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When I was a pre-graduated student, there were two ion

channels: sodium and potassium channels; these channels

were responsible for the action potential, and all other stuff

was just leakage. Later on, during my doctorate, many

channels appeared; the several types of sodium channels—

those of Hodgkin and Huxley and those in the epithelia—

and even more classes of potassium channels—perhaps

responsible for the membrane potential—were reached by

calcium channels; but chloride conductance was still

(probably) leakage. It was during my post-doctoral

traineeship that chloride channels were taken more seri-

ously, to become the main research object of many

excellent laboratories.

In these ‘‘heroic’’ times, when the plethora of channels

we know today were identified and characterised, in a

memorable issue of Science, Lap-Chee Tsui, Francis Col-

lins and Jack Riordan reported that a protein, termed cystic

fibrosis transmembrane conductance regulator (CFTR) is a

chloride channel [1–3]. The value of this finding was to

provide the molecular basis to understand a lethal genetic

disease: cystic fibrosis (CF). It was, indeed, amazing to

realize that this new, important molecule is a chloride

channel, and thus, an anion channel could be really

important. Since then, a lot of different anion channels has

been identified; some of them are also related to other

genetic diseases, but CFTR is still an excellent benchmark

to study—and perhaps to find a good therapy for—a

genetic disease from the molecular point of view.

CFTR has several characteristics that render it a quite

complex system. This membrane protein belongs to the

ABC (ATP binding cassette) protein, but is the only

member of this protein family that functions as a channel.

CFTR has a unique domain, the regulatory domain, that is

not present in other ABC proteins. Noteworthily, there are

more than 2000 different mutations on the CFTR gene, that

can cause CF, or the congenital absence of the vas deferen,

a closely related condition (also present in CF patients).

CFTR is a big membrane protein (1480 amino acids

with a molecular weight of 180 kDa), with an amphoteric

character and an intrinsically disordered region. Thus, it

represents a hard challenge for purification to apply

structural studies. Until up today, only two domains, NBD1

and NBD2, have been crystallised [4–7]. Thus, molecular

modelling has been used to have an insight into the atomic

structure of the CFTR [8–13]. The group of Isabelle

Callebaut, in this issue, provides an overview of the theo-

retical studies including molecular modelling and

molecular dynamics (MD) simulations. But, on the other

hand, efforts to purify detergent-solubilised CFTR have

resulted in promising electron cryomicroscopy data

[14–18]. Novel techniques to purify CFTR for structural

and physical studies are contributed here by the Bob Ford’s

group.

The most common mutation in CF, the deletion of a

phenylalanine at position 508, involves dramatic alterations

of the CFTR traffic, processing and folding [19]. The

complex biogenesis of the CFTR is discussed in Carlos

Farinha’ and Sara Canato’s contribution. Protein kinase A

(PKA) phosphorylation is the mechanism that
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predominantly regulates the channel gating. Christine

Bear’s group has shown that PKA phosphorylation is also

involved in enhancing trafficking and mediating confor-

mational changes at the interdomain interfaces of CFTR.

As CFTR is folded and docked in the plasma membrane,

it works on the anion transport. The complex mechanism of

gating of the CFTR channel is described by Oscar Moran in

this issue. To fully fill up the functional picture of CFTR,

Paul Linsdell presents a consistent description of the ionic

pathway of the channel.

CFTR is mainly expressed in polarized epithelia of

different organs, having a key role either in ion and water

secretion and absorption [20]. Vinciane Saint-Criq and

Mike Gray explain, here, how CFTR can play these roles,

depending on the organ context. It is, therefore, important

to pay attention to the CFTR pharmacology, not only

because of the implications on the CF therapy, but, as

suggested in Olga Zegarra-Moran’ and Luis Galietta’s

contribution, also for the possibility to use pharmacological

modulators of CFTR as promising drugs for a variety of

diseases.

Therapy for cystic fibrosis is still an unsolved problem

yet. Searching for an optimal CF treatment directly

involves the characterisation of the CFTR. Hence, we have

done a long analysis where the CFTR is described in var-

ious terms: the structure, the biogenesis, the function, either

in molecular and systemic perspectives, and how can it be

modulated pharmacologically. To keep the way on the

effort of looking for solutions for CF patients, this series of

basic science reviews are completed with a pure clinical

view of the CF, contributed by Carlo Castellani and Benny

Assael.
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