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Abstract Neutrophil extracellular trap (NET) formation

is a hallmark of many disorders that involve neutrophil

recruitment, tissue damage, and inflammation. As NET

formation is often associated with neutrophil death, the

term ‘‘NETosis’’ has become popular. Upon discovery that

neutrophils may survive NET release, apparent misnomers,

such as ‘‘vital NETosis,’’ have been proposed. Meanwhile,

it has become obvious that certain stimuli can trigger

neutrophil necroptosis, a process associated with NET-like

chromatin release. Here, we discuss the relationship

between NET release and neutrophil death in view high-

lighting that many assays used in the field do not properly

distinguish between the two. An updated nomenclature is

needed replacing the term ‘‘NETosis’’ to meet the growing

variety of settings leading to chromatin release with and

without neutrophil death. Dissecting which triggers of NET

release involve which signaling pathway will help to define

drugable molecular targets that inhibit NET release and/or

neutrophil necrosis in specific disorders.
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Introduction

Neutrophils are important effector cells of the innate

immune system [1]. Neutrophils are continuously gener-

ated in large numbers from myeloid precursors in the bone

marrow. They have a short lifespan of around 5.4 days

during which they continue a process of maturation and

senescence [2]. Neutrophil senescence involves upregula-

tion of CXCR4, facilitating homing back to the bone

marrow and other organs where neutrophils undergo

apoptosis and phagocytic clearance by macrophages [3].

By contrast, neutrophil activation in disease can shorten or

prolong their lifespan depending on the disease context [4,

5]. Activated neutrophils are found in all sorts of tissue

inflammation, which set off research efforts to unravel the

molecular mechanisms of neutrophil homing, patrolling, or

chemotaxis during the last two decades [1, 6].

In 2004, the formation of neutrophil extracellular traps

(NETs) was first described as an alternative route of bac-

terial killing [7], implying that beyond apoptosis, there is a

necrosis-like form of neutrophil death since then referred to

as NETosis. Confusing input came from other domains.

The cell biology domain reclassified the classical cell death

categories of apoptosis and necrosis into a myriad of novel

categories defined by distinct causative signaling pathways

[8]. Whether NETosis is one of those or a distinct category

has remained unclear. The immunology domain observed

that leukocyte-death-upon-activation is a common phe-

nomenon not only for effector T cells but also for

inflammasome-activated macrophages and dendritic cells

[9, 10]. Finally, NET formation was described to occur also

without immediate neutrophil death [11], which was

quickly referred to as ‘‘vital NETosis’’ [11, 12], although

this term is an obvious contradiction in itself (Table 1).

Such nomenclatures in part mirror and potentially account
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for the general confusion about the evolving spectrum of

evidence on NET formation. Here, we try to address this

problem by carefully dissecting NET formation from

neutrophil death, which often but obviously not always go

together. A clear distinction is often difficult, because

many bioassays used in the field do not clearly distinguish

between neutrophil death and NET formation. However,

based on the data available, we propose a working model

toward a better understanding of the role of NET release

and neutrophil death in inflammation and tissue injury.

‘‘NETosis’’. NET formation in association
with neutrophil death

NETs were first described using extensive cell imaging

techniques after stimulation of human neutrophils with

phorbol 12-myristate 13-acetate (PMA) or interleukin (IL)-

8 [7]. Three years later, the same group reconfirmed an

observation made in 1996 that neutrophils undergo a dis-

tinct form of cell death following PMA stimulation, which

is neither apoptosis nor necrosis, and named it ‘‘NETosis’’

[13, 14]. ‘‘NETosis,’’ unlike apoptosis or necrosis, was

described to involve expansion of the nuclear material,

chromatin decondensation, nuclear envelope disintegration,

subsequent mixing of cytoplasmic, and nuclear compo-

nents followed by plasma membrane rupture and release of

NETs [14, 15] (Fig. 1). Since then, NET release was

considered to imply neutrophil death and the term

‘‘NETosis’’ established in the literature. In the last decade,

researchers extensively studied ‘‘NETosis’’ mostly using

conventional bioassays, which do not distinguish the two

phenomena NET release and neutrophil death (Table 2).

