IRES-mediated translation.

In fact, p16INK4a 50UTR acts as a cellular IRES and

Y-box binding protein 1 (YBX1) acts as its ITAF under

hypoxic stress, both in cancer-derived cell lines, and

p16INK4a wild-type lymphoblastoid cells obtained from a

melanoma patient [204]. Interestingly, a germline sequence

variant found in the p16INK4a 50UTR (c.-42T[A) of a

multiple primary melanoma patient results in local flexi-

bility changes in RNA structure, impairing the binding of

YBX1 and its stimulatory effect on IRES-dependent

translation efficiency [204]. This sequence variant appears

to alter p16 protein expression levels [204]. Impaired p16

translation under hypoxia could provide a mechanistic clue

to explain melanomagenesis associated with this germline

variant [204].

In a different study, data showed that in multiple mye-

loma cells under ER stress induced by thapsigargin,

tunicamycin or the myeloma therapeutic bortezomib, the c-

MYC IRES activity is also activated and requires the pro-

teins hnRNP A1 and RPS25 as ITAFs for c-MYC protein

levels to be maintained [102]. In addition to hnRNP A1 and

RPS25, c-MYC IRES has been shown to be able to use

P97—an eIF4G-related protein that has been described

both as an inhibitor of translation and as a modulator of

apoptosis—using a HeLa-based cell-free translation system

[205].

Translation of specific transcripts, in response to nutrient

deprivation, also occurs through cap-independent mecha-

nisms. Specifically, synthesis of two amino acid

transporters, namely cationic amino acid transporter-1

(CAT-1) and sodium-coupled neutral amino acid trans-

porter 2 (SNAT2), which are required to promote recovery

of amino acid balance, are controlled by IRESs under

amino acid or glucose starvation [206, 207]. As referred

above, under amino acid starvation, eIF2a phosphoryla-

tion, by GCN2 kinase, induces synthesis of an ITAF that

binds the CAT-1 IRES and initiates translation

[179, 208, 209]. In tumor cells under glucose deprivation,

translation from the CAT-1 IRES is also induced, but

through phosphorylation of eIF2a by the transmembrane

endoplasmic reticulum kinase, PERK [207]. Moreover,

phosphorylation of eIF2a by GCN2 in response to amino
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acid deprivation also induces SNAT2 IRES-mediated

translation [188].

Conditions of growth factor deprivation also induce

IRES-mediated translation of specific transcripts. It is the

case of the mRNAs encoding the X-linked inhibitor of

apoptosis protein (XIAP) and the sterol regulatory element-

binding transcription factor 1 (SREBP-1), which are

translated via an IRES, in the absence of growth factors in

tumor cells, thus protecting cells from apoptosis

[116, 210–212]. IRES-mediated translation of these pro-

teins is involved in cell survival under nutritional stress,

and might constitute an advantage for cancer cell survival

[213]. In addition, the anti-apoptotic protein XIAP is

upregulated under c-irradiation via IRES-mediated trans-

lation, which makes tumor cells resistant to radiotherapy

[214, 215]. Accordingly, it has been shown that inhibition

of XIAP by RNA interference enhances chemotherapeutic

drug sensitivity and decreases myeloma cell survival [215].

In a different study, it was found that paclitaxel (PTX), a

drug commonly used in the chemotherapy of ovarian

cancer, induces IRES-mediated translation of b-catenin in

human ovarian cancer cell lines, and this regulates the

expression of downstream factors (c-MYC and cyclin D1),

reducing PTX sensitivity [216]. Thus, the regulation of the

IRES-dependent translation of b-catenin may be involved

in the cancer cell response to PTX treatment [216].

Several other anti-apoptotic proteins are also transla-

tionally controlled by IRESs under oxidative and genotoxic

stress. These include the c-MYC cancer-associated tran-

scription factor and Bcl-2-associated athanogene 1 (BAG-

1) [217], which promotes resistance of tumor cells to DNA

damage-inducing drugs [43, 218–220]. In addition, syn-

thesis of cIAP1 and Bcl-2 is enhanced by etoposide and

arsenite treatments through IRES-mediated translation

[221–224].

