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the blood presumably due to its uptake by cells, particu-
larly when they are under high oxidative stress conditions. 
The measurement of the subcellular distribution of mela-
tonin has shown that the concentration of this indole in the 
mitochondria greatly exceeds that in the blood. Melatonin 
presumably enters mitochondria through oligopeptide trans-
porters, PEPT1, and PEPT2. Thus, melatonin is specifically 
targeted to the mitochondria where it seems to function as 
an apex antioxidant. In addition to being taken up from the 
circulation, melatonin may be produced in the mitochondria 
as well. During evolution, mitochondria likely originated 
when melatonin-forming bacteria were engulfed as food by 
ancestral prokaryotes. Over time, engulfed bacteria evolved 
into mitochondria; this is known as the endosymbiotic the-
ory of the origin of mitochondria. When they did so, the 
mitochondria retained the ability to synthesize melatonin. 
Thus, melatonin is not only taken up by mitochondria but 
these organelles, in addition to many other functions, also 
probably produce melatonin as well. Melatonin’s high con-
centrations and multiple actions as an antioxidant provide 
potent antioxidant protection to these organelles which are 
exposed to abundant free radicals.
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Introduction

An estimated 2.5 × 109 years ago, molecular oxygen (O2) 
began to rise in the Earth’s atmosphere due to its persistent 
release from photosynthetic bacteria that had evolved an esti-
mated half-billion years earlier [1]. The rise in atmospheric 

Abstract  Melatonin is an ancient antioxidant. After its ini-
tial development in bacteria, it has been retained throughout 
evolution such that it may be or may have been present in 
every species that have existed. Even though it has been 
maintained throughout evolution during the diversifica-
tion of species, melatonin’s chemical structure has never 
changed; thus, the melatonin present in currently living 
humans is identical to that present in cyanobacteria that 
have existed on Earth for billions of years. Melatonin in the 
systemic circulation of mammals quickly disappears from 
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O2 was a highly selective pressure for the evolution of organ-
isms to use O2 as the basis of their metabolism. O2-based 
metabolism proved to be an enormous metabolic advance for 
aerobic species given that the total combustion of glucose 
yields 36 molecules of ATP per molecule of glucose. An 
estimated 95% of O2 used by mammalian cells is reduced 
by the addition of four electrons by cytochrome c to produce 
two molecules of water.

There is, however, a significant downside to oxidative 
metabolism. The transfer of electrons between the complexes 
of the respiratory chain is not flawless with some electrons 
escaping where they chemically reduce adjacent O2 mol-
ecules [2]. This inappropriate metabolism of O2 generates 
free radicals and other reactive oxygen species (ROS) which 
are often highly toxic to molecules in the vicinity of where 
they are produced. Free radicals are derivatives of O2 that 
contain an odd number of electrons in their valence orbital; 
they include the superoxide anion radical (O2

·−), hydroxyl 

radical (·OH), hydroperoxyl radical (HOO·), peroxyl radi-
cal (ROO·), and alkoxyl radical (RO·), among others [3]. 
Some ROS are not free radicals because they possess an 
even number of electrons and include hydrogen peroxide 
(H2O2), hypochlorous acid, etc.

O2
·− is a consequence of the univalent reduction of O2 

(Fig. 1). Radicals are typically unstable and sometimes 
highly reactive. While O2

·− per se is not highly toxic to neigh-
boring molecules, its most damaging actions stem from its 
conversion to secondary highly toxic agents, especially the 
·OH and the peroxynitrite anion (ONOO−) [4, 5]. In an 
aqueous environment, O2

·− is quickly dismutated to H2O2. 
Hence, the formation of O2

·− is invariably accompanied by 
the production of H2O2. H2O2, a non-radical ROS, is rather 
stable and only sluggishly interacts with a number of organic 
molecules. A major aspect of H2O2 that makes it destruc-
tive is its high lipophilicity; this allows H2O2 to readily 
cross lipid-rich membranes thereby spreading the potential 

Fig. 1   A small percentage of oxygen inhaled/utilized by aerobic 
organisms generates oxygen-based derivatives, often called reactive 
oxygen species (ROS), that can damage critical molecules within 
cells. Some of the derivatives are free radicals [with an unpaired elec-
tron represented by the dot (·)] and others are not, e.g., hydrogen per-
oxide. The superoxide anion radical is quickly metabolized by super-
oxide dismutase (SOD) to hydrogen peroxide which can be removed 
from the intracellular environment by either catalase (CAT) or glu-
tathione peroxidase (GPx). Oxidized glutathione (GSSG) is converted 

back to reduced glutathione (GSH) by glutathione reductase (GRd). 
The most destructive derivatives of oxygen are the hydroxyl radical 
and peroxynitrite. The hydroxyl radical is formed from hydrogen per-
oxide during the Fenton reaction and peroxynitrite is generated when 
the superoxide anion couples with nitric oxide. A large percentage of 
the ROS formed within cells is produced in mitochondria as a con-
sequence of the leakage of electrons (e−) from the electron transport 
chain
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damage inflicted by free radicals. The other danger of H2O2 
results when it reacts with iron, copper (and other transition 
metals) or with certain hemoproteins to yield the ·OH [6, 7]. 
These reactions are termed the Haber–Weiss reactions or, 
perhaps more appropriately, the O2

·− driven Fenton reaction. 
The ·OH is devastatingly reactive and immediately reacts 
with any molecule in the immediate vicinity of where it is 
produced; these reactions occur at diffusion limited rates. As 
a result, the ·OH is extremely short-lived and its “reaction 
cage” is very small so the damage it inflicts is site-specific. 
It is estimated that, of the total free radical/ROS molecular 
damage that occurs in organisms, the majority may be a con-
sequence of the ·OH [6, 8]. ·OH also interacts with proteins, 
carbohydrates, nucleic acids, and lipids to produce ROO· as 
intermediates. ROO·, although less reactive than the ·OH, 
have a relatively long half-life and, therefore, they damage 
molecules at some distance from their site of production. 
The most thoroughly studied reaction of ROO· involves the 
peroxidation of polyunsaturated fatty acids (PUFA). The 
destruction of PUFA in cell membranes is a major factor 
that leads to the functional deterioration of cells and their 
eventual death. ROO· can also oxidize carbohydrates, pro-
teins and some sulfhydryl components of hemoproteins.

