
RESEARCH ARTICLE

Uncertainty quantification and sensitivity

analysis of neuron models with ion

concentration dynamics

Letizia SignorelliID
1,3*, Andrea Manzoni2, Marte J. SætraID

3

1 Department of Mathematics, Politecnico di Milano, Milano, Italy, 2 MOX, Department of Mathematics,

Politecnico di Milano, Milano, Italy, 3 Department of Numerical Analysis and Scientific Computing, Simula

Research Laboratory, Oslo, Norway

* letizia.signorelli@mail.polimi.it

Abstract

This paper provides a comprehensive and computationally efficient case study for uncer-

tainty quantification (UQ) and global sensitivity analysis (GSA) in a neuron model incorporat-

ing ion concentration dynamics. We address how challenges with UQ and GSA in this

context can be approached and solved, including challenges related to computational cost,

parameters affecting the system’s resting state, and the presence of both fast and slow

dynamics. Specifically, we analyze the electrodiffusive neuron-extracellular-glia (edNEG)

model, which captures electrical potentials, ion concentrations (Na+, K+, Ca2+, and Cl−), and

volume changes across six compartments. Our methodology includes a UQ procedure

assessing the model’s reliability and susceptibility to input uncertainty and a variance-based

GSA identifying the most influential input parameters. To mitigate computational costs, we

employ surrogate modeling techniques, optimized using efficient numerical integration

methods. We propose a strategy for isolating parameters affecting the resting state and ana-

lyze the edNEG model dynamics under both physiological and pathological conditions. The

influence of uncertain parameters on model outputs, particularly during spiking dynamics, is

systematically explored. Rapid dynamics of membrane potentials necessitate a focus on

informative spiking features, while slower variations in ion concentrations allow a meaningful

study at each time point. Our study offers valuable guidelines for future UQ and GSA investi-

gations on neuron models with ion concentration dynamics, contributing to the broader

application of such models in computational neuroscience.

Introduction

In the field of computational neuroscience, a multitude of models exists to describe neuronal

activity, with ever-increasing biophysical intricacies [1]. Most of these models operate under

the assumption of constant intra- and extracellular ion concentrations. This assumption is

generally justified by the brain’s inherent mechanisms, such as pumps and cotransporters, that

work to uphold ion concentration levels close to baseline values. However, to investigate
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scenarios where ion concentrations may change significantly—such as in epilepsy and spread-

ing depression [2, 3]—certain models incorporate ion concentration dynamics and consider

its influence on neuronal activity (see e.g., [4–21]).

This paper focuses on efficiently performing uncertainty quantification (UQ) and global

sensitivity analysis (GSA) on neuron models incorporating ion concentration dynamics. Many

model parameters inherently carry uncertainty arising from experimental measurement errors

or physiological variations. For instance, the conductance gx of a specific ion channel x is often

uncertain. Despite the prevalence of such uncertainty, deterministic models assigning single

numerical values to each parameter are common, and UQ and GSA have, to our knowledge,

been overlooked or approached with simplistic one-at-a-time methods [19]. Understanding

how uncertain parameters affect model outputs is crucial for extracting meaningful insights

from the models [22–24]. Moreover, UQ and GSA serve as valuable tools to investigate chan-

nelopathies by revealing how modulations in specific ion channels or transporters influence

neural activity. By conducting UQ and GSA on models with ion concentration dynamics,

rather than more traditional models focused solely on membrane potentials, we can advance

our understanding of such modulations. The conventional approach typically isolates the

effects of channelopathies on neuronal membrane properties, overlooking their potential

impact on the interstitial ion environment [25]. Neuron models with ion concentration

dynamics enable us to examine the impact of channelopathies on ion concentrations, volume

regulation, and neural activity patterns concurrently, providing a more comprehensive per-

spective. Furthermore, performing UQ and GSA under diverse conditions, such as normal

spiking representing physiological states and activity indicating pathological states, would not

only deepen our understanding of channelopathies, but also provide valuable insights into the

underlying mechanisms associated with these varying conditions.

Performing UQ and GSA on neuron models with ion concentration dynamics is not

straightforward. The focus of this paper is to provide general guidelines on how UQ and GSA

can be performed on these types of models, and address the following main challenges: 1) the

high computational cost associated with these models, 2) the influence of certain parameters

on the resting state, and 3) the models’ exhibition of both fast and slow dynamics. We will elab-

orate on these challenges in the following paragraphs.

The first challenge in performing UQ and GSA on models with ion concentration dynam-

ics lies in the substantial computational cost involved. Neuron models with ion concentra-

tion dynamics are described by time-dependent, nonlinear, and strongly coupled ordinary

differential equations (ODEs), or sometimes partial differential equations (PDEs). Their

multi-scale nature introduces stiffness, leading to significant variations in time scales [26].

Simulating such models poses several numerical challenges arising from their inherent com-

plexity. Capturing their dynamics precisely at different time scales is crucial for accurate sim-

ulations, but striking the right balance between accuracy and computational efficiency is

challenging [27]. Moreover, calculating sensitivity indices within high-dimensional parame-

ter spaces requires a considerable number of input-output evaluations. This challenge

becomes particularly pronounced when dealing with models encompassing numerous state

variables spanning several orders of magnitude and an expansive parameter space, as is often

the case with neuron models incorporating ion concentration dynamics. To mitigate this

challenge, the use of appropriate surrogate modeling techniques, such as polynomial chaos

expansions (PCE) or reduced order models, becomes imperative for computational effi-

ciency [22, 28–33]. These surrogate models enable the replacement of the original, computa-

tionally intensive model with a surrogate constructed from a relatively small experimental

design. Subsequently, the surrogate can be utilized to compute sensitivity indices with mini-

mal computational cost.
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Another main challenge related to UQ and GSA on neuron models with ion concentration

dynamics is that altering a membrane mechanism parameter may change the resting state of

the system [19]. When the resting membrane potential is altered, it affects the driving force of

all ion channels, subsequently impacting all active and passive currents and, consequently, the

overall system dynamics. This inherent characteristic makes it difficult to distinguish the effect

a specific parameter has on its associated membrane mechanism from the broader influence it

exerts on all ion channels by altering the resting state.

The final challenge addressed in this paper pertains to the different temporal dynamics

exhibited by the models’ outputs, spanning both fast and slow time scales. These differences

require careful consideration when determining which outputs to examine and in what man-

ner. For instance, membrane potentials often display rapid dynamics characterized by multiple

action potentials (AP). In such cases, it proves more meaningful to focus on informative spik-

ing features, such as the number of APs, rather than the time-dependent membrane potential.

Conversely, ion concentrations exhibit variations over slower time scales, allowing for a mean-

ingful study at each point in time. Temporal factors influence the evolution of uncertainty

over time, requiring an in-depth examination of how time interacts with uncertainty and sen-

sitivity in time-dependent outputs [34]. Moreover, this challenge is linked to the first one con-

cerning computational costs, as slow dynamics processes necessitate running longer

simulations to observe their long-term effects. Additionally, evaluating sensitivity indices for a

time-dependent output (i.e., one for each time point) is computationally demanding, especially

when aiming at ensuring sufficient accuracy.

