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Gene expression profiling of epiretinal membranes

Proliferative vitreoretinal diseases such as diabetic retinopa-
thy (DR), proliferative vitreoretinopathy (PVR), and age-
related macular degeneration (AMD) are a leading cause of 
decreased vision and blindness in developed countries [1] 
(Fig. 1). In those diseases, retinal fibro(vascular) membrane 
(FVM) formation above and beneath the retina plays a piv-
otal role in the primary pathology [2–4]. The FVM forma-
tion reflects a wound healing response, but can be refractory 
if occurring excessively in the eye [5]. Recent technologi-
cal advancements in genomics have given investigators new 
opportunities to identify global gene expression in particular 
tissues in the eye [6]. Therefore, we sought to develop a 
novel molecular targeting agent based on the gene expres-
sion profiling of human epiretinal FVMs (ERMs).

To identify genes responsible for intraocular proliferation, 
we first determined the gene expression profiling of human 
retina, ERMs associated with proliferative diabetic retin-
opathy (PDR-ERMs), PVR (PVR-ERMs), or less-aggres-
sive secondary ERMs [6–8]. We next determined highly 
expressed genes in PDR- and PVR-ERMs by comparing the 
gene expression profiles between PDR-, PVR-ERMs and 
the retina [7], and genes that determine aggressiveness of 
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ERMs by comparing the gene expression profiles between 
PVR-ERMs and less-aggressive secondary ERMs [8]. The 
former was subdivided by functional subsets of genes related 
to extracellular matrix, cell adhesion, proliferation, differen-
tiation and other functions, and the latter related to cell pro-
liferation and adhesion. Subsequent analyses identified peri-
ostin as a pivotal molecule whose expression is upregulated 
specifically in proliferating ERMs compared to the retina, 
and facilitates their proliferation, because it was identified 
at both comparison procedures.

Periostin, a matricellular protein belonging to the fasci-
clin family, plays a role in cell motility by interacting with 
integrin αvβ1, αvβ3, and αvβ5 during tissue development 
and remodeling. Recent studies have demonstrated that peri-
ostin is involved in the development of heart valves, tooth, 
and bone [9, 10] and tumor metastasis [11]. In tissue remod-
eling, periostin stimulates regeneration of heart tissue after 

myocardial infraction [12, 13], cutaneous wound healing 
[14] and chronic allergic inflammation [15].

Periostin in diabetic retinopathy

Diabetic retinopathy (DR) is one of the leading causes of 
vision loss in the working-age population worldwide [16]. 
Retinal neovascularization (NV) arises at the advanced 
stage of DR leading to proliferative DR (PDR) [17]. Vision 
loss can result from abnormal FVM formation with subse-
quent intravitreal hemorrhage and tractional retinal detach-
ment [2]. Despite recent advances in vitrectomy techniques 
[18–21], usage of retinal laser photocoagulation and intra-
vitreal injection of anti-vascular endothelial growth factor 
(VEGF), the prognosis for patients with DR is sometimes 
poor, especially in those with PDR [22].

Fig. 1  Proliferative vitreoretinal diseases. a Proliferative diabetic retinopathy (PDR). b Proliferative vitreoretinopathy (PVR). c Age-related 
macular degeneration (AMD). d High myopia
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The mRNA of periostin was detected in all ten of the 
FVMs obtained from the patients with PDR. In contrast, 
it was barely detectable in the normal retinas. In addition, 
RT-PCR yielded multiple bands, indicating the existence 
of splice variants [23] of periostin in the FVMs. Immu-
nohistochemical analysis exhibited co-localization of 
α-smooth muscle actin (α-SMA) and periostin in the cells 
of FVMs [24].

We next examined the amount of periostin in the vit-
reous samples of PDR patients collected at vitrectomy, 
and in the vitreous samples obtained from patients during 
secondary ERM or macular hole (MH) surgery (control) 
[24]. The concentration of periostin in the vitreous was 
significantly elevated in the patients with PDR than in the 
eyes with secondary ERM or MH. The concentration of 
periostin was significantly associated with the presence of 
FVMs, suggesting that periostin is closely related to FVM 
formation in PDR [24].

When we examined the relationship between periostin 
and VEGF, there was no significant correlation between 
the vitreous concentrations of periostin and VEGF in the 
vitreous with PDR [24]. This indicates that periostin and 
VEGF do not behave in a directly synchronized manner 
during the development of FVMs. Moreover, compared 
to VEGF, periostin is presumed to be nonfunctional in 
normal retinas, because of the very low levels of periostin 
in the normal control retinas [24].