While O2 is considered poisonous as noted above, the 
predominate theory to explain its toxicity is a consequence 
of its chemical reduction to O2

·−. The most obvious source 
of O2

·− in vivo in aerobic cells is generally considered to be 
the mitochondrial electron transport chain (ETC) (Fig. 2). 
In addition to the presence of the ETC in the mitochondria 
of all mammalian cells (except erythrocytes since they lack 
mitochondria), it is also present in the membranes of many 
bacteria; in plant chloroplasts and some other less studied 
sites [9, 10].

While the mitochondrial ETC is efficient in shunting elec-
trons between successive components (which constitute the 
complexes), some electrons are fumbled and reduce nearby 
oxygen molecules to O2

·−. The quantity of O2
·− produced is 

related to the O2 tension; thus O2
·− production increases as 

the concentration of O2 rises. Under physiological O2 levels 
and when the ETC is functioning optimally, an estimated 
1–3% of the O2 is converted to O2

·−. In the event of damage 
to the components of the ETC, they function suboptimally, 
so electron leakage increases as does ROS formation. This 
occurs in aged individuals, during toxin exposure, etc. Other 
sources of ROS include enzymes, e.g., xanthine oxidase, 
auto-oxidation reactions and haem proteins [11].

Evolution of melatonin’s multiple functions

Melatonin predictably evolved an estimated 3.0–2.5 bil-
lion years ago, probably in photosynthetic bacteria [12, 13], 
where it was specifically designed to neutralize the toxic O2 

derivatives that were produced during photosynthesis [14]. 
Once melatonin (N-acetyl-5-methoxytryptamine) appeared, 
for the next 3 billion years evolution never tinkered with the 
chemical structure of this agent such that the melatonin in 
cyanobacteria [15, 16] is structurally identical to melatonin 
that exists in present-day mammals, including the human 
[17, 18]. While melatonin’s structure has remained stable, its 
functions have become highly diversified. Thus, its original 
antioxidant function has been retained and supplemented 
with a variety of other actions during various stages of evo-
lution (Fig. 3).

The first action of melatonin that was identified after its 
discovery in 1958 [19] was its ability to regulate the repro-
ductive capability of photosensitive mammals [20, 21]. 
Thus, the duration of nocturnally elevated melatonin levels, 
which changed seasonally, were shown to drive the waxing 
and waning of reproductive competence in temperate and 
arctic species that are seasonal breeders [22, 23]. It soon 
became apparent that this action of melatonin was not its 
sole, and likely, not its most important action. Since then, a 
baffling array of functions have been assigned to this mol-
ecule, e.g., oncostatic [24, 25], anti-inflammatory [26–30], 
circadian rhythm modulation [31, 32], sleep promotion [33, 
34], anti-venom [35, 36], body weight regulation [37, 38], 
anti-diabetic [39, 40], anti-fibrotic [41, 42], and others. The 

Fig. 2   The mitochondrial respiratory chain utilizes oxygen to gen-
erate energy in the form of ATP. Free radicals and reactive oxygen 
species are formed when electrons that are passed between successive 
complexes are fumbled and chemically reduce adjacent oxygen mol-
ecules. The toxic derivatives of oxygen, since the majority are formed 
in mitochondria, especially damage mitochondrial DNA, proteins and 
lipids. Because mitochondria are a primary source of toxic deriva-
tives of oxygen, an antioxidant positioned in mitochondria would be 
especially important in reducing oxidative damage
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action of melatonin that has the longest history, however, is 
likely its ability to maintain redox homeostasis.

Melatonin as a free radical scavenger and as an 
antioxidant

Melatonin is uncommonly effective in reducing oxidative 
stress because of the number of means it has as a direct free 
radical scavenger and indirect antioxidant. Thus, melatonin 
(a) functions in this capacity in both the aqueous and lipid 
portions of the cell [43], (b) as a result, it protects lipids [44, 
45], proteins [46, 47], and DNA [48, 49] from oxidative 
damage, (c) it is more highly concentrated in the regions of 
the cells where many of the free radicals are formed, e.g., 
mitochondria [50, 51], (d) it may be synthesized in the mito-
chondria [52] and at this site its synthesis may be inducible 
[53], (e) not only melatonin but a number of its metabolites 
also function as radical scavengers [54–56], (f) melatonin 
binds transition metals which reduces the formation of the 
most aggressive ROS, i.e., ·OH [57, 58], (g) melatonin 
stimulates the activity of a number of antioxidative enzymes 
[59–61], and (h) it promotes the synthesis of another impor-
tant antioxidant, glutathione [62]. Finally, SIRT3—a class 
III histone deacetylase, which is primarily located in the 
mitochondrial matrix, has critical functions in protect-
ing these organelles from oxidative stress [63]. While the 
role of melatonin in impacting mitochondrial SIRT3 is not 
mechanistically well defined, data indicate that SIRT3 may 
mediate at least some of the antioxidative actions of mela-
tonin [64–66]. Considering these diverse functions, it is not 
always possible to determine the relative importance of each 
of these processes in a given highly oxidizing environment.

The detoxification of ROS/RNS is achieved by melatonin 
and a number of its metabolic kin in what is later referred to 
as the antioxidant cascade [67, 68]. Hence, the derivatives 
of melatonin that are formed when it directly neutralizes a 
free radical, often by electron donation [69], are equally as 
effective, and sometimes more so, than melatonin itself in 

reducing oxidative stress [70]. There are a number of com-
prehensive reviews that summarize the details by which 
melatonin functions in the reduction of oxidative damage. 
Rather than re-iterating these multiple actions here, the 
reader is directed to the associated publications [13, 15, 61, 
71–78].