In this paper, we present a comprehensive and computationally efficient case study for UQ

and GSA on a neuron model with ion concentration dynamics. Specifically, we delve into the

electrodiffusive neuron-extracellular-glia (edNEG) model presented in Sætra et al. 2021 [20].

Electrodiffusive neuron models represent a subgroup of models with ion concentration dynam-

ics that carefully account for ion concentrations by factoring in both diffusion and electric drift

effects on ionic movement [19, 20]. In doing so, they maintain a consistent relationship

between ion concentrations and electrical potentials, fostering a comprehensive understanding

of the intricate interplay between ion dynamics and electric potentials. Our primary aim is to

precisely assess the model’s susceptibility to uncertainty, particularly during spiking dynamics,

and compare it across physiological and pathological conditions. Thus, we specifically focus on

the parameters of active ion channels, as they play a key role in the spiking activity of neurons.

First, by considering effective implementation strategies and solver selection, we were able to

run simulations that were 15 times more time-efficient than our original implementation pre-

sented in Sætra et al. 2021 [20]. This increased efficiency demonstrates the feasibility of con-

ducting sensitivity analysis on complex neuroscience models. Second, to address the challenge

associated with parameters potentially influencing the resting state of the system, we propose a

method to isolate those parameters specifically affecting the resting state. This approach distin-

guishes parameters directly impacting system dynamics through active ion channels from those

primarily affecting the resting state, subsequently shaping the system’s overall dynamics.

Finally, we investigate how model parameters influence ion dynamics and membrane poten-

tials, considering both scalar quantities of interest and time-dependent outputs. This is achieved

through a variance-based GSA, accounting for multiple parameters’ simultaneous variation

and interactions. We conduct this analysis on the edNEG model under both physiological and

pathological conditions: first, when the neuron is subjected to a moderate stimulus current

resulting in low-frequency firing, and second, when given a strong stimulus current inducing

depolarization block. We believe our investigations can provide valuable guidelines for future

studies on UQ and GSA applied to neuron models with ion concentration dynamics, thereby

expanding the influence and application of such models in computational neuroscience.
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The present study is organized as follows: First, we give a general introduction to the

edNEG model, followed by a description of the numerical integration methods employed and

the techniques applied for uncertainty quantification and sensitivity analysis. Next, we present

the results from UQ and GSA. Finally, we provide discussions and future perspectives.

Materials and methods

The edNEG model: Mathematical and computational framework

The edNEG model [20] considers three domains—a neuron, extracellular space, and glia—

each divided into two subdomains, resulting in a total of six compartments (Fig 1). Specifically,

within the neuronal domain, the two compartments represent the somatic and dendritic lay-

ers, while the glial domain corresponds to a segment of astrocyte syncytium. Utilizing the elec-

trodiffusive Kirchhoff-Nernst-Planck (KNP) framework, the model predicts the evolution in

time of ion concentrations for four ion species (Na+, K+, Ca2+, and Cl−), the electrical poten-

tials ϕ, and the volumes V in all compartments.

Fig 1. edNEG model schematics. The edNEG model comprises three domains representing a neuron, ECS, and glia,

each subdivided into two compartments representing the somatic (bottom) and dendritic (top) layers. The model is

embedded in the KNP framework and predicts the temporal evolution of the ion concentrations [k] (k = {Na+, K+,

Ca2+, Cl−}), the electrical potential ϕ, and the volume V in each compartment. Both neuronal membranes feature Na+,

K+, and Cl− leak channels (jleak,k), a 3Na+/2K+ pump (jpump), K+/Cl− (jKCC2) and Na+/K+/2Cl− (jNKCC1) cotransporters,

and a Ca2+/2Na+ exchanger (jCa-dec). Additionally, the soma contains Na+ (jNa) and K+ delayed rectifier (jK-DR)

channels, while the dendrite includes a voltage-dependent Ca2+ channel (jCa), a voltage-dependent K+

afterhyperpolarization channel (jK-AHP), and a Ca2+-dependent K+ channel (jK-C). Both glial compartments feature Na+

and Cl− leak channels (jleak,k), an inward rectifying K+ channel (jK-IR), and a 3Na+/2K+ pump (jpump). Intra- and

extracellular fluxes (jn, je and jg) are driven by diffusion and electric drift. The model also accounts for transmembrane

water flow (wm) due to changes in the osmotic pressure across the membranes. The figure is adapted from Sætra et al.

2021 [20].

https://doi.org/10.1371/journal.pone.0303822.g001
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Interactions between the three domains are modeled by ionic exchange across the neuron-

extracellular and glia-extracellular membranes, taking into account the distinct ion channels

present in neuronal soma and dendrites, and in glial membrane. Specifically, in order to

describe the transmembrane ion movements across the neuron-extracellular membrane, the

following channels are considered: Na+, K+ and Cl− leak channels, a 3Na+/2K+ pump, K+/Cl−

and Na+/K+/2Cl− cotransporters, and a Ca2+/2Na+ exchanger. Additionally, the soma com-

partment contains Na+ and K+ delayed rectifier channels, while the dendrite encloses a volt-

age-dependent Ca2+ channel, a K+ afterhyperpolarization channel, and a Ca2+-dependent K+

channel. Conversely, the glia-extracellular membrane includes Na+ and Cl− leak channels, an

inward rectifying K+ channel, and a 3Na+/2K+ pump. Movement of ions may also occur within

domains, driven by diffusion and electric drift. The active ion channels are modeled through a

Hodgkin-Huxley formalism for the voltage-dependent conductances, with six differential

equations for the gating variables. Finally, volume dynamics induced by osmotic changes are

described by six differential equations, each corresponding to a specific compartment. The

ultimate model comprises d = 34 ODEs, with dN = 22 addressing ion dynamics (six for each

ion species, except for Ca2+, which requires only four as it does not enter the glial compart-

ments), dx = 6 concerning gating variables, and dV = 6 related to volume dynamics. This

model can be represented by an ODE system in the form:

_NðtÞ ¼ fNðNðtÞ; xðtÞ;VðtÞ; uðtÞ; pÞ; t 2 ð0;T�;

_xðtÞ ¼ fxðNðtÞ; xðtÞ;VðtÞ; pÞ; t 2 ð0;T�;

_V ðtÞ ¼ fVðNðtÞ;VðtÞ; pÞ; t 2 ð0;T�;

Nð0Þ ¼ N0;

xð0Þ ¼ x0;

Vð0Þ ¼ V0:

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

ð1Þ

Here, NðtÞ ¼ ðN1ðtÞ; :::;NdN
ðtÞÞ0 2 RdN is the ion dynamics state vector, where N are the num-

ber of ions, xðtÞ ¼ ðx1ðtÞ; :::; xdxðtÞÞ
0
2 Rdx is the gating variables state vector, and VðtÞ ¼

ðV1ðtÞ; :::;VdV
ðtÞÞ0 2 RdV is the volume dynamics state vector. uðtÞ 2 RdN is a known system

input vector, specifically a stimulus current in our case, p 2 RNp is a vector of known parame-

ters, fN : Rd�Np 7!RdN ; fx : Rd�Np 7!Rdx ; fV : Rd�Np 7!RdV is a set of coupled nonlinear func-

tions, and N0 2 R
dN ; x0 2 R

dx ; V0 2 R
dV represent the initial conditions of the system. The

six electrical potentials are derived algebraically at each time step, while the four membrane

potentials are defined as the difference between intra- and extracellular electrical potentials,

both for neuronal and glial cells in each of their two compartments. Subsequently, we can

establish the set of output equations as follows:

ϕðtÞ ¼ gðNðtÞ;VðtÞ; pÞ; t 2 ð0;T�; ð2Þ

where ϕðtÞ 2 Rd� ; d� ¼ 10 are the outputs. The detailed mathematical formulation is

reported in Sætra et al. 2021 [20].