The transcriptional master regulator of the oxidative and

genotoxic stress response p53 is also IRES translated

[53, 104, 225]. Indeed, the p53 transcript has two IRES

structures that control the translation of full-length p53 and

an N-terminally truncated isoform (D40p53) from the same

mRNA [53, 225]. IRES-mediated translation of both iso-

forms is enhanced under different stress conditions that

induce DNA damage, ionizing radiation and endoplasmic

reticulum stress, oncogene-induced senescence and cancer

[104]. Polypyrimidine tract-binding protein (PTB), an

ITAF, stimulates IRES-mediated translation of both p53

isoforms in response to doxorubicin, following PTB relo-

calization from the nucleus to the cytoplasm [226]. This

regulation is altered in the presence of melanoma-associ-

ated mutations in the p53 50UTR [227]. In addition, human

double minute 2 homolog (HDM2) and HDM4 act as other

ITAFs which synergistically increase p53 IRES activity

under DNA damage following HDMX phosphorylation by

ATM [228]. On the other hand, it was shown that glucose

depletion induces p53 IRES activity of both isoforms

through the involvement of the scaffold/matrix attachment

region-binding protein 1 (SMAR1)—a predominantly

nuclear protein that becomes abundant in the cytoplasm

under glucose deprivation—while PTB does not show

nuclear–cytoplasmic relocalization, highlighting SMAR1’s

function as an ITAF under stress [104]. Other ITAFs have

been reported to control p53 IRES activity, such as eIF4G2

(also known as DAP5), Annexin A2 and PTB-associated

splicing factor (PSF) [229, 230]. Furthermore, a different

mechanism of p53 inactivation that links deregulation of

IRES-mediated p53 translation with tumorigenesis was

identified in two breast cancer cell lines [231, 232]. Here,

the connection between IRES-mediated p53 translation and

p53 tumor suppressive function was established through

the identification of two novel p53 ITAFs, translational

control protein 80 (TCP80), and RNA helicase A (RHA),

which positively regulate p53 IRES activity [231].

Recently, Candeias and collaborators [233] have shown

that a wild type (D160p53) and not mutant p53 protein

bears pro-oncogenic traits. D160p53-overexpressing cells

behave in a similar manner to cells expressing mutant p53:

they exhibit ‘‘gain-of-function’’ cancer phenotypes, such as

enhanced cell survival, proliferation, invasion and adhe-

sion, altered mammary tissue architecture and invasive cell

structures [233]. In contrast, an exogenous or endogenous

mutant p53 that fails to express D160p53 due to specific

mutations or antisense knock-down loses pro-oncogenic

potential [233]. These data support a model in which

‘‘gain-of-function’’ phenotypes induced by p53 mutations

depend on the shorter p53 isoforms [233].

NRF2 is another master regulator of the response to

oxidative stress that is translationally induced through an

IRES under oxidative stress [234–236]. While NRF2 syn-

thesis is blocked under basal conditions due to the presence

of a highly structured inhibitory hairpin element present in

its 50UTR, its synthesis is enhanced by oxidative stress

through stimulation of an IRES element also present within

its 50UTR [236]. IRES-mediated translation of NRF2

requires the binding of the ITAF La autoantigen [236, 237].

Examples of other transcription factors induced by

oxidative and genotoxic stress through IRES-mediated

translation are the octamer-binding protein 4 (OCT4),

which is synthesized upon H2O2 treatment in breast cancer

and liver carcinoma cells [238], and runt-related tran-

scription factor 2 (RUNX2), whose translation is

stimulated by mitomycin C [239, 240]. All these examples

support a model whereby under oxidative and genotoxic

stress, IRES-mediated translation of key regulators and

pro-survival factors provide tumor cells with mechanisms

for attaining resistance to chemotherapy and radiotherapy

[34].
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On the other hand, the presence of IRES within tran-

scripts coding for tumor suppressor proteins can help the

cell maintain the levels of these proteins and prevent the

outbreak of cancer. The oncogene-induced senescence

(OIS), a critical cellular response that counteracts cellular

transformation, is characterized by cell cycle arrest and

induction of p53, thus restraining the proliferative potential

of preneoplastic clones [241]. Bellodi et al. [242] have

demonstrated that during OIS, there is a switch from cap-

dependent translation to IRES-dependent translation, dur-

ing which an IRES element positioned in the 50UTR of p53

is engaged to promote p53 translation; hence, specialized

translational control of mRNAs, such as p53, provides a

molecular barrier for cellular transformation. Montanaro

et al. [243] demonstrated that increased p53 activity in

breast cancer is dependent on dyskerin-mediated increase

in IRES-mediated translation but independent of effects on

telomerase.