Immunocytochemical evidence for melatonin 
as a mitochondria‑targeted antioxidant

That melatonin acts at the level of the mitochondria to pre-
vent ROS toxicity [79, 80] was documented within a decade 
after the indole was discovered to be a direct potent free rad-
ical scavenger [67, 81, 82] and indirect antioxidant [58–60, 
62, 83]. Using cyanide, an ETC complex IV inhibitor, Yama-
moto and Yang [84] showed that this drug’s ability to cause 
seizures and kill mice was reversed by melatonin; the impli-
cation of these findings was that melatonin entered mito-
chondria and interfered with the negative actions of cyanide. 
Similarly, the actions of neurotoxins including 6-hydroxy-
dopamine (6-OHDA) [85], kainic acid [86] and 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) [87]-mediated 
dysfunction of mitochondrial Complex I are also overcome 
by melatonin. During the same time frame, melatonin was 
reported to augment the activities of respiratory chain Com-
plexes I and IV and to reduce mitochondrial damage result-
ing from the treatment of rats with ruthenium red, a mol-
ecule that inhibits the mitochondrial Ca2+ uniporter leading 
to oxidative stress and mitochondrial uncoupling [88, 89]. 
These actions were not duplicated when vitamins C or E 
were used as replacements for melatonin. Martin and cow-
orkers [90] also verified that melatonin stimulated oxidative 
phosphorylation and promoted a rise in ATP production in 
neuronal and hepatic cell mitochondria. Finally, hepatocyte 
respiratory physiology of aging mice was restored by mela-
tonin, particularly at the levels of Complexes I and IV [91] 
and it limited ischemia/reperfusion-mediated mitochondrial 
dysfunction in rat liver [92]. Finally, the group led by Jou 

Fig. 3   Melatonin is believed 
to exist in most, possibly all, 
animal and plant species. It 
predictably evolved 3.0–2.5 bil-
lion years ago in photosynthetic 
cyanobacteria as an antioxidant; 
this function has been retained 
to the present day including 
in humans. Other functions of 
melatonin, many more than are 
shown in this figure, appeared 
at later stages of evolution. 
Reprinted with permission from 
Manchester et al. [13]
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[93, 94] found that melatonin curtailed laser irradiation-
induced ROS formation in astrocyte mitochondria and pro-
tected mitochondrial DNA from mutations/deletions and the 
cells from apoptosis.

The first comprehensive investigation designed to visual-
ize melatonin’s ability to both quench ROS formed in mito-
chondria and to elucidate the series of molecular events that 
culminate in ROS-mediated cellular death was carried out 
by Jou et al. [95]. Using a combination of time lapse conven-
tional and confocal microscopy with the aid of fluorescent 
probes, we monitored the actions of melatonin at the mito-
chondrial level. Initially, melatonin (100 µM) was found to 
highly effectively resist 10 mM H2O2-induced mitochondrial 
swelling and other cellular changes related to apoptosis of 
astrocytes as seen using phase contrast microscopy. More-
over, confocal microscopy imaging of the cells after they 
were treated with fluorescent probes to identify the health of 
mitochondria (Mito G) and of the nuclei (propidium iodide) 
documented that H2O2-mediated loss of functional mito-
chondria and nuclear impulsion was prevented by melatonin.

To determine whether the mitochondrial protection asso-
ciated with melatonin treatment of H2O2-exposed astrocytes 
related to the ability of the indole to neutralize free radicals 
in these subcellular organelles, ROS levels in mitochon-
dria were evaluated using dichlorofluorescein (DCF) and 
dichlororhodamine (D-123) [95]. The findings showed that 
after H2O2 treatment, there was a massive rise in free radi-
cal fluorescence in mitochondria within 10 min. Concurrent 
melatonin treatment prevented the rapid increase in mito-
chondrial ROS concentrations and maintained them at the 
levels seen in untreated astrocytes (Fig. 4). To achieve this 
marked inhibition of ROS fluorescence, it is likely that mela-
tonin penetrated to the mitochondrial matrix where it either 
scavenged the ROS as they were formed or it prevented their 
formation in the mitochondria.

The reduction in ROS due to melatonin was further docu-
mented using FACS (fluorescence detected by flow cytom-
etry) coupled with the use of ROS sensitive probes [95]. 
In this case, ROS formation was promoted by the exposure 
of astrocytes to either H2O2 or to short chain oxidants, i.e., 
tert-butyl hydroperoxide (t-BuOOH) or cumene hydroper-
oxide (Cu-OOH). Again, using these technologies, mela-
tonin dose-dependently inhibited ROS formation (Fig. 5). 
Melatonin not only restricted ROS formation in oxidant-
treated cells, but also lowered the concentration of ROS 
in otherwise untreated resting cells. When an equivalent 
concentration of vitamin E was used as an antioxidant as a 
replacement for melatonin, it proved far less effective than 
the indole in reversing the toxic actions of oxidant treatment.

As a continuation of these studies, we [95] examined the 
dysregulation of intracellular calcium as an early indication 
of opening of the mitochondrial permeability transition 
pore (MPTP) in cells exposed to an oxidant. Under control 

conditions, astrocyte mitochondrial Ca2+ concentrations 
were low but increased rapidly after H2O2 treatment with 
opening of the MPTP. The events resulting from mitochon-
drial Ca2+ overload were prevented by melatonin. Likewise, 
mitochondrial membrane potential depolarization induced 
by H2O2 was suppressed by melatonin leading to a reduction 
in the escape of lethal cytochrome c (Fig. 6) and caspase-
mediated apoptosis.

This series of investigations illustrate that by intervening 
at the early phases of the mitochondrial-mediated apoptotic 

Fig. 4   Fluorescence imaging of reactive oxygen species generation 
in cultured astrocytes, especially in the mitochondria, and the inhibi-
tion of ROS by melatonin. a An enhanced pseudocolor image which 
documents the higher ROS levels in mitochondria (yellow to red) than 
in other subcellular compartments. b–d Rapid increase in mitochon-
drial ROS formation in astrocytes exposed to an oxidant, H2O2, as 
visualized using dihydrorhodamine 123; a before exposure to H2O2; 
b at 5 min and c at 10 min following the addition of H2O2. In addition 
to being much brighter, the mitochondria in the H2O2-exposed cells 
are swollen. e, f When melatonin was added to the culture medium 
simultaneously with H2O2, ROS levels in the mitochondria did not 
increase at either 5 or 10 min, consistent with the ability of melatonin 
to enter the mitochondria and neutralize the ROS. Reprinted with per-
mission Jou et al. [95]
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process, melatonin prevents all the downstream events asso-
ciated with the loss of cells resulting from massive free radi-
cal damage due to oxidant exposure. The findings also are 
consistent with melatonin’s ability to quickly gain access 
to the mitochondrial matrix where it readily soaks up free 
radicals.