Numerical implementation and validation

Approximating, simulating, and validating multi-scale biophysical models such as the edNEG

model poses several numerical challenges. Furthermore, it is crucial to minimize the
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computational cost needed for model execution to facilitate efficient UQ and GSA within a

reasonable timeframe. In reference to the implementation proposed in Sætra et al. 2021 [20],

where we utilized the solve_ivp function from the Python library SciPy [35] and its

RK23 method, we successfully improved convergence by rescaling units and implementing an

analytical Jacobian. The first strategy aimed at confining the range of orders of magnitude for

the state variables. The second strategy sped up computations and improved result accuracy.

Specifically, the analytical Jacobian prevented approximation errors resulting from SciPy’s

default finite difference approximation. These changes made implicit solvers work effectively,

and resulted in simulations that were up to fifteen times faster than the original ones, depend-

ing on the choice of integration method and maximum time step. We subsequently conducted

a convergence analysis of the number of action potentials and time of the last action potential

for ϕmsn, the extracellular potassium concentration [K+]se, and the extracellular volume Vse for

solve_ivp’s different solvers. As a result of this analysis, for UQ and GSA, we opted for the

implicit solver Radau with a maximum time-step length of Δtmax = 10 ms. Note that the

solve_ivp function utilizes adaptive time stepping, and Δtmax indicates the maximum

allowed time step. Our choice balanced computational efficiency with the necessity to effec-

tively capture dynamics within a simulation time of T = 6 s. Our selection of the Radau solver

was primarily due to its implicit nature, which allows accurate results to be obtained with

larger time-step lengths. Additionally, it proved to be more accurate at large time-step lengths

for our particular model compared to other SciPy implicit solvers.

The complete set of rescaled parameters along with initial conditions are summarized in S1

Appendix. The source codes for this study are available at https://github.com/CINPLA/

edNEGmodel and https://github.com/letiziasignorelli/edNEGmodel_UQSA [36].

Variance-based global sensitivity analysis

Let us call a computational model G, i.e. a six-compartmental neuron model, that depends on

time t and has Np uncertain input parameters p ¼ ðp1; p2; . . . ; pNp
Þ, with output y:

p 2 Dp 2 R
Np 7!y ¼ Gðt; pÞ 2 R; ð3Þ

where Dp denotes the support of the set of Np input parameters. To address the uncertainties

associated with the input, the computational model can be analyzed using a probabilistic

approach. Therefore, suppose that the uncertainty in the input parameters is modeled by a ran-

dom vector P ¼ ½P1; P2; . . . ; PNp
� with prescribed joint probability density function fP(p). The

resulting quantity of interest Y is now a random variable obtained by propagating the uncer-

tainty in P through G:

Y ¼ Gðt;PÞ 2 R: ð4Þ

Variance-based GSA provides valuable information about which parameters have the most

significant influence on the output variability and uncovers potential interactions among these

parameters. One widely used approach within variance-based GSA is the computation of

Sobol’ sensitivity indices [37, 38]. Sobol’ indices are a set of sensitivity indices that partition the

total variance of the model output into contributions from individual parameters and their

interactions. Considering the quantity of interest Y ¼ Gðt;PÞ as defined in Eq 4, let us fix the

factor Pi at a particular value p∗i . The resulting variance of the model output, with Pi fixed, will

measure the relative importance of Pi and can be defined as follows:

VarP�i ½YjPi ¼ p∗i �: ð5Þ
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Taking the average and according to the law of total variance, the variance of the whole model

output can be decomposed as

Var½Y� ¼ EPi
½VarP�i ½YjPi�� þ VarPi ½EP�i

½YjPi��: ð6Þ

The conditional variance VarPi ½EP�i
½YjPi�� is defined as the first-order effect of Pi on Y. Finally,

the First Order Sobol’ sensitivity index of the input Pi on Y is given by

Si ¼
VarPi ½EP�i

½YjPi��

Var½Y�
; i ¼ 1; . . . ;Np; ð7Þ

and is interpreted as the fraction of the output variance that can be associated to the variance

of Pi. A high value of Si indicates that changes in parameter Pi have a significant impact on the

output, while a low value suggests that variations in Pi have a relatively minor effect on the

overall output variance.

First Order Sobol’ indices do not consider potential interactions among parameters, a com-

mon occurrence in neuroscience models. To address this limitation, a possible approach is to

compute the total effects. We define the variance of the expected value when all parameters

except Pi are fixed as

VarP�i ½EPi
½YjP�i��: ð8Þ

Therefore, due to the law of total variance, the Total Order Sobol’ sensitivity of Pi on Y is given

by

STi ¼ 1 �
VarP�i ½EPi

½YjP�i��
Var½Y�

¼
EP�i
½VarPi ½YjP�i��
Var½Y�

; i ¼ 1; . . . ;Np: ð9Þ

STi provides a measure of the output variance attributed to Pi considering all possible interac-

tions of any order with any other parameter.

The case of time-dependent processes. Many neuroscience models, such as the edNEG

model examined in this study, exhibit time-dependent outputs, yielding additional challenges

for sensitivity analysis. While it is possible to apply Sobol’s approach pointwise in time, for

instance on a set of grid points, 0 = t0 < t1 < . . .< tn−1 < tn = T, this approach has some limita-

tions. First, the variance of the process itself varies in time, leading to distortions in the evalua-

tion of the relative importance of uncertain parameters over different time periods. Second,

considering the model outputs at different time points as independent variables ignores the

temporal correlation structure of the process. To overcome the first issue, one possible option

is to compute a weighted Sobol’ indices pointwise in time, where at each time tk the Sobol’

index is multiplied by the standard deviation of the output Y ¼ Gðt;PÞ:

SWTi ðG; tÞ ¼ STiðG; tÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½GðtÞ�

p
: ð10Þ

A further improvement could involve incorporating a generalized version of Sobol’ indices

considering potential time correlations [34]. The generalized First Order Sobol’ indices read as

SiðG;TÞ ¼
R T

0
VarPi ½EP�i

½GjPi�ðtÞ�dt
R T

0
Var½GðtÞ�dt

; i ¼ 1; . . . ;Np; ð11Þ
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while the generalized Total Order Sobol’ indices are:

STi
ðG;TÞ ¼ 1 �

R T
0
VarP�i ½EPi

½GjP�i�ðtÞ�dt
R T

0
Var½GðtÞ�dt

; i ¼ 1; . . . ;Np: ð12Þ

Factor fixing

Procedure description. Based on the edNEG model’s biophysics, and informed by a pre-

liminary and previously done sensitivity analysis of the analogous edPR model [39], we made

an educated guess to categorize the parameters of interest into two distinct groups. The first

group influences the model’s dynamics by altering the resting state, while the second group

directly impacts the dynamics themselves. We have labeled these groups as “non-dynamic”

parameters and “dynamic” parameters, respectively. The nominal values and the detailed

description for these parameters are listed in Tables 1 and 2. To ensure that only the “non-

dynamic” parameters influence the resting state and subsequently modify the dynamics, we

carried out a sensitivity analysis by treating the two parameter groups as two inputs of uncer-

tainty. Consequently, we computed the Total Order Sobol’ indices with respect to both groups

of parameters. The aim of this factor fixing procedure was to ensure that the “dynamic”

parameters did not affect the resting state, allowing us to subsequently concentrate on examin-

ing how uncertainty in these parameters uniquely influences firing dynamics.