Induction of the aforementioned proteins expression

(summarized in Table 1) provides a key factor for cancer

cells to survive and proliferate under stress conditions,

demonstrating the importance of IRES-mediated transla-

tion in the process of tumorigenesis and how the IRES

structures may be considered important targets in cancer

treatment.

Concluding remarks

Alternatives to the canonical process of mRNA translation

initiation in mammalian cells include mechanisms to

bypass the m7G cap requirement, enabling a cap-indepen-

dent mode of translation initiation. As discussed above, the

most widely characterized cap-independent initiation

mechanism involves the recognition of an IRES in the

mRNA. The recently described mechanism of cap-inde-

pendent translation initiation associated with RNA

modification (adenosine methylation), not only expands the

breadth of the non-canonical translation initiation mecha-

nisms and their physiological functions, but also opens new

Table 1 Examples of transcripts that allow IRES-mediated translation during the process of tumorigenesis

Transcript Cellular conditions ITAFs Cancer type References

VEGF-A Hypoxia HnRNP L Lymphoma, inflammatory

breast cancer

[56, 108, 190, 195]

HIF1a Hypoxia PTB Colon cancer [54, 192]

FGF2 Hypoxia, tumorigenesis hnRNP A1 Prostate cancer, multiple

myeloma, colon cancer

[109, 181, 193, 199, 200]

Sp1 Tumorigenesis, hypoxia Nucleolin Lung cancer [202, 203]

CDKN2A/

p16INK4a
Hypoxia YBX1 Melanoma [204]

c-MYC Endoplasmic reticulum stress hnRNP A1, RPS25, GRSF-1,

YB-1, PSF, p54nrb, P97

Multiple myeloma [102, 205]

CAT-1 Amino acid or glucose starvation hnRNP L, PTB Colorectal cancer [179, 206–209]

XIAP Absence of growth factors,

nutritional stress, c-irradiation
PTB-1, hnRNP C1/C2, La,

hnRNP A1

Myeloma [101, 116, 210, 213–215]

SREBP-1 Absence of growth factors,

nutritional stress

hnRNP A1 Endometrial cancer [116, 210–213]

b-Catenin Paclitaxel (PTX) treatment Ovarian cancer [216]

BAG-1 Oxidative and genotoxic stress Members of the poly(rC)-

binding protein family

Breast cancer [43, 217–220]

cIAP1 Oxidative and genotoxic stress DAP5, IGF2BP1 Rhabdomyosarcoma [101, 221–223]

Bcl-2 Oxidative and genotoxic stress DAP5 Lymphoma [108, 221, 222, 224]

p53 DNA damage, ionizing radiation,

endoplasmic reticulum stress,

oncogene-induced senescence,

glucose deprivation

PTB, HDM2, HDM4, DAP5,

Annexin A2, PTB-associated

splicing factor (PSF), SMAR1,

TCP80, RHA

Melanoma, breast cancer,

cervical cancer, leukemia,

head and neck squamous

cell carcinoma

[56, 104, 225–232]

NRF2 Oxidative and genotoxic stress La autoantigen Colorectal cancer [234–237]

OCT4 Oxidative and genotoxic stress Breast cancer and liver

carcinoma

[238]

RUNX2 Mitomycin C treatment Osteosarcoma [239, 240]
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research prospects in the area of cap-independent transla-

tion initiation mechanisms. These promising studies, as

well as a deeper knowledge of how these mechanisms are

involved in translational control in response to cellular

stresses or pathological conditions, will be of great value in

designing new treatment strategies (including those by

abrogation/modulation of IRES-mediated translation) for

many human conditions, including cancer.
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78. Lind C, Åqvist J (2016) Principles of start codon recognition in

eukaryotic translation initiation. Nucleic Acids Res

44:8425–8432. doi:10.1093/nar/gkw534

79. Pisareva VP, Pisarev AV (2014) eIF5 and eIF5B together

stimulate 48S initiation complex formation during ribosomal

scanning. Nucleic Acids Res 42:12052–12069. doi:10.1093/nar/

gku877

80. Kuhle B, Ficner R (2014) eIF5B employs a novel domain

release mechanism to catalyze ribosomal subunit joining.