In the studies summarized and reported by others [88, 
96], melatonin also was superior to other antioxidants in 
preventing oxidative damage normally meted out by toxic 
ROS. The large scale deletion of 4577 bp from mitochon-
drial DNA is known as the common deletion (CD); this dele-
tion eliminates roughly one-third of the mitochondrial base 

pairs and severely damages the efficiency of the respiratory 
chain. This defect greatly augments mitochondrial ROS gen-
eration in cells which leads to an elevated rate of apoptosis. 
When the CD occurs in humans it is responsible for respira-
tory chain defect-associated diseases; treatments for these 
conditions have limited efficacy [97].

Using appropriate fluorescent probes, Jou and colleagues 
[98] and Peng et al. [99] were able to visualize the increased 
mitochondrial ROS production in single cells suffering 
with the CD. Considering the high efficacy of melatonin 
as an ROS scavenger, we [100] tested how effective the 
indole would be in protecting cells with CD-augmented 
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Fig. 5   Fluorescence detected by flow cytometry (FACS) analysis of 
ROS generation in astrocytes after exposure to one of several oxi-
dants: H2O2, tert-butyl hydroperoxide (t-BuOOH) or cumene hydrop-
eroxide (Cu-OOH). a Illustrates the dose-dependent increase in mito-
chondrial ROS induced by H2O2 (0.1, 1.0 or 10 mM). b The addition 
of melatonin (100  µM) with H2O2 greatly diminished ROS fluores-

cence. c When 100  µM vitamin E was exchanged for melatonin, it 
was much less effective than melatonin in reducing mitochondrial 
ROS. d, e Melatonin also significantly lowered ROS generation in 
cells exposed to either t-BuOOH or Cu-OOH, respectively. f Mela-
tonin inhibition of ROS-mediated by H2O2 exposure. Reprinted with 
permission from Jou et al. [95]
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mitochondrial oxidative stress and apoptosis and especially 
from secondary oxidative stress (that which occurs when 
such already-damaged cells are exposed to H2O2). In these 
situations, melatonin lowered basal as well as secondary oxi-
dative stress. Moreover, melatonin prevented mitochondrial 
ROS-mediated depolarization of the mitochondrial mem-
brane and counteracted opening of the MPTP. Melatonin 
also reduced cardiolipin depletion and halted apoptosis. 
Finally, melatonin suppressed mitochondrial Ca2+ dysregu-
lation with this protection exceeding that provided by either 
vitamin E or synthetic mitochondria-targeted co-enzyme Q, 
i.e., Mito Q. Based on these observations, Jou and cowork-
ers [100] feel melatonin may prove effective as a therapy in 
clinical situations that involve mitochondrial malfunction.

A follow-up report revealed that melatonin reduced apop-
tosis of astrocytes in which mitochondrial Ca2+ dysregula-
tion was suppressed. Also under some conditions, melatonin 
effectively attenuates MPTP opening and apoptosis in the 
cells where its antioxidative actions are prevented, indicating 
that melatonin may directly target the MPTP [101].

Melatonin in multiple organs and routes of release

Based on the discovery of melatonin in pineal tissue [19] 
and the fact that surgical removal of this organ (or its sym-
pathetic denervation or decentralization) reduces circulating 
levels to near zero [102, 103] and eliminates some of its 
circadian and circannual functions [20, 104–106], for many 
years the pineal was considered the exclusive source of mel-
atonin in vertebrates. In all mammalian species, the pineal 
synthesizes and releases melatonin in a circadian fashion 
with the highest circulating levels at night and much lower 
values during the day. The details of the circadian control 
of melatonin synthesis in the pineal gland have been well 
defined [18].

Fig. 6   The induction of cellular apoptosis after exposure to an 
oxidant involves the release of cytochrome c from damaged mito-
chondria with the subsequent activation of caspases leading to pro-
grammed cell death. This figure illustrates the localizations of 
cytochrome c in the mitochondria of astrocytes not exposed to an 
oxidant (top); middle after 90  min exposure to H2O2; bottom after 
exposure to H2O2 plus melatonin. Clearly, H2O2 treatment caused a 
massive release of cytochrome c into the cytosol and much less into 
the nucleus with melatonin almost totally preventing this escape. The 
release of cytochrome c occurred simultaneously with retraction of 
cell processes, shrinkage of the cells and an irregular plasma mem-
brane. Cytochrome c was detected using immunocytochemistry and 
laser scanning confocal microscopy. Bar 10 µM. Reprinted with per-
mission from Jou et al. [95]

▸
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While it was initially thought that the primary secretory 
route of pineal melatonin is into the rich vascular network in 
the gland, we believe that the major pathway of secretion is 
in fact directly into the cerebrospinal fluid (CSF) [107]. This 
is consistent with the very large amplitude nocturnal rise in 
CSF melatonin relative to the much lower nighttime increase 
in the blood and also with the much more precise rise and 
fall of melatonin in the fluid present in the third ventricle of 
the brain [108]. Thus, the circadian regulation of the central 
biological clock, i.e., the suprachiasmatic nuclei (SCN), is 
reliant on the CSF melatonin rhythm rather than the cycle 
of melatonin in the blood [107, 109]. The blood melatonin 
rhythm, however, along with the autonomic nervous system 
is presumably left to cue circadian clock genes that exist in 
peripheral tissues [110].

We also surmise that another important function of the 
large nightly increases in CSF melatonin is for its antioxi-
dant protection of the brain [107], which has a high meta-
bolic rate and a very high utilization of O2 which puts the 
mitochondria of neurons and glial in excessive oxidative 
jeopardy [111]. The consequences of the high use of O2 
by the brain, because of the generation of partially reduced 
derivatives, is seen in many neurodegenerative disorders all 
of which have a prominent oxidative component [112–114]. 
Besides melatonin of pineal origin providing neuronal/glial 
mitochondrial protection from oxidative stress, possibly all 
cells in the central nervous system generate melatonin for 
their restricted use in resisting the toxicity of ROS/RNS.

While the derivation of CSF and blood melatonin rhythms 
are undoubtedly a function of melatonin released from the 
pineal gland, it is now obvious that melatonin synthesis is 
not unique to this organ. The first structure, after the pineal, 
in which melatonin was found to be produced was another 
neural structure, the retinas [115], where, like the pineal 
gland, its synthesis is rhythmic. Subsequently, melatonin 
production has been uncovered in many non-neural tissues.