Parameter distributions. We adopted the assumption that all parameters under consider-

ation for the sensitivity analysis followed a uniform distribution [23] within a predefined per-

centage range centered around their nominal values. For this reason a ‘hyper-parameter’ ŝ

was introduced to control the uncertainty across all parameters, as in Pathmanathan et al.

Table 1. “Non-dynamic” parameters: Conductances and strengths of leak channels and homeostatic mechanisms.

Parameter Nominal value Units

�gNa;leak;n Na+ neuron leak conductance 0.0246 mS � cm−2

�gK;leak;n K+ neuron leak conductance 0.0245 mS � cm−2

�gCl;leak;n Cl− neuron leak conductance 0.1 mS � cm−2

ρn Na+/K+ neuron pump strength 1.87 × 10−4 nmol � cm−2 �ms−1

Ukcc2 KCC2 cotransporter strength 1.49 × 10−5 nmol � cm−2 �ms−1

Unkcc1 NKCC1 cotransporter strength 2.33 × 10−5 nmol � cm−2 �ms−1

UCa−dec Ca2+ decay rate 0.075 ms−1

�gNa;leak;g Na+ glial leak conductance 0.1 mS � cm−2

�gK� IR K+ glial leak conductance 1.696 mS � cm−2

�gCl;leak;g Cl− glial leak conductance 0.01 mS � cm−2

ρg Na+/K+ glial pump strength 1.12 × 10−4 nmol � cm−2 �ms−1

https://doi.org/10.1371/journal.pone.0303822.t001

Table 2. “Dynamic” parameters: Maximum conductances of active channels.

Parameter Nominal value Units

�gNa maximum conductance of Na+ current 30 mS � cm−2

�gDR maximum conductance of K+ delayed rectifier current 15 mS � cm−2

�gCa maximum conductance of Ca2+ current 11.8 mS � cm−2

�gAHP maximum conductance of AHP current 0.8 mS � cm−2

�gC maximum conductance of Ca2+-dependent K+ current 15 mS � cm−2

https://doi.org/10.1371/journal.pone.0303822.t002
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2019 [24]:

Pi � UðPi;nom � jŝPi;nomj; Pi;nom þ jŝPi;nomjÞ; for i 2 f1; 2; . . . ;Npg; ð13Þ

where Pi,nom is the nominal value of Pi. In the factor fixing analysis, ŝ was established at a

value of 15%.

Simulation protocol. To evaluate the parameters’ impact on the resting state, we con-

ducted the GSA on simulations that we ran for 240 s without applying any stimulus.

Quantities of interest. We opted to analyze six representative variables:

• ϕmsn: neuronal membrane potential (soma layer),

• ϕmdn: neuronal membrane potential (dendrite layer),

• ϕmsg: glial membrane potential (soma layer),

• ϕmdg: glial membrane potential (dendrite layer),

• [K+]se: extracellular potassium concentration (soma layer),

• [K+]de: extracellular potassium concentration (dendrite layer),

and designated as the quantities of interest (QoI) their values at the simulation’s final time.

Subsequently, we computed the Total Order Sobol’ indices for each of them. We selected these

QoIs because temporally constant membrane potentials and ion concentrations characterize

the system’s resting state. If a parameter is altered, the membrane potentials and ion concen-

trations may deviate from an initial resting state until the system stabilizes in a new resting

state.

Implementation details. We employed the Python library SaLib [40, 41] to create a set

of parameter configurations using the Saltelli method. This approach extends the Sobol’

sequence, a widely utilized quasi-random low-discrepancy sequence, to generate uniform sam-

ples across the parameter space. This extension aims to minimize error rates in the subsequent

sensitivity index computations [42]. Our study employed 512 samples, which translated to

3072 parameter sets. Since the factor-fixing analysis was a preliminary analysis conducted with

the model in resting conditions and with scalar outputs, it did not require the use of surrogate

models.

Uncertainty quantification and sensitivity analysis in the dynamical state

Procedure description. Our second analysis focused on the “dynamic” parameters group,

specifically concentrating on the five parameters listed in Table 2. This approach enabled us to

conduct an in-depth exploration of the specific effects these “dynamic” parameters exert on

the system’s behavior, free from the influence of the “non-dynamic” parameters group altering

the resting state.

Parameter distributions. As in the factor fixing analysis, we defined the distributions of

input parameters as uniform distributions. To parameterize these distributions, we set the

hyper-parameter ŝ to 5%. Subsequently, we changed the uncertainty level in order to study the

model’s dependence on input uncertainty, specifically we chose ŝ 2 f0; 1; 5; 10g%.

Simulation protocol. The evaluation of UQ and GSA for the dynamical state was con-

ducted on two representative simulations during firing activity. In the first case, the model was

subject to a stimulus current defined as IstimðtÞ ¼ 8� 10� 5 1ð0:2;5:5ÞsðtÞ mA, with T = 6 s, simulat-

ing physiological conditions. In contrast, the second scenario investigated pathological condi-

tions, employing a stimulus current defined as IstimðtÞ ¼ 20� 10� 5 1ð0:2;5:5ÞsðtÞ mA, with T = 6 s.
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The neuron was stimulated by introducing a K+ injection current into the somatic compart-

ment. To maintain ion conservation, an equivalent amount of ions was removed from the cor-

responding somatic extracellular compartment [20].

Quantities of interest. Given the greater complexity of the dynamics and the increased

number of parameters involved in this context, a more careful selection process is required. To

address this challenge, we have opted to analyze only two representative state variables: the

transmembrane potential ϕmsn and the ion concentration [K+]se. Proper configurations are

essential for each variable. Due to the rapid dynamics of ϕmsn, conducting an uncertainty

quantification and sensitivity analysis at every time-step might not yield meaningful results. In

scenarios like this, a common practice is to identify a few key scalar spiking features as relevant

QoIs, as seen in previous works such as Pathmanathan et al. 2019 [24] and Ghori and Kang

2023 [23], and compute the Total Order Sobol’ indices for each of them. Consequently, in the

physiological case we have identified the following three main features to serve as our outputs:

• NAP : number of action potentials (AP),

• ffinal : final firing frequency in the last 1.5 s of firing activity (that is, for t 2 (4.0, 5.5) s),

• TbFAP : time before the first AP, that is, the duration between when a neuron is subjected to

a stimulus and the moment it generates its initial spike.