For example, the most widely used assays for NET release,

Picogreen and Sytox assays, involve detection of cell-free

DNA as the main principle. However, since these methods

also detect necrosis-related passive release of chromatin, it

is difficult to distinguish this process from a proactive

chromatin expulsion [16, 17]. Simultaneously, some

researchers used lactose dehydrogenase (LDH) assay to

measure NET formation in vitro [18]. However, cells and

tissues release LDH upon toxic or injury-related damage

[19], making this assay highly unspecific for distinguishing

NET formation and cell death. Furthermore, detection of

histone deimination (citrullination of histones) by immu-

noblots or immunohistology was considered as an indicator

for NET formation [20], since histone deimination induces

chromatin decondensation, which is an essential step dur-

ing NET release [21]. Several studies implicated the

involvement of peptidyl-arginine deiminase 4 (PAD4) in

NET formation [20–22]. PAD4 is the enzyme required for

citrullination of histones and chromatin decondensation

during NET formation [21]. Accordingly, chemical inhi-

bition of PAD4 using Cl-amidine impaired NETosis in

animal models of anti-GBM disease or lupus nephritis [23,

24]. However, the requirement of PAD4 in NET formation

is a debated question owing to the unspecific effects of Cl-

amidine for PAD4 [25, 26], as well as the inconsistencies

observed in NET formation in Pad4-deficient mice. For

example, Pad4-/- mice displayed impaired NET formation

during necrotizing fasciitis [20] but succumbed to influenza

pneumonitis [27], which involves influenza virus-induced

NETs in the lung [28]. These disparities suggest that the

involvement of PAD4 in NET formation depends on the

Table 1 Terms frequently used in the context of NET formation

Term Definition

NET Neutrophil extracellular traps are chromatin expulsed from neutrophils decorated with nuclear and cytosolic components

such as proteolytic enzymes

NETting The process of NET formation by groups of neutrophils, e.g., in pus, tophus, or thrombus formation

NETosing The neutrophils/PMNs capable for forming NETs

NETosis NET formation in association with death of the neutrophil, common in pus, tophi, or thrombosis, but the term does not

specify the mode of cell death

Suicidal NETosis NET formation in association with the death of the neutrophil, but the term does not specify the mode of cell death.

‘‘Suicidal’’ implies that the trigger for death is intrinsic, which is usually not the case. Imprecise term that is to be avoided

Lytic NETosis NET formation by pathogen-induced lysis of neutrophils, e.g., S. aureus

Vital NETosis NET formation without the death of the neutrophil. As ‘‘Osis’’ implies death and ‘‘Vital’’ implies alive the term is a

contradiction in itself and should be avoided

Neutrophil

necroptosis

Neutrophil death that can be blocked by inhibitors of the necroptosis pathway (RIPK3–MLKL)

Neutrophil

apoptosis

Neutrophil death that can be blocked by inhibitors of caspase 3, 8, and 9

RIPK receptor interacting protein kinase, MLKL mixed lineage kinase domain-like
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stimulus. Indeed, it is shown that some stimuli, e.g., cal-

cium ionophores, activate PKCf, and thus PAD4; whereas

PMA activates PKCa and, thus, inhibits PAD4 [29], while

both stimuli still induce NET release. Another widely used

technique for assaying NET formation is ‘microscopy.’