EMBO J 33:1177–1191. doi:10.1002/embj.201387344

81. Lee JH, Pestova TV, Shin B-S et al (2002) Initiation factor

eIF5B catalyzes second GTP-dependent step in eukaryotic

translation initiation. Proc Natl Acad Sci USA 99:16689–16694.

doi:10.1073/pnas.262569399

82. Shin B-S, Maag D, Roll-Mecak A et al (2002) Uncoupling of

initiation factor eIF5B/IF2 GTPase and translational activities

by mutations that lower ribosome affinity. Cell 111:1015–1025

83. Acker MG, Shin B-S, Dever TE, Lorsch JR (2006) Interaction

between eukaryotic initiation factors 1A and 5B is required for

efficient ribosomal subunit joining. J Biol Chem

281:8469–8475. doi:10.1074/jbc.M600210200

84. Jennings MD, Zhou Y, Mohammad-Qureshi SS et al (2013)

eIF2B promotes eIF5 dissociation from eIF2*GDP to facilitate

guanine nucleotide exchange for translation initiation. Genes

Dev 27:2696–2707. doi:10.1101/gad.231514.113

85. Hershey JW (2010) Regulation of protein synthesis and the role

of eIF3 in cancer. Braz J Med Biol Res 43:920–930

86. Richter JD, Sonenberg N (2005) Regulation of cap-dependent

translation by eIF4E inhibitory proteins. Nature 433:477–480.

doi:10.1038/nature03205

87. Hellen CUT (2001) Internal ribosome entry sites in eukaryotic

mRNA molecules. Genes Dev 15:1593–1612. doi:10.1101/gad.

891101

88. Pelletier J, Sonenberg N (1988) Internal initiation of translation

of eukaryotic mRNA directed by a sequence derived from

poliovirus RNA. Nature 334:320–325. doi:10.1038/334320a0

89. Jang S, Krausslich H, Nicklin M et al (1988) A segment of the 50

nontranslated region of encephalomyocarditis virus RNA directs

internal entry of ribosomes during in vitro translation. J Virol

62:2636–2643

90. Lozano G, Martı́nez-Salas E (2015) Structural insights into viral

IRES-dependent translation mechanisms. Curr Opin Virol

12:113–120. doi:10.1016/j.coviro.2015.04.008

91. Hellen CU (2009) IRES-induced conformational changes in the

ribosome and the mechanism of translation initiation by internal

ribosomal entry. Biochim Biophys Acta Gene Regul Mech

1789:558–570. doi:10.1016/j.bbagrm.2009.06.001

92. Komar AA, Hatzoglou M (2015) Exploring internal ribosome

entry sites as therapeutic targets. Front Oncol 5:233. doi:10.

3389/fonc.2015.00233

93. Balvay L, Soto Rifo R, Ricci EP et al (2009) Structural and

functional diversity of viral IRESes. Biochim Biophys Acta

1789:542–557. doi:10.1016/j.bbagrm.2009.07.005

94. Kieft JS (2008) Viral IRES RNA structures and ribosome

interactions. Trends Biochem Sci 33:274–283. doi:10.1016/j.

tibs.2008.04.007

95. Filbin ME, Kieft JS (2009) Toward a structural understanding of

IRES RNA function. Curr Opin Struct Biol 19:267–276. doi:10.

1016/j.sbi.2009.03.005

96. Kieft JS, Zhou K, Jubin R et al (1999) The hepatitis C

virus internal ribosome entry site adopts an ion-dependent

tertiary fold. J Mol Biol 292:513–529. doi:10.1006/jmbi.

1999.3095

97. Song Y, Tzima E, Ochs K et al (2005) Evidence for an RNA

chaperone function of polypyrimidine tract-binding protein in

picornavirus translation. RNA 11:1809–1824. doi:10.1261/rna.

7430405

98. Macejak DG, Sarnow P (1991) Internal initiation of translation

mediated by the 50 leader of a cellular mRNA. Nature

353:90–94. doi:10.1038/353090a0

99. Spriggs KA, Stoneley M, Bushell M, Willis AE (2008) Re-

programming of translation following cell stress allows IRES-

mediated translation to predominate. Biol Cell 100:27–38.

doi:10.1042/BC20070098

100. Weingarten-Gabbay S, Elias-Kirma S, Nir R et al (2016)

Comparative genetics. Systematic discovery of cap-independent

translation sequences in human and viral genomes. Science.

doi:10.1126/science.aad4939
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