Conversely, the two key features in the pathological case are the following:

• TsDP : time of the start of the depolarization block, which was defined as the time when the

first derivative of ϕmsn becomes consistently constant and falls below a predefined threshold

level. In our implementation, this threshold was set at 10−1,

• TbFAP : time before the first AP.

Moreover, for the second chosen variable, [K+]se, the situation is quite different. Given its

slower dynamics, it is indeed meaningful and informative to conduct uncertainty quantifica-

tion and sensitivity analysis at each time-step. Consequently, in both test cases, we compute

the Total Order Sobol’ indices for every time step. Furthermore, we have implemented the

enhancements outlined in the section titled The case of time-dependent processes, which

include the computation of weighted Total Order Sobol’ indices, SWTi ðG; tÞ, and of generalized

Total Order Sobol’ indices,STi
ðG;TÞ.

The choice of QoIs will naturally depend on the type of study being conducted. Since the

goal of this study is to demonstrate how to perform UQ and GSA on neuron models with ion

concentration dynamics, we choose to focus on general spiking features capturing the neuro-

nal firing pattern when studying the membrane potential. To represent slow dynamics, we

select [K+]se because of its crucial role in depolarization blocks [19]. For those interested in

exploring other spiking features such as the width or height of the APs, or slow dynamics vari-

ables like other ion concentrations or volumes, they can readily apply the same methodology

that we have used.

Implementation details. We employed the Python library Uncertainpy [22], a

toolbox designed for uncertainty quantification and sensitivity analysis specifically tailored for

computational neuroscience. To enhance computational efficiency, we opted for a Polynomial

Chaos Expansion (PCE) [28–30] of our model using polynomials of order 4, employing the

Point Collocation method. For more information, see Tennøe et al. 2018 [22], the Uncertainpy

documentation (https://uncertainpy.readthedocs.io/), and Feinberg and Langtangen 2015

[43]. The UQ and GSA runtimes varied between 30 minutes for physiological conditions with

scalar output and 120 minutes for pathological conditions with time-dependent output.
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Timings were conducted on an Acer SPIN 5 SP513–52N with an Intel Core i5–8250U CPU

running at 1.60GHz and 4 cores, using Python 3.8.

Results

edNEG modeling of physiological and pathological activity

In the absence of any stimulus, the edNEG model maintains a stable resting state achieved

through a delicate balance among ion-specific leakage channels, pumps, and cotransporters.

During this resting phase, ion concentrations, membrane potential, and volume values remain

constant, aligning with their initial conditions. At moderately low current injections, physio-

logical activity emerges with corresponding modest firing rates (Fig 2A, 2C and 2E). Over

extended simulation time, this leads the model into a dynamic steady state, supporting sus-

tained firing over an extended period without significant ion concentration divergence from

baseline values [20].

Fig 2. edNEG modeling of physiological and pathological activity. Model’s response to different stimulus strenghts, illustrated by three representative

state variables: membrane potential of neuronal soma (ϕmsn), potassium concentration in extracellular space outside soma ([K+]se), and deviance from

baseline values of the extracellular space volume outside soma (ΔVse). (A,C,E) Physiological response to a 8 × 10−5 μA stimulus current applied to the

somatic compartment between t = 0.2 s and t = 5.5 s. (B,D,F) Pathological response to a 20 × 10−5μA stimulus current applied to the somatic compartment

between t = 0.2 s and t = 5.5 s. The edNEG model was originally presented in Sætra et al. 2021 [20].

https://doi.org/10.1371/journal.pone.0303822.g002

PLOS ONE UQ and SA of neuron models with ion concentration dynamics

PLOS ONE | https://doi.org/10.1371/journal.pone.0303822 May 21, 2024 11 / 26

https://doi.org/10.1371/journal.pone.0303822.g002
https://doi.org/10.1371/journal.pone.0303822


Pathological activity arises when stabilizing mechanisms fail to keep pace with ionic

exchange through active ion channels (Fig 2B, 2D and 2F). This occurs under strong stimulus

currents, resulting in elevated firing rates. During firing, ion concentrations gradually change,

resulting in a progressive depolarization of the neuron, leading to even faster firing. However,

the neuron’s ability to tolerate this intense input is limited, and after a few seconds, it becomes

unable to repolarize, causing firing to cease. In neuroscience, this condition, where a neuron is

depolarized to a voltage level that renders it incapable of generating further action potentials,

is referred to as “depolarization block” [20, 44].

Factor fixing: “Non-dynamic” parameters dominate the resting state

To select the subset of parameters that have minimal impact on changes in the resting state, we

conducted a sensitivity analysis employing Total Order Sobol’ indices STi (Table 3) with respect

to each of the two parameters groups listed in Tables 1 and 2. This analysis confirms that the

“non-dynamic” parameters group significantly impacts the uncertainty of the chosen model

outputs, exceeding the influence of the “dynamic” parameters group, as we expected. Specifi-

cally, we observed the value of STi being fixed at 0.99 for all output variables, indicating a pro-

nounced effect of the “non-dynamic” parameters group on the resting state.

Uncertainty quantification and sensitivity analysis under physiological

conditions

All selected QoIs are influenced by input uncertainty at comparable levels. In this sec-

tion, we present the findings from our analysis concerning the uncertainty of the state variable

ϕmsn under physiological conditions. This involves the investigation of selected QoIs, includ-

ing the number of action potentials (NAP), the final firing frequency (ffinal), and the time before

the first action potential (TbFAP). We began by setting the uncertainty at a moderate level of

ŝ ¼ 5%. This allowed us to obtain a broad understanding of the degree of uncertainty present

in the model outputs. Histograms in Fig 3A–3C are representative of approximate probability

density functions for the three QoIs. The figures indicate that NAP spans approximately from

50 to 90 action potentials, ffinal ranges between 6.0 and 12.0 Hz, and TbFAP falls within the

range of 7.8 to 8.2 ms. The variability in NAP and ffinal is meaningful; although many values

cluster around the baseline, there is a substantial spread. This wide range signifies that uncer-

tainties in input parameters have a pronounced impact on these particular QoIs. Regarding

TbFAP, its range is slightly narrower—about 0.4 ms. Notably, both NAP and ffinal exhibit a

Gaussian-like distribution, with their baseline values aligning closely with the respective distri-

bution modes. Conversely, TbFAP demonstrates a more uniform distribution.

To further investigate the model’s robustness to parameter uncertainty, we changed the

uncertainty levels in our simulations (Fig 3D–3G). In line with our earlier observations, NAP

Table 3. Total order Sobol’ indices for six QoIs with σ̂ ¼ 15%.

Output variables Snon-dynamic
Ti Sdynamic

Ti

ϕmsn 0.99 3.3 × 10−3

ϕmdn 0.99 3.3 × 10−3

ϕmsg 0.99 6.7 × 10−5

ϕmdg 0.99 7.1 × 10−5

[K+]se 0.99 2.7 × 10−4

[K+]de 0.99 4.4 × 10−4

https://doi.org/10.1371/journal.pone.0303822.t003
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and ffinal are considerably influenced by input uncertainty. As the level of uncertainty

increases, the distributions of NAP and ffinal broaden. NAP transitions from a confined range

around 64 at ŝ ¼ 1% to spanning between 25 and 120 action potentials at ŝ ¼ 10% (Fig 3D).