In some peripheral organs, local melatonin synthesis is 
inferred because surgical removal of the pineal gland, which 
depletes circulating melatonin values to barely measure-
able values, does not decrease values in peripheral cells. 
For example, in hepatocytes not only does pinealectomy 
not diminish intracellular concentrations of the indole, but 
melatonin levels actually rise in some subcellular organelles 
[50], a presumed compensatory response to the reduction 
of circulating melatonin. The rise in tissue levels of mela-
tonin after pinealectomy, implies that melatonin synthesis is 
inducible in animals [53] as it is in plants [13]. Even in the 
presence of an intact pineal gland, melatonin concentrations 
in mitochondria and cell membranes of hepatocytes greatly 
exceed those in the blood [50]. Interestingly, bile, which is 
produced by hepatocytes, has exceptionally high concentra-
tions of melatonin [116] potentially also originating from 
the mitochondria of liver-associated cells. The uncommonly 

high levels of melatonin in bile are predictably for the pur-
pose of protecting the epithelium of the biliary tree from 
oxidative damage inflicted by highly toxic biliary constitu-
ents [117]. The atypically elevated levels of melatonin in the 
bile may also be augmented due to its recirculation in the 
enterohepatic circulation. Finally, melatonin produced in the 
gut microbiome or consumed in the diet is taken up by the 
capillary bed of the hepatic venous system which may then 
transfer it to the hepatocyte from where it may be shunted 
into the bile. Melatonin, which was discovered in land plants 
in 1995 [118, 119], is in much higher concentrations in plant 
products that are common in the human and animal diet. 
Melatonin in plants serves a similar function as in animals, 
i.e., as an antioxidant [120] and it also functions in growth 
promotion, not unlike an auxin [121].

The widespread production of melatonin in peripheral 
organs should not be unexpected considering the evolution-
ary origin of mitochondria. We recently proposed that the 
ability of all eukaryotic cells to produce melatonin [12] 
stems from the likely bacterial origin of mitochondria (and 
chloroplasts of plants) [122]. According to the endosymbi-
otic theory, mitochondria and chloroplasts developed from 
bacteria that were engulfed by ancestral prokaryotic organ-
isms (Fig. 7). Since the devoured bacteria already produced 
melatonin [15], we speculate that this function was pre-
served by both the evolving mitochondria and chloroplasts 
[12]. Since the former exists in most cells of eukaryotes, 
essentially every cell may have the capability of forming its 
own melatonin, not for distribution throughout the organism, 
but use locally in protection against an oxidative challenge 
(Fig. 8). In cells other than the pinealocytes, the melatonin 
synthetic pathway in mitochondria and chloroplasts may be 
functioning at a low level or may be dormant under con-
ditions of minimal oxidative stress, but it is upregulated 
under circumstances where a compensatory rise in mela-
tonin production would be required to resist an augmented 
production of ROS/RNS. Such a compensatory stimulation 
of melatonin formation has already been reported in plants 
subjected to either abiotic [123] or biotic stress [124] and is 
consistent with the findings of Venegas and colleagues [50] 
who reported loss of pineal melatonin is accompanied by a 
rise in cell membrane melatonin concentrations in cerebro-
cortical cells and in hepatocytes. Many stresses are known 
to promote free radical production in cells, e.g., toxic drugs 
(doxorubicin), chemical toxins (paraquat), heavy metals, 
ionizing radiation, ultraviolet radiation, hypoxia (stroke/
heart attack), hyperoxia, drought, excessive cold or heat, 
environmental air pollutants (soot/smog), bacterial inva-
sion, excessive exertion, inflammation, allergens, etc. Each 
of these stresses presumably induces a compensatory rise 
in intracellular melatonin synthesis in the affected cell for 
its own protection, i.e., as a firewall against oxidative stress. 
This is clearly one means among several features by which 
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melatonin differs from other free radical scavengers, i.e., 
it may be produced at the local level where maximal free 
radical generation occurs and its synthesis in these cells can 
be upregulated.

Evidence for the uptake of melatonin and its synthesis 
in mitochondria

The phagocytosis of melatonin-forming bacteria by primi-
tive eukaryotes (the endosymbiotic theory, Fig. 7) theoreti-
cally explains the origin of both mitochondria and chloro-
plasts that exist in present-day unicellular and multicellular 
organisms. When these engulfed bacteria evolved into these 
cellular organelles, they retained their melatonin-forming 
ability and horizontally transferred this machinery to the 
eukaryotic cell [15]. This inherited capability has persisted 
throughout evolution.

The ability of mitochondria and chloroplasts to produce 
melatonin is currently under intensive investigation. With 
regard to the production of melatonin by mitochondria, it is 
known that these organelles contain much higher melatonin 
concentrations than exist in the circulation [50, 125]. This 
could mean that mitochondria are capable of concentrating 
melatonin from the blood against a gradient; however, since 
pinealectomy rather than depleting mitochondrial melatonin 
levels actually causes them to rise [50] argues against this 

possibility. An alternative explanation is that the mitochon-
dria produce their own melatonin.

In the pineal gland, where melatonin is abundantly pro-
duced on a nightly basis, the immunocytochemical locali-
zation of the AANAT at the ultrastructural level seems to 
be restricted to the mitochondria [126, 127]. Assuming the 
validity of this finding, it suggests that the melatonin’s syn-
thetic pathway in pinealocytes is at least partially located 
in mitochondria. If this is the case for pinealocytes, it may 
extend to other cells as well.