We also examined the mRNA/protein concentration 
of periostin in a mouse model of oxygen-induced retinal 
NV (OIR). The results showed that the level of periostin 
mRNA/protein in the OIR retinas was significantly ele-
vated at P17 than that in the control retinas [25]. Immu-
nohistochemical analyses of retinal sections exhibited 
that periostin-positive cells were co-localized with both 
α-SMA andCD31 in the preretinal pathological NVs. In 
the retinal flat-mounts, periostin was co-localized with 
F4/80. Moreover, periostin was co-localized in the pre-
retinal pathological NVs with CD206 [25]. These findings 
indicated that the expression of periostin was enhanced 
in the vascular endothelial cells, pericytes, and M2 mac-
rophages in the preretinal pathological NV of OIR retinas.

To investigate whether periostin alters the ischemia-
induced retinal NV, we calculated the size of the neovascu-
lar tufts and avascular areas in the OIR retinas of wild-type 
(WT) mice and periostin knockout (KO) mice at P17. In 
the OIR retinas, the neovascular tufts represent preretinal 
pathological NV, whereas the avascular areas indicate the 
physiological revascularization [26]. The size of the neo-
vascular tufts was significantly reduced in the OIR retinas 
of periostin KO mice than that in WT mice [25]. The mean 
avascular area was significantly greater in periostin KO 
mice than that in WT mice [25]. These results suggested 

that periostin promotes both preretinal pathological NV 
and physiological NV in OIR retinas.

In vitro experiments using human retinal microvascular 
endothelial cells (HREC) showed that periostin stimulated 
the ischemia-induced retinal NV by Akt phosphorylation via 
integrin αvβ3 [25].

M2 macrophage as a cellular source of periostin

FVMs usually contain different types of cells, such as mac-
rophages/monocytes, hyalocytes, retinal glial cells, fibro-
blasts, laminocytes and vascular endothelial cells [27]. 
Among these cells, the macrophages/monocytes have a wide 
range of biological functions [28, 29]. We have demonstrated 
that macrophage-attracting chemokines, CCL2, CCL3 and 
CCL4, played important roles in retinal NV through the 
recruitment of macrophages/monocytes in a mouse model 
of OIR [26, 29, 30].

Evidence has been accumulating that macrophages con-
sist of at least two subtypes, classically activated M1 and 
alternatively activated M2 [31, 32]. The M1 macrophages 
are proinflammatory and play a pivotal role in driving 
inflammation, and the M2 macrophages are involved in 
debris scavenging, NV and fibrosis.

We have demonstrated that there was an increase in 
the expression of CD163 in the vitreous and FVMs from 
PDR patients [33]. CD163 is a M2 macrophage marker 
and showed a close relationship with periostin [33]. The 
increased expression of CD163 indicated that the M2 mac-
rophages may play a role in the formation of FVMs.

Granulocyte–macrophage colony-stimulating factor (GM-
CSF) and macrophage colony-stimulating factor (M-CSF) 
promote monocyte–macrophage lineage differentiation 
both in vivo and in vitro [31, 32]. The GM-CSF, or M-CSF-
differentiated macrophages can be further polarized to 
more specific cell types in response to additional stimuli. 
For instance, when GM-CSF-differentiated M1-like mac-
rophages are exposed to T helper (Th1) cytokines, such as 
interferon-γ (IFNγ), they are polarized into more activated 
M1 macrophages and express the M1 cell-surface marker 
CD80 [34]. In contrast, when M-CSF-differentiated human 
M2-like macrophages are stimulated by Th2 cytokines, such 
as interleukin (IL)-4 and/or IL-13, they are polarized into 
more activated M2 macrophages and express the M2 cell-
surface marker CD163 [31].

We have demonstrated that the concentration of M-CSF, 
but not GM-CSF, was significantly higher in the vitreous of 
PDR patients than in control patients [35]. An early upregu-
lation of M-CSF signaling of microglia, glia and neurons in 
the retinas of diabetic rodents has been reported [36], sug-
gesting that a higher concentration of M-CSF in the vitreous 
of PDR patients is derived from those cells in the diabetic 



4332 S. Yoshida et al.

1 3

human retina. In addition, the concentration of M-CSF and 
soluble(s) CD163 in the vitreous of patients with PDR was 
significantly correlated [35]. Recently, we demonstrated that 
CD163-positive M2 macrophages were clustered nearby 
neovascular tufts in a mouse model of OIR [37]. Along with 
the predominance of M-CSF over GM-CSF in the PDR vit-
reous, these findings suggest that diabetic retinas are a M2 
macrophage-dominant microenvironment.