Researchers have used immunofluorescence (IF), confocal,

and electron microscopy techniques to characterize either

the presence of NETs, by detecting the co-localization of

neutrophil-specific proteins and DNA [14], or the mor-

phological appearances of NETs [7, 14]. However, the

main drawback of using these techniques is the need for

cell fixation prior to microscopic examinations. Therefore,
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Fig. 1 Chromatin release as a

consequence of neutrophil

necroptosis. Stimuli-like

monosodium urate (MSU)

crystals and phorbol

12-myristate 13-acetate (PMA)

induce activation of a receptor

interacting protein kinase

(RIPK)3- and mixed lineage

kinase domain-like (MLKL)-

dependent signaling pathway

downstream of reactive oxygen

species (ROS). This leads to

plasma membrane rupture and

NET-like chromatin release

together with granular enzymes

as a consequence at around 2 h

of stimulation
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this technique cannot really distinguish the process of NET

formation and cell death. Researchers also used enzyme-

linked immunosorbent assay (ELISA), a technique to

detect complexes of neutrophil-specific proteins and DNA,

e.g., myeloperoxidase (MPO)-DNA or neutrophil elastase

(NE)-DNA complexes [30–32], as an indicator of the NET

formation. However, although these assays confirm the

presence of NETs, they fail to distinguish the NET for-

mation and cell death.

In contrast, time-lapse video microscopy allowed

observing the NET formation [14]. Neutrophils are imaged

using a combination of nuclear (Sytox, Hoechet, PICO),

cytoplasmic (calcien, granular dyes, e.g., NE), and cell

death dyes (propidium iodide, annexin V), making it fea-

sible to identify different components of NET formation

process and cell death, in a manner dependent on each

stimulus and time course [14]. Moreover, Zhao W et al.

reported the use of a combination of microscopy and flow

cytometry for simultaneous detection and quantification of

NET formation [12]. Interestingly, this technique also

claimed to distinguish between the NET formation with

and without cell death [12]. Together, as a few methods are

suitable to clearly distinguish NET release from neutrophil

death, these two phenomena often seem connected and are

referred to as ‘‘NETosis.’’ However, as neutrophils sur-

viving NET release have been documented and since NET

release upon certain stimuli can be inhibited with

‘conventional‘ cell death inhibitors, it seems obvious that

the term ‘‘NETosis’’ is no longer universally appropriate.

Signaling components in NET release

The process of NET release requires the activation of

NADPH oxidase through the Raf–MEK–ERK pathway,

reactive oxygen species (ROS) production, and upregula-

tion of antiapoptotic proteins [14, 33]. Accordingly,

neutrophils from humans or mice deficient in NADPH-

oxidase cannot execute NET release [14, 34, 35]. But how

do ROS exactly mediate NET formation? Several theories

emerged to describe the involvement of ROS in ‘‘NETo-

sis,’’ e.g., through NE, MPO, and histone deimination.

Upon activation of neutrophils, ROS triggers the MPO-

dependent proteolytic activity of NE [15]. In the cytosol,

NE degrades F-actin to arrest the actin dynamics of neu-

trophils before translocating to the nucleus where it

degrades core histones, e.g., H1 and then H4, and promotes

chromatin decondensation [15, 36]. MPO further syner-

gizes with NE to induce chromatin decondensation

independent of its enzymatic activity [36]. Accordingly,

humans deficient in MPO as well as mice deficient in NE

cannot form NETs [36, 37]. However, the molecular

mechanisms downstream to ROS production and upstream

to NET formation and NETosis are not clear.

Table 2 NET evaluation and bioassay characteristics

Method Target Identifies

NETs

Distinguishes NET release and

cell death

Refs.

PicoGreen/Sytox assay

(spectrofluorometry)

Extracellular and dead cell DNA No No [16, 17]

LDH assay

(spectrometry)

LDH release No No [18]

MPO-DNA complexes

(capture ELISA)

MPO and DNA Yes No [30, 31]

NE-DNA complexes

(capture ELISA)

NE and DNA Yes No [32]

Histone deimination

(IF microscopy, WB)

Citrullinated histones Yes No [10, 20]

Morphology

(IF and confocal microscopy)

DNA (DAPI, Sytox)

Granule protein (MPO, NE, CitH3)

Yes No [7, 14,

29]

Micromorphology

(electron microscopy)

Ultrastructure of nuclei/cytoplasm Yes No [7, 14]

Live cell imaging

(time lapse microscopy)

DNA (Sytox, Hoechst), cytoplasm (cell

tracking dye)

Yes Yes [14]