This indirect evidence is supported by a recent obser-
vation related to melatonin synthesis in the mammalian 
oocyte. These critically important cells have been shown 
to synthesize melatonin to ensure that they are adequately 
protected from oxidative damage during their maturation, 
at ovulation and during their fallopian tube transfer and 
implantation [128–130]. Based on the data of He and cow-
orkers [52], the mitochondria of oocytes are the major site 
of melatonin production in these cells. When oocyte mito-
chondria were cultured in a medium containing the mela-
tonin precursor, serotonin, the melatonin concentration in 
the medium quickly increased and within 15 min, the val-
ues were about 12-fold higher than levels in medium from 
mitochondria not supplemented with serotonin. Similarly, 
AANAT (alkylamine-N-acetyl transferase) estimated from 
immunocytochemical images, was shown to exist in both 

Fig. 7   The endosymbiotic theory of the origin of mitochondria and 
chloroplasts. Mitochondria arose from engulfed bacteria that were ini-
tially taken in and digested for their nutrients. During evolution, the 
ingested bacteria developed a symbiotic relationship with the host 
cell and evolved into mitochondria. Likewise, photosynthetic bacte-
ria were also taken in as food but eventually evolved to form chloro-

plasts. Since, the ingested bacteria (which formed both mitochondria 
and chloroplasts) produced melatonin, we proposed this function was 
retained such that in current day animals and plants, both mitochon-
dria and chloroplasts retain the ability to produce melatonin. Emerg-
ing evidence supports this assumption. Reprinted with permission 
from Manchester et al. [13]
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mitochondria and cytosol of mouse oocytes. The produc-
tion of melatonin in oocyte mitochondria has implications 
for the more general implications that mitochondria of other 
cells also produce this indole. Hopefully, these observations 
will prompt other investigators to examine melatonin syn-
thesis in mitochondria of somatic cells. For chloroplasts, 
the data relative to their capacity to produce melatonin are 
more complete than the data for the synthesis of this indole 
in mammalian mitochondria [131–133].

While the production of melatonin in mitochondria seems 
likely and evidence of this has emerged [134, 135], the syn-
thesis of melatonin in the cytosol is not precluded. Certainly, 
in reference to the pineal gland it has always been assumed 
that melatonin synthesis is primarily confined to the cytosol 
[18]. However, an analysis of the kinetics of AANAT as well 
as substrate availability, i.e., acetyl CoA, we predict that 
mitochondria more efficiently convert serotonin to melatonin 
than does the cytosol [136]. This is also consistent with the 
much higher concentrations of melatonin in this organelle 
than in the cytosol or in the blood, even after pinealectomy 
which lowers circulating melatonin values to near zero [50, 
137].

The high efficacy of melatonin in limiting mitochondrial 
damage in diseases/disorders that have a high oxidative com-
ponent [138–141] would generally require elevated levels 
of this antioxidant, either as a result of its local synthesis 
or rapid uptake. Even before melatonin was discovered to 
be a free radical scavenger, we noted that an intensive mito-
chondrial oxidation-producing situation, i.e., forced swim-
ming, caused the rapid disappearance of melatonin from the 
pineal and the blood [142–144]. These studies did not prove 
that melatonin was rapidly extracted from the blood to be 
concentrated in the mitochondria of cells experiencing high 
oxidative stress. However, the very high utilization of O2 
in the mitochondria of the stressed cells to produce ATP is 
known to be associated with elevated O2

·− generation and 
oxidative damage [145–147]. Thus, the increased concen-
tration of melatonin at these sites would provide the neces-
sary reductive equivalents to combat the extensive oxidative 
damage that would normally occur under such conditions.

Melatonin uptake into cells and eventually into mitochon-
dria was long assumed to be related to its high lipid solubil-
ity which would allow it to rapidly diffuse through lipid-rich 
plasma and mitochondrial membranes [148, 149]. While this 

Fig. 8   The targeting of melatonin to the mitochondria; evidence 
suggests that melatonin enters the mitochondria through specific 
transporters, PETP 1/2 (oligopeptide transporters). The actions of 
melatonin in mitochondria are multiple. These actions, particularly 
including its ability to reduce oxidative damage to critical mitochon-
drial molecules, preserve the function of these organelles and benefit 
diseases in which mitochondrial malfunction is a feature. Melatonin 
increases the efficiency of the electron transport chain (I, II, III and 
IV) and improves ATP production (ATP synthase). Reactive oxy-
gen species (ROS) produced when electrons leak from the ETC are 
directly scavenged by melatonin and its metabolite [N1-acetyl-N2-for-
myl-5-methoxykynuramine (AFMK)]. ROS are also metabolized by 
mitochondria superoxide dismutase (SOD2) and scavenged by glu-

tathione (GSH) and SIRT3. Melatonin also modulates uncoupling 
protein (UCP2) to maintain an optimal inner mitochondrial mem-
brane potential and prevents opening of the mitochondrial permeabil-
ity transition pore (MPTP). This limits the escape of cytochrome c 
when the mitochondrion is damaged by ROS. Recent evidence sug-
gests that melatonin, in addition to quickly entering the mitochondria, 
may also be synthesized in this organelle (5HT → Mel) where it is 
also metabolized to AFMK. Not shown in this figure are other actions 
of melatonin that prevent mitochondrial damage and cell death. These 
include a reduction in oxidative damage to lipids, proteins and DNA, 
upregulation of antiapoptotic proteins and downregulation of proap-
optotic proteins and a suppression of the activities of caspases which 
execute the apoptosis pathway
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explanation may suffice following the exogenous administra-
tion of pharmacological amounts of melatonin where blood 
levels greatly exceed the normally high concentrations in 
the mitochondria [50], this would not be adequate to explain 
melatonin uptake by mitochondria that have levels signifi-
cantly higher than physiological blood concentrations. The 
implication is that there may be an active uptake mecha-
nism to concentrate melatonin in mitochondria. We recently 
suggested that melatonin enters cells through the glucose 
transporters (GLUT1 and GLUT4) [150]. According to this 
report, melatonin uptake was unexpectedly slow (one-to-sev-
eral hours) and would seemingly not be consistent with the 
rapid disappearance of melatonin from the blood of highly 
stressed animals (seconds to minutes) [144]. The mechanism 
identified by Hevia and colleagues [150] does not provide 
information or the uptake of melatonin into mitochondria 
although the GLUT1 and GLUT4 transporters are located 
in the mitochondrial membrane.

In an attempt to resolve the issue as to whether there is 
a means, other than simple diffusion, by which melatonin 
may enter the mitochondria, Huo and coworkers [151] con-
sidered the possibility that either the human oligopeptide 
transporters (PEPT) 1/2 or the organic anion transporter 
(OAT) 3 aided this process. The authors used two human 
cancer cell lines, PC3 and U118, to perform their study. 
While the OAT3 transporter was not found to be involved, 
docking analysis of melatonin with PEPT 1/2 which are 
located in the mitochondrial membrane, showed that mela-
tonin readily embedded into the active site of the trans-
porters. PEPT 1/2 facilitated the transfer of melatonin into 
the mitochondria which correlated with the intraorganellar 
concentration of the indole (Fig. 8). The authors concluded 
that the oligopeptide transporters PEPT 1/2 play a crucial 
role in determining the high levels of melatonin in mito-
chondria. As such, melatonin is in a pivotal position to neu-
tralize radicals that are generated by the less-than-perfectly 
functioning ETC.