The concentration of IL-13 was significantly higher in the 
vitreous of PDR patients than in control patients, but IL-4 
was hardly detectable [35]. IL-13 shares many functional 
roles with IL-4, because both cytokines exploit the same 
IL-4Rα/Stat6 signaling pathways [38]. However, recent stud-
ies have shown a dominant role for IL-13 in the pathogenesis 
of several fibrotic diseases such as asthma, pulmonary fibro-
sis and systemic sclerosis [39]. Consistent with these find-
ings, the concentration of IL-13 was significantly related to 
the existence of FVMs [35], indicating that IL-13 is closely 
associated with the formation of FVM in PDR patients. 
Moreover, the expression of periostin in HRECs was sig-
nificantly upregulated in a dose-dependent manner only by 
IL-13 [25]. IL-13 was also expressed by CD4-positive cells 
in the retinas of OIR.

In addition, a higher correlation between the vitreous 
levels of M-CSF, sCD163 and periostin in eyes with PDR 
was detected. Finally, the treatment of M-CSF-differentiated 

human macrophages by IL-13 resulted in a striking induc-
tion of CD163 and periostin with very little upregulations 
of CD80 [35]. These results suggest that the recruited 
monocytes in diabetic retina may differentiate into M2-like 
macrophages by M-CSF, and further polarize to activated 
M2 macrophages which promote the formation of FVMs by 
producing periostin (Fig. 2).

Periostin in proliferative vitreoretinopathy

PVR is a destructive complication of retinal detachment 
(RD) and vitreoretinal surgeries [40]. PVR is believed to 
represent a maladapted retinal wound healing process with 
proliferation of retinal and immune cells resulting in the 
formation of scar-like fibrous membranes which may cause 
tractional RD.

At present, surgical removal of the fibrous membranes 
and restoration of the physiological conditions are the first 
treatment option of PVR. Although the success rates of RD 
surgery was considerably improved by vitrectomy combined 
with silicone or C3F8 gas tamponade, the surgical treatment 
for PVR is often unsuccessful.

The development of PVR is a multifaceted process 
involving cellular and humoral factors. The results of ear-
lier studies demonstrated that the cells that are critical for 

Fig. 2  Presumed mechanism of fibrovascular membrane formation 
induced by periostin-involving pathologic conditions in eyes with 
proliferative diabetic retinopathy (PDR). First, retinal ischemia may 
induce an upregulation in the expression of the CCL2, CCL3, and 
CCL4 genes which attract monocytes to the diabetic retina. Second, 
M-CSF released from diabetic retina transforms the recruited mono-
cytes into M2-like macrophages. Third, IL-13 released from the Th2 

cells in the retina further polarizes to activated M2 macrophages. 
Fourth, the polarized M2 macrophages and retinal pericytes produce 
periostin that promotes retinal neovascularization and fibrosis by 
Akt phosphorylation via integrin αvβ3. In parallel, the ischemia also 
stimulates the production of VEGF by retinal glial cells and vascular 
endothelial cells. These processes are likely to be important in pro-
moting M2 macrophage-involved FVM formation in diabetic retinas
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the formation of PVR-ERMs are glial cells, retinal pig-
ment epithelial (RPE) cells, fibroblasts, and macrophages/
monocytes [41].

Consistent with our global expression analysis [7], peri-
ostin mRNA expressions were detected in the PVR-ERMs, 
but were barely detectable in the normal retinas [42]. 
Vitreal concentrations of periostin in PVR patients were 
markedly elevated compared with those in patients with 
MH and RD [42]. The vitreal concentrations of TGFβ2 in 
PVR patients were also significantly higher than those in 
patients with MH and RD [42]. Additionally, there was a 
strong association between the vitreal concentrations of 
periostin and TGFβ2 in PVR patients. Moreover, Spear-
man’s rank correlation showed that the vitreal concentra-
tions of periostin were significantly correlated with PVR 
grade.

Immunohistochemical analysis exhibited elongated 
patterns of periostin expression in PVR-ERMs. In PVR-
ERMs, RPE cells expressed periostin and α-SMA as well 
as integrin αV. These findings suggest that most of the 
myofibroblasts in the PVR-ERMs are transdifferentiated 
RPE cells and that periostin and/or integrin αV are pre-
dominantly expressed in the RPE cells but not in the glial 
cells.

In vitro, periostin increased proliferation, migration, 
adhesion, and collagen production in RPE cells via integrin 
αV-mediated FAK and AKT phosphorylation [42]. Periostin 
inhibition suppressed migration and adhesion induced by 
PVR vitreous and TGFβ2. In vivo, periostin blockade had 
the inhibitory effect on progression of rabbit experimental 
PVR without affecting the viability of retinal cells [42].