Combination of microscopy and flow

cytometry

Subcellular morphology Yes Yes [12]

LDH lactate dehydrogenase, MPO myeloperoxidase, NE neutrophil elastase, WB western blot, IF immunofluorescence, DAPI 40,6-diamidino-2-

phenylindole, CitH3 citrullinated histones etc
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‘‘NETosis’’? chromatin release during neutrophil
necroptosis

Cell death categories are no longer defined by morpholog-

ical features but by executing biochemical pathways. Vice

versa, the involved route of cell death is evidenced by

preventing death through specific inhibition of the causative

pathway [8]. Alike apoptosis, necrosis is often a regulated

form of cell death, referred to regulated cell necrosis [38].

Based on the molecular mechanisms involved, these regu-

lated necrosis pathways were named receptor interacting

protein kinase (RIPK)-mediated necroptosis, iron-mediated

ferroptosis, Poly (ADP-ribose) polymerase (PARP)-medi-

ated parthanatos, mitochondrial permeability transition-

related regulated necrosis, caspase-1/11-mediated pyropto-

sis, podoptosis, and catastrophic mitosis [8, 39]. However,

as none of the aforementioned signaling elements is specific

for neutrophils, the underlying route of ‘‘NETosis’’

remained elusive. Indeed, it remained unclear if NETosis is

at all a unique cell death category, also because none of the

other cell death categories is cell type-specific. In addition,

NET release has been reported in cells other than neu-

trophils, referred to as ‘‘ETosis’’ [40].

We observed that only chemical inhibitors of the

necroptosis pathway, such as RIPK1 stabilizers necrostatin

(Nec)-1 and Nec-1s or the mixed lineage kinase domain-

like (MLKL) inhibitor necrosulfonamide (NSA) inhibited

NET release and neutrophil necrosis upon 2 h of PMA or

monosodium urate (MSU) crystals stimulation of human

neutrophils [41]. These stimuli also increased the expres-

sion of RIPK3 and phosphorylated MLKL (pMLKL), two

core proteins of necroptosis signaling, in a time-dependent

manner, suggesting the involvement of the necroptosis

signaling pathway in PMA- and crystal-induced NET

release [41]. These findings were corroborated by similar

observations in Ripk3-deficient murine neutrophils. Fur-

thermore, Nec-1 or NSA did not affect MSU crystals- or

PMA-induced ROS production in neutrophils, and neu-

trophils of patients with chronic granulomatous disease

(non-functional NADPH oxidase) did not express pMLKL

after PMA stimulation [41], suggesting that pMLKL is a

downstream event to ROS. Obviously, PMA and MSU

crystals trigger NET-like chromatin release in the context

of neutrophil necroptosis.

Recently, Schauer et al. demonstrated that MSU crystals

can induce aggregates of NETs, and the tophi, pathog-

nomonic structures of chronic gout, share characteristics of

aggregated NETs [35]. We observed that the deficiency of

Ripk3, as well as inhibitors of the necroptosis pathway,

inhibited MSU crystal-induced NET formation and gout-

like tophus formation in vivo [41], confirming the

involvement of neutrophil necroptosis along NET release.

However, we also showed in an independent study that

crystals of calcium oxalate, MSU, calcium pyrophosphate

dehydrate, and cystine induce necroptosis in different cell

types [42]. Obviously, crystals are potent inducers of

necroptosis in immune and non-immune cells, and NET-

like chromatin release is a consequence or a secondary

event, following necroptotic neutrophil death.