Furthermore, at ŝ ¼ 1%, also ffinal exhibits minimal sensitivity to input uncertainty, with

Fig 3. Uncertainty quantification for ϕmsn QoIs under physiological conditions. Outputs for three QoIs (number of action potentials, NAP, final firing

frequency, ffinal, and time before the first action potential, TbFAP). (A-C) Histograms of QoIs with moderate uncertainty level on input parameters, ŝ ¼ 5%.

The red dashed lines indicate the values of QoIs when the edNEG model is evaluated using baseline parameter values. (D-F) Violin plots of QoIs with

increasing level of uncertainty in the input parameters, ŝ ¼ f0; 1; 5; 10g% (x-axis). The width of each violin at any given point indicates the density of the

QoI at the corresponding uncertainty level. The white dots represent the median and the black bold lines indicate the data that lie within quartiles. (G)

Grouped violin plot of standardized QoIs ((data—mean)/standard deviation) with increasing level of uncertainty in the input parameters.

https://doi.org/10.1371/journal.pone.0303822.g003
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values closely clustered around the baseline of 8.67 Hz (Fig 3E). However, this dependence

escalates as ŝ attains higher values. Moreover, TbFAP shows a moderate amplification in output

uncertainty, evident by the broader distribution as uncertainty increases, even though less pro-

nounced than the effect on NAP and ffinal (Fig 3F). Lastly, in Fig 3G, we depict standardized

QoI distributions, categorized by distinct uncertainty levels. This allows us to compare the

impact of uncertainty on the different QoIs. It is now evident that all QoIs are influenced by

input uncertainty at comparable levels. However, the distributions of both NAP and ffinal

exhibit a Gaussian-like shape that is slightly more widely dispersed and includes a few addi-

tional outliers. In contrast, TbFAP displays a more evenly distributed range of output values.

The selected QoIs are influenced in distinct ways by the five uncertain parameters. In

order to understand which of the input parameters predominantly influence the uncertainty

in the QoIs linked to ϕmsn, we carried out a sensitivity analysis employing First and Total

Order Sobol’ indices (Fig 4). One immediate observation from comparing the first and total

effects is that the majority of the uncertainty in NAP and ffinal arises from first-order effects, evi-

denced by the negligible difference between their First and Total Order indices. Conversely,

concerning TbFAP, a substantial difference is evident, signifying that its uncertainty is largely

attributed to interactions among input parameters. Delving into the individual analysis of the

three QoIs, findings for NAP (Fig 4A and 4D) and ffinal (Fig 4B and 4E) are very similar, and

imply that these QoIs are most sensitive to the input parameters gDR, gC, and gC. These

Fig 4. First and Total order Sobol’ indices for ϕmsn QoIs under physiological conditions. Sensitivity analysis with Sobol’ indices for three QoIs (number

of action potentials, NAP, final firing frequency, ffinal, and time before the first action potential, TbFAP). (A-C) First order Sobol’ indices for selected QoIs.

(D-F) Total order Sobol’ indices for selected QoIs.

https://doi.org/10.1371/journal.pone.0303822.g004
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conductances, indeed, exhibits the most significant First Order and Total Order Sobol’ indices.

Consequently, it becomes apparent that the variance in NAP and ffinal is predominantly driven

by these three conductances (gDR, gC, and gC). In contrast, an examination of the First Order

Sobol’ indices for TbFAP implies that the input parameter gNa owns a greater influence on out-

put variance compared to the other input parameters (Fig 4C). However, this assertion does

not hold as strongly when examining the Total Order indices. While gNa retains a substantial

index value, all the other conductances also contribute significantly to the higher order effects

through their interactions (Fig 4F).

Comparing different versions of time-dependant Sobol’ indices helps unravel the com-

plex dynamics of [K+]se. To comprehensively address the uncertainties and sensitivities

inherent to a slow dynamic variable such as [K+]se, we conducted an in-depth analysis over the

course of time (Fig 5). Fig 5A illustrates how the model’s uncertainty evolves throughout the

simulation. This uncertainty starts to grow at 0.2 s with the initiation of the stimulus current

and continues to expand as firing activity progresses, resulting in increasingly wide prediction

intervals. This highlights the importance of performing an accurate sensitivity analysis that

takes into account this variance fluctuation. Indeed, we computed the Total Order Sobol’ indi-

ces over time using three distinct approaches: the standard index STi (Fig 5B), the weighted

index SWTi (Fig 5C), and the generalized versionSTi
(Fig 5D). It is challenging to interpret stan-

dard indices due to the variability of the output over time and the oscillations within the indi-

ces themselves. Conversely, their generalized counterparts offer a more robust and meaningful

perspective. Delving into the latter, we observe how initially, prior to firing activity, the sole

parameter influencing the output is gDR, with a Sobol’ index nearly reaching 1. As firing

begins, all parameter indices display a peak followed by a decay, eventually stabilizing over

time. Among these, gDR and gC emerge as the key contributors to output uncertainty, with

their Total Order Sobol’ indices reaching 0.3 at the simulation’s end. In contrast, gNa and gC

exhibit indices around 0.04. Notably, gAHP initially experiences a peak around 0.6 s, followed

by a brief dip; however, as time progresses, its index surpasses that of gDR and gC, reaching a

final value of 0.42. While the standard Sobol’ indices and their generalized versions might

ignore the initial low variance and prematurely highlight the significance of gDR, weighted

Sobol’ indices provides a clearer contrast. Weighted Sobol’ indices offer improved understand-

ing, particularly at the simulation’s onset and conclusion—instances when dynamic changes

occur due to the activation and deactivation of the stimulus current. Indeed, within the interval

(0, 0.2) s, no input parameter affects output uncertainty due to minimal variance. During firing

activity, despite oscillations complicating interpretation, the two parameter groups already dis-

cussed emerge: one exerting greater influence (gDR and gC) and another with lesser impact (gNa

and gC), while gAHP’s importance increases to eventually surpass the others. When firing

ceases, it is evident how the significance of gDR and gC diminishes immediately. This highlights

that these parameters only actively influence the output during firing. Conversely, the other

parameters, when the oscillatory dynamics ceased, display an almost constant value, preserving

their relative importance on the output uncertainty.