Melatonin receptors/binding sites have been described in 
the plasma membrane, in the cytosol and in the nucleus of 
cells [26, 152–154]. Additionally, there is a single report 
claiming that a melatonin receptor also exists in the mito-
chondrial membrane. This report, published by Wang et al. 
[155], used cells from an animal model of Huntington dis-
ease. If this receptor does exist in the mitochondrial mem-
brane, it could help to explain the high efficiency of mela-
tonin in protecting this organelle from oxidative damage, 
e.g., by mediating the upregulation of mitochondrial antioxi-
dative enzymes. The presence of this receptor, which has yet 
to be confirmed, would seemingly have no impact in deter-
mining the intramitochondrial concentration of melatonin, 
but could be related to the indirect antioxidative processes 
of melatonin in mitochondria, e.g., stimulating antioxidant 
enzyme activities, enhancing SIRT3 activity, etc.

Diseases where mitochondrial dysfunction occurs 
and where melatonin is beneficial

Sepsis, severe sepsis, and septic shock are serious medi-
cal conditions that are associated with extensive oxidative 
destruction of key molecules within cells. When several 
essential organs are damaged to the extent that they function-
ally fail, the condition is referred to as septic shock and is 
accompanied by multiple organ failure with a high degree of 
mortality being the result. A major predicted causative fac-
tor for multiple organ failure/septic shock is mitochondrial 
dysfunction resulting from damage inflicted by locally pro-
duced toxic reactive oxygen and nitrogen species [156–158]. 
In both humans [157, 159] and animals [160, 161] severe 
mitochondrial malfunction is central in this condition.

In 2001, a report was published by Gitto and colleagues 
[162] in which melatonin was used to treat sepsis in humans. 
In that report, we observed that giving septic human neo-
nates intravenously administered melatonin both reduced the 
degree of oxidative damage (reduced levels of lipid peroxi-
dation products in blood) and significantly limited the rate of 
mortality in these newborns. Subsequently, there have been 
numerous similar studies published using experimental ani-
mals with all the data pointing to the ability of melatonin to 
overcome many of the negative molecular consequences of 
sepsis including preventing the death of animals [163–165], 
as was shown by Gitto et al. [162] in humans. Since the 
mitochondria are a central organelle for the site of oxida-
tive damage resulting from the bacterial toxins associated 
with septic infections, it would be expected that antioxidant 
supplementation may be beneficial in resisting molecular 
damage in this critical illness in animal and human sepsis 
[166, 167].

Perhaps related to the very high degree of damage that 
occurs or due to the limited ability of classic antioxidants to 
gain access to mitochondria, conventional free radical scav-
engers provide little protection, even when they are given 
in very high doses, against septic infections [168–171]. To 
overcome this deficiency, a new strategy has been to design 
antioxidants that target the mitochondria and concentrate 
in these organelles thereby increasing their effectiveness 
as a treatment. This therapy would require that the antioxi-
dant be (a) delivered especially to the mitochondria, (b) be 
located at the proper site in the mitochondria to best scav-
enge newly formed radicals, and (c) to stimulate other pro-
cesses that reduce local free radical levels. Examples of this 
latter function would be the augmentation of the activity of 
antioxidative enzymes and the reduction of the number of 
free radicals formed, i.e., radical avoidance [172]. Finally, 
(d) the optimal antioxidant should also have significant anti-
inflammatory actions to quell the cytokine storm that is elic-
ited during a septic event since many cytokines promote free 
radical generation [153, 173, 174].
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The most common means to enhance the cellular and 
organellar uptake of conventional antioxidants has been 
to couple them with a lipophilic cation which allows them 
to more easily permeate lipid bilayers and concentrate in 
mitochondria. These so-called mitochondria-targeted anti-
oxidants concentrate in the mitochondria up to 500-fold. 
The triphenylphosphonium cation is most frequently conju-
gated to an antioxidant to improve its uptake (Fig. 9) [175, 
176]. The best known mitochondria-targeted antioxidants 
are MitoQ (based on the antioxidant co-enzyme Q10 [177]) 
and MitoE (based on α-tocopherol [178]).

Using a sepsis-mediated organ failure model, Lowes et al. 
[51] compared the ability of melatonin to that of equimolar 
concentrations of either MitoQ and MitoE in resisting oxida-
tive damage and the inflammatory response of rats given two 
bacterial endotoxins, lipopolysaccharide and peptidoglycan. 
Each of the antioxidants was given as a bolus injection fol-
lowed by a 5-h infusion period. While each of the antioxi-
dants had beneficial actions, melatonin was superior in terms 
of reducing plasma levels of lipid peroxidation products 
and hepatic protein damage, in restoring organ dysfunction 
(estimated using plasma aspartate transaminase and urinary 
creatinine levels) and in improving mitochondrial oxidative 
phosphorylation. Of the agents tested, Lowes et al. [51] 
concluded that melatonin would be the most effective treat-
ment to counteract endotoxin toxicity, i.e., in humans. The 
findings also speak to the fact that melatonin readily accu-
mulates in the mitochondria, i.e., it is likely a mitochondria-
targeted antioxidant. Certainly, the very extensive work of 
the group of Acuna-Castroviejo [179] is consistent with the 
high efficacy of melatonin in reducing the consequences of 
sepsis at the mitochondrial level.

Considering the obviously high production of ROS in 
mitochondria, it seems obvious that a free radical scavenger 
specifically designed to localize in mitochondria would be 
highly beneficial in reducing the total oxidative burden that 
cells sustain. Free radical scavengers and enzymatic antioxi-
dants are essential in maintaining redox homeostasis so as to 
reduce excessive damage to critical molecules.

While the idea of designing mitochondria-targeted anti-
oxidants has been around for at least two decades [168, 170, 
171, 180] and since melatonin is highly effective in reducing 
oxidative stress at the mitochondrial level [88, 91, 92, 163, 
166, 181–184], we recently proposed that in fact melatonin 
is a mitochondria-targeted antioxidant [185]. The rationale 
for this classification was further elaborated in two subse-
quent publications [77, 167].