Although the etiology of PVR is not fully understood, 
there is considerable evidence that a variety of cytokines and 
growth factors present in the vitreous regulate the fibrous 
membrane formation [43–47]. Those factors promote cel-
lular responses indispensable for PVR, including cell prolif-
eration, adhesion and migration [43–47]. In a recent study, a 
cocktail of reagents neutralizing eight cytokines or growth 
factors, including transforming growth factor-βs (TGF-βs), 
basic fibroblast growth factor (bFGF), platelet-derived 
growth factor (PDGF), and PDGF receptor α (PDGFRα), 
inhibited experimental PVR [48]. In contrast, blocking 
solely periostin showed an equivalent inhibitory effect on 
PVR progression. Moreover, periostin blockade alone inhib-
ited PVR vitreous-induced cell migration and adhesion, in 
spite of the presence of all the other factors in the vitreous. 
This may be because periostin expression is regulated by 
those growth factors or their receptors [49, 50]. Therefore, 
blockade of periostin predominates the deleterious effects of 
the upstream PVR-driving growth factors.

These results identified periostin as an important mol-
ecule for fibrous membrane formation (Fig. 3) and a promis-
ing therapeutic target for PVR.

Periostin in age‑related macular degeneration

Age-related macular degeneration (AMD) is a leading cause 
of a severe vision loss in the older population of developed 
countries [51]. It is estimated that the prevalence of AMD 
will increase, which would then accelerate both the medical 
and social burdens of the countries. At the advanced stage 
of AMD, choroidal FVMs, which are made up of choroidal 
neovascularization (CNV) and choroidal fibrosis, can lead to 
severe vision loss [52]. In this process, there is proliferation, 
migration and adhesion of various types of cells, includ-
ing vascular endothelial cells, RPE cells, fibroblasts, glial 
cells and macrophages/monocytes. There is also deposition 
of matricellular proteins [53]. Several growth factors, such 
as VEGFs, placental growth factor, tenascin-C, connective 
tissue growth factor and TGF-βs and their receptors, are 
involved in this process [54, 55].

To examine whether periostin is involved in the forma-
tion of choroidal FVMs, the expression of the periostin 
mRNA in the RPE–choroid complexes after laser injury 
was compared with that in normal RPE–choroid complexes 
in a mouse model of laser-induced CNV. The expression of 
periostin mRNA in a mouse CNV model group was signifi-
cantly higher compared with the control group and reached 
a peak on day 14 [3]. Immunohistochemical analyses exhib-
ited periostin-positive staining in RPE65-positive RPE cells 
after the laser injury. In the human choroidal FVMs, peri-
ostin was enhanced in the cytokeratin-positive RPE cells 
[3]. These findings suggested that the periostin expression 
was enhanced in the RPE cells both in the FVMs of AMD 
patients and in mouse CNV model.

To further examine whether periostin enhances the for-
mation of choroidal FVMs, we quantified the volume of the 

Fig. 3  Presumed mechanism of fibrous membrane formation induced 
by periostin-involving pathologic conditions in eyes with prolifera-
tive vitreoretinopathy (PVR). Ocular injury causes the enhancement 
of TGFβ2 production and dispersion of RPE cells onto the retina. 
TGFβ2 induces trans-differentiation of RPE cells into myofibroblasts 
resulting in periostin production. Periostin acts in an autocrine fash-
ion to stimulate FAK and AKT phosphorylation via the αV integrin, 
promoting cell proliferation, adhesion and migration, etc., leading to 
the fibrous membrane formation
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CNVs at day 7 and fibrous volumes at day 21 in both peri-
ostin KO and WT mice. The average CNV volumes in the 
periostin KO mice group were significantly smaller than that 
of WT mice group. There was an approximately 60% reduc-
tion in the average fibrosis volume in periostin KO mice 
than in the WT mice group [3]. These findings suggest that 
periostin is a promoter of choroidal FVM formation.

Development of innovative periostin‑targeting 
ribonucleic acid drugs

RNA interference (RNAi) is a natural mechanism of post-
transcriptional silencing of gene expression that has been 
recently considered to be a novel type of therapeutic system 
[56]. Because of their high potency and selectivity, RNAi-
based therapy has several advantages over conventional ther-
apeutic options including antisense, antibody and aptamer 
therapy. Moreover, RNAi agents can be easily synthesized, 
and the processes required for identifying and optimizing 
them are prompt. However, previous investigations using 
canonical double-stranded small interfering RNAs (siR-
NAs) revealed several obstacles such as the adverse off-tar-
get effects through Toll-like receptor 3 (TLR3) activation, 
the lack of a safe drug delivery system (DDS), and the lack 
of stability [57–60]. We developed a novel single-stranded 
RNAi agent, NK0144, targeting periostin that self-anneals 
into a distinctive structure containing a canonical double-
stranded RNA to overcome these obstacles (Fig. 4) [25].