Uncertainty quantification and sensitivity analysis under pathological

conditions

Input uncertainty significantly influence the time of the start of the depolariziation

block. In this section, we address the outcomes of our analysis regarding the uncertainty of

the state variable ϕmsn under pathological conditions. Specifically, in this second test case, the

selected QoIs were the time of the start of the depolariziation block (TsDP) and the time before

the first action potential (TbFAP). We executed the identical procedure outlined in the Results

PLOS ONE UQ and SA of neuron models with ion concentration dynamics

PLOS ONE | https://doi.org/10.1371/journal.pone.0303822 May 21, 2024 15 / 26

https://doi.org/10.1371/journal.pone.0303822


Fig 5. Uncertainty quantification and sensitivity analysis for [K+]se(t) under physiological conditions. The uncertainty level on input

parameters was fixed at ŝ ¼ 5%. (A) Mean (E) and 90% prediction interval (I0.9) for [K+]se(t) evaluated at each time-step. (B-D) Total order

Sobol’ indices (STi ), weighted Total order Sobol’ indices (SWTi ), and generalized Total order Sobol’ indices (STi
) over time for the five uncertain

parameters (different colors).

https://doi.org/10.1371/journal.pone.0303822.g005
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section for physiological conditions. Initially, we set the uncertainty at a moderate level of ŝ ¼

5% and generated histograms (Fig 6A and 6B) portraying approximate probability density

functions for the selected QoIs. The results revealed that TsDP spans approximately from 3.25

to 4.25 s, while TbFAP falls within the range of 3.5 to 3.8 ms. Notably, the variability in TsDP is

Fig 6. Uncertainty quantification for ϕmsn QoIs under pathological conditions. Outputs for two QoIs (time of the start of the depolarization block, TsDP,

and time before the first action potential, TbFAP). (A-C) Histograms of QoIs with moderate uncertainty level on input parameters, ŝ ¼ 5%. The red dashed

lines indicate the values of QoIs when the edNEG model is evaluated using baseline parameter values. (D-F) Violin plot of QoIs with increasing level of

uncertainty in the input parameters, ŝ ¼ f0; 1; 5; 10g% (x-axis). The width of each violin at any given point indicates the density of the QoI at the

corresponding uncertainty level. The white dots represent the median and the black bold lines the data that lie within quartiles. (G) Grouped violin plot of

standardized QoIs ((data—mean)/standard deviation) with increasing level of uncertainty in the input parameters.

https://doi.org/10.1371/journal.pone.0303822.g006
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substantial, encompassing a difference of around 1 s, despite a clustering of values around the

baseline. In contrast, the range of TbFAP is slightly narrower, approximately 0.3 ms, and both

QoIs exhibit a Gaussian-like distribution. Subsequently, we changed the uncertainty levels,

varying ŝ 2 f0; 1; 5; 10g (Fig 6C–6E). As observed earlier, TsDP is markedly influenced by

input uncertainty. With increasing uncertainty, the distributions widen, transitioning from a

narrow range around 3.7 s at ŝ ¼ 1% to spanning between 2.5 and 5.0 s at ŝ ¼ 10% (Fig 6C).

Furthermore, TbFAP exhibits a moderate amplification in output uncertainty, with a broader

distribution as uncertainty increases, although less pronounced than the effect on TsDP (Fig

6D). Finally, in Fig 6E, we present standardized QoI distributions, categorized by distinct

uncertainty levels. It is now evident that all QoIs are influenced by input uncertainty at compa-

rable levels.

The selected QoIs are influenced in distinct ways by the five uncertain parameters.

Following the same methodology applied in the physiological scenario, we conducted a sensi-

tivity analysis using First and Total Order Sobol’ indices (Fig 7). A notable observation

emerges when comparing the first and total effects: the predominant source of uncertainty for

TsDP stems from first-order effects, given the negligible difference between their First and

Total Order indices. In contrast, regarding TbFAP, a substantial difference is evident, indicating

that its uncertainty is primarily attributed to interactions among input parameters. The results

for TsDP (Fig 7A and 7C) suggest that this QoI is highly sensitive to the input parameter gDR

since it exhibits the most significant First Order and Total Order Sobol’ indices. On the other

hand, an analysis of the First Order Sobol’ indices for TbFAP implies that the input parameter

gNa exerts a greater influence on output variance compared to the other input parameters (Fig

7B). However, when examining the Total Order indices, it becomes evident that all the other

conductances play a substantial role in contributing to higher-order effects through their inter-

actions (Fig 7D).

The dynamics of [K+]se exhibits sensitivity to different conductances at distinct

stages. Analogously to the analysis described in the section related to Fig 5, which refers to

the slow dynamic variable [K+]se in the physiological case, we conducted a comprehensive

analysis over time under pathological conditions as well (Fig 8). Fig 8A illustrates the evolution

of the model’s uncertainty throughout the simulation. At the initial stages of the simulation,

uncertainty is almost negligible, even after the stimulus current initiates at 0.2 s. However,

uncertainty begins to increase around 3.5 s when the neuron enters the depolarization block

and firing ceases. Eventually, when the stimulus current is turned off at 5.5 s, the variance wid-

ens significantly. Subsequently, we computed the Total Order Sobol’ indices using three dis-

tinct approaches presented earlier: the standard index STi (Fig 8B), the weighted index SWTi (Fig

8C), and the generalized versionSTi
(Fig 8D). Fig 8B and 8D shows that before firing activity,

the sole parameter influencing the output is gDR with a Sobol’ index nearly reaching 1. As firing

begins, all parameter indices, except gNa, display a peak followed by a decline, with gAHP show-

ing a slower but similar dynamics. Conversely, gNa appears to be the parameter most affecting

the system’s dynamics during firing activity, surpassing all others and reaching a Sobol’ index

around 0.6. As the system enters the depolarization block, a different situation emerges. While

the importance of gNa decreases strongly, the contribution of gDR drastically increases, eventu-

ally surpassing that of gNa, revealing its importance especially at the beginning of the depolari-

zation block. SinceSTi
also considers the temporal impact on Sobol’ indices, Fig 8D

demonstrates that gDR not only strongly influences the initial phase of the depolarization

block, but that this influence persists throughout the dynamics as time progresses until the

simulation ends. While standard Sobol’ indices and their generalized version might overlook

the initial low variance and prematurely highlight the significance of gNa, Fig 8C provides a
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clearer contrast. Weighted Sobol’ indices take into account the considerably lower variance at

the beginning of our simulation compared to the second part when the system enters the depo-

larization block. We can still observe that at the beginning, gNa has the most significant impact

on the dynamics, but the importance of gDR during the depolarization block is much higher

and strongly influences the dynamics, as the variance of the output variable is significantly

higher. Finally, when firing ceases, it becomes evident that the significance of all input parame-

ters increases immediately due to the strongly increased variance.

Discussion

In this paper, we introduce effective strategies for conducting UQ and GSA on neuron models

incorporating ion concentration dynamics. Specifically, we study the edNEG model from

Fig 7. First and Total order Sobol’ indices for ϕmsn QoIs under pathological conditions. Sensitivity analysis with Sobol’ indices for two QoIs (time of

the start of the depolarization block, TsDP, and time before the first action potential, TbFAP). (A-C) First order Sobol’ indices for selected QoIs. (D-F)

Total order Sobol’ indices for selected QoIs.

https://doi.org/10.1371/journal.pone.0303822.g007
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Fig 8. Uncertainty quantification and sensitivity analysis for [K+]se(t) under pathological conditions. The uncertainty level on input

parameters was fixed at ŝ ¼ 5%. (A) Mean (E) and 90% prediction interval (I0.9) for [K+]se(t) evaluated at each time-step. (B-D) Total order

Sobol’ indices (STi ), weighted Total order Sobol’ indices (SWTi ), and generalized Total order Sobol’ indices (STi
) over time for the five

uncertain parameters (different colors).

https://doi.org/10.1371/journal.pone.0303822.g008
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Sætra et al. 2021 [20]. The edNEG model predicts ion concentrations, electrical potentials, and

volumes within a six-compartmental system representing a neuron, ECS, and glial cells, for-

mulated as a system of 34 ODEs. Our approach involved three key aspects:

1. Firstly, by considering effective solving strategies, we achieved simulations that were 15

times more time-efficient than our initial implementation from Sætra et al. 2021 [20],

enabling an in-depth analysis of the model’s dynamics.

