Table 3. Metrics accuracy (Benchmark techniques VS MLEn).
Methods/Datasets | Automobiles (%) | Birds (%) | Emotions (%) | Hotel (%) | Medical (%) | Movies (%) | News (%) | Proteins (%) |
---|---|---|---|---|---|---|---|---|
DenseNet-EHO | 0.89 | 0.96 | 0.95 | 0.93 | 0.97 | 0.92 | 0.93 | 0.99 |
BERT [52] | 0.83 | 0.9 | 0.73 | 0.87 | 0.91 | 0.81 | 0.86 | 0.94 |
ML-RBF [30] | 0.76 | 0.85 | 0.67 | 0.81 | 0.85 | 0.74 | 0.79 | 0.9 |
RAKEL [9] | 0.77 | 0.86 | 0.68 | 0.82 | 0.86 | 0.76 | 0.81 | 0.91 |
RCC [31] | 0.73 | 0.83 | 0.65 | 0.79 | 0.83 | 0.71 | 0.76 | 0.88 |
CNN [5] | 0.79 | 0.88 | 0.7 | 0.84 | 0.88 | 0.78 | 0.83 | 0.92 |
NB [6] | 0.72 | 0.82 | 0.63 | 0.77 | 0.82 | 0.69 | 0.75 | 0.87 |
LSTM [32] | 0.81 | 0.88 | 0.72 | 0.85 | 0.89 | 0.8 | 0.84 | 0.92 |
ResNet [14] | 0.83 | 0.9 | 0.73 | 0.87 | 0.91 | 0.81 | 0.86 | 0.94 |
CapsNet [33] | 0.82 | 0.89 | 0.72 | 0.86 | 0.9 | 0.8 | 0.85 | 0.93 |
GRU [51] | 0.78 | 0.75 | 0.79 | 0.77 | 0.8 | 0.78 | 0.75 | 0.79 |