An example of a neurodegenerative condition that is 
clearly linked to aberrant mitochondrial structure and func-
tion is multiple sclerosis (MS) [186]; in fact, this progressive 
disease is believed to be primarily a mitochondria-related 
condition [187]. In an experimental model of this disease, 
Kashani and colleagues [188] reported that the use of mela-
tonin as a treatment of MS-like pathology in mice was fol-
lowed by an obvious improvement of mitochondrial function 
and a reduced disease progression. More recently, we [189] 
reported on an MS patient who was treated with 5–300 mg 
melatonin daily for 4 years. Melatonin treatment was initi-
ated after the patient had failed to respond to glucocorticoid 
medications and was judged to be at the Expanded Disability 
Status Scale (EDSS) 8.0 of the disease (patient restricted to 
bed or wheelchair) [189]. During the use of melatonin daily 
for 4 years, the patient showed steady improvement and was 
diagnosed as being at EDSS 6.0 (walks with cane, crutch or 

Fig. 9   The structure of synthetically produced, mitochondria-tar-
geted antioxidants, i.e., MitoE and MitoQ. When vitamin E or co-
enzyme Q10 is coupled to the triphosphonium cation, they more 
readily accumulate in the cytosol and in the mitochondria due to 
their increased lipid solubility. With regard to mitochondria, these 
synthetically produced antioxidants accumulate in concentrations of 
200-–500-fold greater than unconjugated vitamin E and co-enzyme 
Q10. Despite this high concentration, when compared under in vivo 
experimental conditions, melatonin at equimolar concentrations was 
as good as or better than the fabricated antioxidants in protecting 
against cellular oxidative stress. For this and other reasons, we con-
sider melatonin to be a mitochondria-targeted antioxidant. IMM inner 
mitochondrial membrane, OMM outer mitochondrial membrane
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brace up to 100 m without resting). While the symptoms of 
this disease spontaneously wax and wane in the short term, 
we feel that melatonin definitely reduced the severity of this 
condition because of the degree of improvement and the 
duration of the beneficial effects (4 years). Given that MS 
is generally considered a condition in which mitochondrial 
physiology is compromised, coupled with the known action 
of melatonin at the mitochondrial level, the findings sug-
gest a more comprehensive evaluation of melatonin in MS 
patients should be considered.

A physiological deficiency of a number of progressive 
neurodegenerative conditions also involves mitochondrial 
malfunction as a primary or secondary disturbance in neu-
rons or glia, e.g., Alzheimer, Parkinson, and Huntington 
disease [190–192]. In addition to a genetic predisposi-
tion, the onset of these conditions typically occurs when 
endogenous melatonin levels have deteriorated to chroni-
cally low values. Moreover, melatonin treatment of mod-
els of these diseases in experimental animals have often 
shown benefits in terms of prevention or slowed progres-
sion of both the neuropathology and behavior. Based on 
the outcomes reported, melatonin supplementation would 
likely be more useful in the prevention/slowing of these 
diseases rather than as a treatment of these conditions after 
they are at an advanced stage. Finally, a patient suffer-
ing with Duchenne muscular dystrophy, a condition that 
has a major mitochondrial dysfunction component, also 
responded to melatonin treatment with a substantial slow-
ing of the disease [193].

The findings summarized above represent only a small 
percentage of the studies that have described an improve-
ment of mitochondrial function when they are exposed to 
melatonin. Collectively, the data from both experimental and 
clinical publications, which are numerous, attest to mela-
tonin having specific beneficial effects at the mitochondrial 
level.

Concluding remarks

Melatonin seems to meet the criteria as a mitochondria-
targeted antioxidant. Abundant immunocytochemical evi-
dence supports the conclusion that melatonin has ready 
access to the intermembrane space and matrix of mitochon-
dria (Fig. 8). Certainly, this ubiquitously acting antioxidant, 
particularly in situations where mitochondrial ROS produc-
tion is exaggerated, has the capability of reducing intrami-
tochondrial free radical levels, visualized using appropri-
ate fluorescent probes, as well as minimizing the potential 
molecular damage that is a normal consequence of enhanced 
ROS generation. Moreover, melatonin’s ability to achieve 
these healthful actions may be aided by its local production 
in the mitochondria.

We have surmised that mitochondria originated in early 
prokaryotes when these cells engulfed melatonin-producing 
bacteria as a source of nutrients. Eventually, the engulfed 
bacteria established a symbiotic relationship with these 
cells and evolved into mitochondria; when they did so they 
retained the melatonin-producing ability that their precur-
sors possessed.

The likelihood of mitochondria being a source of mela-
tonin is supported by other data as well. Thus, mitochondria 
have melatonin levels that greatly exceed those in the blood 
and, additionally, surgical removal of the pineal gland which 
lowers circulating melatonin to near zero and deprives cells 
of exogenously produced melatonin, does not cause a con-
comitant drop in mitochondrial melatonin concentrations. 
In fact, the loss of exogenously available melatonin may 
cause a compensatory rise in melatonin production. Based 
on kinetic considerations and substrate availability, mela-
tonin production is calculated to more likely take place in the 
mitochondria rather than in the cytosol. Finally, incubation 
of isolated mitochondria with serotonin, a necessary precur-
sor of melatonin, is followed by a large rise in melatonin 
concentrations in this organelle.

The number of reports proving that melatonin reduces 
molecular damage under severely enhanced oxidative exper-
imental and clinical situations has accumulated for two dec-
ades and are now numerous. A plethora of toxins and disease 
models which cause or are accompanied by greatly exagger-
ated free radical generation have been used to challenge the 
ability of melatonin to prevent or forestall the massive dam-
age that would normally occur. In these situations, melatonin 
has never failed to be protective.

Given the numerous findings that document the highly 
significant protective actions of melatonin in very high 
oxidative stress conditions, this endogenously produced 
indoleamine has proven itself as an essential and worthy 
“firewall” against toxic free radicals. Considering its high 
efficacy along with its mitochondria targeting, melatonin 
should be more extensively exploited for its mitochondrial 
protective actions and its antioxidant potential, particularly 
at the clinical level.
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