2. Secondly, we implemented a factor-fixing analysis to isolate the parameters directly influ-

encing the dynamical state of the system. This analysis narrowed our focus to the five mem-

brane conductances listed in Table 2.

3. Thirdly, we did a careful selection of which QoIs to study. The fast dynamics exhibited by

ϕmsn necessitated the selection of specific spiking features, a common consideration in neu-

roscience [22]. Conversely, the slower dynamics associated with the ECS potassium ion

concentration, [K+]se, allowed for a time-dependent examination. This decision played a

vital role in ensuring meaningful results, especially when dealing with multiple dynamic

patterns arising from the model.

In our study, our emphasis was on understanding the role of uncertain parameters during

neuronal firing. Our in-depth analysis identified specific parameters influencing chosen spik-

ing features and the dynamics of [K+]se at different simulation time intervals. Further elabora-

tion on these findings will be provided in the following subsections, culminating in a

discussion on future perspectives.

Understanding the source of uncertainty gives insights into the model’s

underlying dynamics

In our analysis of ϕmsn under physiological conditions, our key findings can be summarized as

follows: for NAP and ffinal, most of the uncertainty arises from the first order effects of the con-

ductances gDR, gC, and gC. It is worth noting that the calcium current contributes to the depo-

larization of the dendritic compartment, whereas the potassium delayed rectifier current

serves to repolarize the somatic compartment, terminating the firing of action potentials. This

underscores the importance of accurately estimating these conductances to mitigate uncertain-

ties in the model predictions, as both NAP and ffinal stand out as profoundly impacted by input

uncertainties. Conversely, for TbFAP, total effects dominate the output uncertainty, driven by

all conductances, but especially by gNa. Indeed, since the sodium current depolarizes the

somatic compartment to initiate firing of action potentials, it follows that variations in the

sodium channel conductance, gNa, notably influence the time before the first action potential.

This influence is most pronounced in its first order effects. In contrast, all other conductances

affect this particular QoI only through interactions among themselves.

In the analysis of [K+]se under physiological conditions, we explored three different imple-

mentations of the Total Order Sobol’ indices for time-dependent processes. Our findings pro-

vide robust insights into how not only the input parameters but also time itself influence its

dynamics. We noticed the emergence of two distinct parameter groups: one with a more pro-

nounced impact, consisting of gDR and gC, and another with a comparatively smaller influence,

represented by gNa and gC. Interestingly, the significance of gAHP grew over time, eventually

surpassing the other parameters in importance. Indeed, from a biological perspective, the volt-

age-dependent potassium after-hyperpolarization (AHP) current has a slow time constant,

causing the cell to stay hyperpolarized [45] and giving its contribution as the simulation time

progresses.
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Comparing how uncertainty affects both physiological and pathological

activity unravels different scenarios

When focusing on the second test case under pathological conditions, we observe that the time

of the start of the depolarization block, TsDP, is substantially affected by input uncertainty. This

highlights the profound impact of active ion channel conductances, especially gDR, on the neu-

ron’s ability to tolerate a strong input current. Furthermore, the time before the first action

potential, TbFAP, is moderately influenced by input uncertainty, as in the physiological case.

Specifically, the conductance gNa significantly contributes to first-order effects, while all other

conductances exert a strong influence on TbFAP through higher-order interactions. Comparing

varying levels of uncertainty on TbFAP reveals only a minimal increase in output uncertainty,

both for the pathological and physiological scenario. This phenomenon may be attributed to

TbFAP being a QoI measured at the onset of firing when the system variance is low, and time

has not significantly contributed to overall uncertainty.

A notable scenario arises when comparing the analyses of the time-dependent output

[K+]se. Under pathological conditions, the variance of [K+]se remains minimal during the fast

dynamics between 0.2 and 3.7 s, and increases as the neuron enters the depolarization block

after around 3.8 s. This contrasts with physiological conditions, where the variance of [K+]se

starts to rise just after the onset of the stimulus current. This observation highlights the signifi-

cance of the active ion channels’ uncertainty during the depolarization block in pathological

dynamics. Additionally, upon turning off the stimulus current at 5.5 s, there is a drastic

increase in the variance of [K+]se. This phenomenon may arise from different dynamic scenar-

ios resulting from varied parameter settings. However, given our study’s focus on the dynam-

ical state, we leave the investigation of this subject to future explorations.

When delving into the contributions of individual parameters to the uncertainty in [K+]se,

notable differences emerge compared to physiological conditions. While the physiological case

emphasizes the importance of gDR and gC during firing activity, pathological conditions are

much more impacted by the uncertainty in gNa, even though the overall variance during this

stage is minimal. Conversely, the influence of gDR only begins to rise as the neuron enters the

depolarization block. This once again underscores the impact of this input parameter under

pathological conditions, particularly during the depolarization block.

Future perspectives

In conclusion, we would like to present some potential avenues for future research in sensitiv-

ity analysis.

Firstly, while this paper delved into the influence of five selected parameters, the model’s

extensive parameter space allows for alternative choices. It would be valuable, for example, to

explore the influence of “non-dynamic” parameters, such as leak conductances and cotran-

sporters, on both system dynamics and volume changes during extended simulation periods.

We anticipate this parameter group to be somewhat more challenging to analyze, as they affect

the system dynamics through alterations of the resting state. Indeed, this presents an additional

challenge in comprehending how uncertainty influences the system and would be an interest-

ing topic for research in the near future.

Secondly, when selecting probability distributions for the input parameters, our approach

involved setting all distributions to uniform, without delving into how they are determined.

Moving forward, there is potential to explore empirically-derived distributions.

Thirdly, the analysis conducted here focused on just two model outputs, ϕmsn and [K+]se,

despite the model containing 34 ODEs. Exploring other outputs within the framework of

GSA, such as the volumes of the compartments, could provide further insights. Given the slow
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time scale of volume changes, one could adopt a similar approach as the one we utilized for

[K+]se.

Additionally, our GSA concentrated on just a few QoIs for ϕmsn. Considering the diversity

of features available, a more extensive exploration of QoIs could enhance the understanding of

uncertainty and sensitivity analysis. For instance, the Uncertainpy library [22] offers a

wide array of QoIs that can be considered.

Lastly, the model’s outcomes are influenced by the stimulus strength. Investigating the

extent to which changes in the system’s equilibrium depend on input parameter uncertainty

could be an interesting future exploration. In this context, a potential development might

involve conducting a bifurcation analysis, similar to the approach in Ghori and Kang 2023

[23], with the value of the stimulus current, Istim, serving as a tunable parameter.

In summary, this study marks the first in-depth exploration of uncertainty assessment for

neuron models incorporating ion concentration dynamics. Our sensitivity analysis sheds light

on the critical parameters influencing our model’s outputs and their interdependencies, and

identifies the ones that require accurate estimation to reduce uncertainty in the results. Addi-

tionally, it provides valuable insights on the underlying biological mechanisms governing

these dynamics under different conditions. We envision that the methodologies presented

herein offer valuable guidelines for future studies, ultimately extending the application of neu-

ron models with ion concentration dynamics.
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