In vivo inhibitory effect of single‑stranded RNAi agent 
targeting periostin on retinal neovascularization

We have demonstrated that this single-stranded RNAi agent 
which targets periostin (NK0144) significantly inhibits the 
migration and tube formation of HRECs driven by IL-13, 
and the preretinal pathological NV in OIR retinas by an 
intravitreal injection without any DDS [25]. In addition, 
the inhibitory effect of the single-stranded RNAi agent was 
larger than the canonical double-stranded siRNA (NI0079). 

Moreover, treatment with NK0144 resulted in a significant 
increase in the physiological revascularization compared to 
the treatment control.

The sequence used for periostin knockdown exists not 
only in human periostin but also in mouse, rat, rabbit, and 
rhesus macaque periostin [3]. This suggests that NK0144 
can be utilized for both in vitro and in vivo experiments and 
would also be suitable for clinical trials in the future. The 
mechanisms that determine the differences of the effect on 
ischemia-induced retinal NV between the single-stranded 
RNAi and the canonical double-stranded siRNA agent were 
not completely demonstrated. However, we assume that 
these are because the single-stranded RNAi agent has no 
off-target gene silencing, better stability against nuclease, 
and no immunostimulatory effects via TLR3 activation [3, 
61–63]. Therefore, intravitreal injection of naked single-
stranded RNAi agent targeting periostin may be a safer and 
a more efficient therapeutic strategy for blocking preretinal 
pathological NV.

In vivo inhibitory effect of single‑stranded RNAi agent 
targeting periostin on progression of choroidal FVM 
formation

We have also demonstrated that naked NK0144 significantly 
inhibits the expression of periostin, proliferation, adhesion 
and migration of RPE cells without influence on cell viabil-
ity [3]. Moreover, we observed that labeled single-stranded 
RNA without any DDS was detectable in the RPE-choroid 
for at least 5 days after an intravitreal injection [3]. This 
indicates that it was retained within cells at the CNV site 
for a considerable period of time. In contrast to canonical 
double-stranded siRNAs, we found that naked NK0144 sig-
nificantly inhibited choroidal FVM formation (both NV and 
fibrosis) without serious toxicity.

These results strongly suggest that intravitreal injections 
of naked NK0144 may also be a safer and more efficient 
therapeutic option to inhibit choroidal FVM.

Although anti-VEGF therapy for PDR and AMD is now 
a mainstream therapy to prevent retinal and choroidal FVM 

Fig. 4  Structure of novel class of single-stranded RNAi agent. Novel 
class of RNAi agent was prepared as single-stranded RNA oligom-
ers that self-anneal as shown. Nucleotides in red indicate the sense 

strand of the target (periostin), nucleotides in yellow are the antisense 
strand, and nucleotides in blue are the scaffold
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formation, it was recently reported that anti-VEGF therapy 
may cause impairment of the normal retinal function and 
the maintenance of the choriocapillaris [64]. This is partly 
because VEGF plays a pivotal role in retinal homeostasis. 
Therefore, therapies that block VEGF to inhibit pathological 
NV could result in unexpected complications of the normal 
retina and should be used carefully. In contrast to VEGF, 
we have demonstrated that periostin was barely detected in 
the normal retina [7, 24]. We also reported that the correla-
tion between the vitreous concentration of VEGF and peri-
ostin was weak in PDR patients [24]. Additionally, previous 
studies have demonstrated that the binding of VEGF with 
VEGF receptor-2 (VEGFR2) promoted NV mainly through 
the PLCγ/PKC/MAPK pathway [65], whereas the binding 
of periostin with integrin αvβ3 promotes NV mainly via the 
FAK/Akt pathway [25, 42]. These are good evidences of the 
concept that anti-periostin therapy may have independent 
effects on retinal and choroidal FVM formation from anti-
VEGF therapy. Therefore, periostin may be an interesting 
therapeutic target to regulate “disease-specific” pathways 
involved in the formation of retinal and choroidal FVM, 
while minimizing the unfavorable side effects on the normal 
retina. Additional preclinical studies regarding the stability, 
toxicity and effect of duration are underway for establish-
ing the novel periostin-targeting RNAi agent for combating 
retinal and choroidal FVM formation.
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