NET release without neutrophil death

Neutrophils can form NETs upon certain kinds of bacterial

infections in vivo without dying [11]. Pilsczeck et al.

reported that upon infection with Staphylococcus aureus,

neutrophils formed NETs within 5–60 min without dying

and were independent of ROS production. These early

NETs were also observed in vivo using spinning disk

microscopy within 10 min after subcutaneous injection of

S. aureus [43]. Obviously, during this process, the neu-

trophil‘s plasma membrane remained intact, and the

chromatin was released from the nucleus through intra-

cellular vesicles that fused with the outer membrane to

release NETs in the extracellular space [44]. NET release

without neutrophil death was also observed within 30 min

after stimulation of neutrophils by bacteria, fungi, or LPS

[43–46]. This rapid NET formation is mediated by the

complement system, TLR2 or fibronectin [44, 46]. Impor-

tantly, neutrophils releasing such NETs rapidly remained

motile in vivo, retaining the possibility to multitask during

the early infection phase [44]. This rapid NET release

indicates the dynamic functions of neutrophil to trap bac-

teria in NETs, while the anuclear neutrophils are still able

to contribute to bacterial killing by phagocytosis [44, 47].

Furthermore, S. aureus-induced rapid NETs are com-

posed of histones, confirming that the NETs are originated

from the nuclei, without involving mitochondrial DNA

[43]. In contrast, other stimuli-like LPS and complement

factor C5a induce NET release from mitochondrial DNA

together with granular enzymes after GM-CSF priming in

an ROS-dependent manner [48]. Interestingly, S. aureus

rapidly induced NET release even before ROS was gen-

erated, whereas Aspergillus-induced NETs were

independent of ROS [43, 46]. Moreover, statins (choles-

terol-lowering drugs) have been reported to block the

oxidative burst of polymorphonuclear neutrophils (PMNs),

still enhancing NET formation against S. aureus [49].

Growing evidence demonstrated that NET formation with

cell death involves oxidant generation, whereas rapid NET

formation without cell death may or may not involve oxi-

dant generation. For example, stimuli-like PMA or bacteria

induced ROS-dependent NET formation and cell death,

while stimuli-like ionomycin or certain bacterial/fungal
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products induced ROS-independent rapid NET formation

without cell death [50].

Unlike RIPK3–MLKL-mediated neutrophil necroptosis

[41], the rapid NET formation without cell death does not

involve perforation of the plasma membrane [43].

Accordingly, the independency of the RIPK3–MLKL

pathway for this rapid NET formation (45 min after neu-

trophil stimulation) was also recently demonstrated by

Amini et al. using stimuli-like E. coli, GM-CSF-primed

LPS, or complement factor C5a [51]. On first view, these

observations seem contradictory to the involvement of

necroptosis in PMA- and MSU crystal-induced NET

release during neutrophil necrosis [41]. However, obvi-

ously, the nature of NET formation can differ in terms of

timing, type of stimuli, or context of disease (Fig. 2). The

term ‘NETosis’ is inappropriate not only to describe a vital

process but also when NET release comes as a passive

process secondary to plasma membrane rupture of

neutrophils undergoing necroptosis or even other forms of

regulated cell death. On the other hand, NET formation

from neutrophils that remain vital is a primary event and a

particular feature of host defense unique to neutrophils. In

addition, it becomes important to carefully design future

studies related to NETs and carefully distinguish the pro-

cess of NET formation from that of neutrophil cell death.

Summary

NET release is a common phenomenon in infectious and

non-infectious diseases involving neutrophil-related tissue

injury and inflammation. The term ‘‘NETosis’’ has become

popular, but the discovery of neutrophils surviving NET

release has led to obvious misnomers, such as ‘‘vital

NETosis.’’ Now, that also NET formation can be a con-

sequence of neutrophil necroptosis, it is time to revise the
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stimuli, e.g., S. aureus. Inhibitors of necroptosis, e.g., RIPK1 and
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nomenclature in this field. Neutrophil regulated necrosis

can involve NET-like chromatin release, which involves

completely different molecular pathways as compared with

the NET release of vital neutrophils. ‘‘NETosis’’ implies

NET formation together with neutrophil death, which

involves ROS but may or may not involve downstream

RIPK3–MLKL signaling. This distinction is not only

semantic but essential to define drugable molecular targets

that inhibit NET release and/or neutrophil necrosis in

specific disease contexts. While at this point, many ques-

tions remain unanswered (Table 3), dissecting the routes of

neutrophil death from those of NET release should help to

better understand this fascinating phenomenon in host

defense and sterile inflammation.
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