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Abstract Metabolic alterations are a hallmark of cancer

controlling tumor progression and metastasis. Among the

various metabolic phenotypes encountered in tumors, this

review focuses on the contributions of mitochondria, lipid

and amino acid metabolism to the metastatic process.

Tumor cells require functional mitochondria to grow,

proliferate and metastasize, but shifts in mitochondrial

activities confer pro-metastatic traits encompassing

increased production of mitochondrial reactive oxygen

species (mtROS), enhanced resistance to apoptosis and the

increased or de novo production of metabolic intermediates

of the TCA cycle behaving as oncometabolites, including

succinate, fumarate, and D-2-hydroxyglutarate that control

energy production, biosynthesis and the redox state. Lipid

metabolism and the metabolism of amino acids, such as

glutamine, glutamate and proline are also currently

emerging as focal control points of cancer metastasis.
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Abbreviations

aKG a-Ketoglutarate

Aco Aconitase

ACLY ATP-citrate lyase

CoA Coenzyme A

CS Citrate synthase

D-2HG D-2-Hydroxyglutarate

EMT Epithelial-to-mesenchymal transition

ETC Electron transport chain

eSC Embryonic stem cell

FASN Fatty acid synthase

FH Fumarate hydratase

GDH Glutamate dehydrogenase

GLS Glutaminase

HGFR Hepatocyte growth factor receptor

HIF-1 Hypoxia-inducible factor-1

IDH Isocitrate dehydrogenase

KEAP1 Kelch-like ECH-associated protein 1

KRAS Kirsten Rat Sarcoma

MCL-1 Myeloid cell leukemia-1

mtROS Mitochondrial reactive oxygen species

mTORC1 Mammalian target of rapamycin complex 1

NF-jB Nuclear factor-jB

NRF2 Nuclear factor-like 2

OXPHOS Oxidative phosphorylation

PGC-1 Peroxisome proliferator-activated

receptor c coactivator-1
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PHD Prolylhydroxylase

PI3K Phosphoinositide 3-kinase

PKB/Akt Protein kinase B

ROS Reactive oxygen species

SDH Succinate dehydrogenase

SOD Superoxide dismutase

SRC2 Steroid receptor coactivator 2

SREBP Sterol regulatory element-binding protein

STAT3 Signal transducer and activator of

transcription 3

TCA (cycle) Tricarboxylic acid (cycle)

TET (enzyme) Ten-eleven translocation (enzyme)

Introduction

While intensive research aims to characterize primary tumor

biology for the sake of new therapeutic and diagnostic tools,

less attention has been paid until recently to the biology of

metastases. Metastasis, however, is estimated to be respon-

sible for *90 % of cancer-associated deaths [1],

representing a yearly toll of *8,200,000 patients worldwide

(Globoscan 2012).1 Growing evidence points to a metabolic

control of tumor progression affecting many phenotypic

traits of malignancy, including metastasis. While the specific

contributions of tumor pH, glycolysis and the pentose

phosphate pathway to the metastatic process are addressed

in a companion paper, this review focuses on mitochondrial,

lipid and amino acid metabolism.

Defects of mitochondrial function have long been sus-

pected to contribute to the development and progression of

cancer. Almost a century ago, Otto Warburg [2] initiated

research on mitochondrial alterations in cancer and pro-

posed a mechanism to explain the differences in energy

metabolism between normal and cancer cells. He suggested

that mitochondrial alterations could provide unique thera-

peutic targets in various cancer types [3]. The concept

promoted by Warburg that mitochondrial damage is the

cause of cancer is no longer tenable as a general concept

[4]. However, specific cancer-associated mutations have

been reported in nuclear-encoded mitochondrial enzymes

of the tricarboxylic acid (TCA) cycle, including fumarate

hydratase (FH) [5], succinate dehydrogenase (SDH) [5] and

isocitrate dehydrogenase (IDH) [6]. SDH deficiency has

been linked to hereditary paraganglioma and pheochro-

mocytoma, and FH inactivation promotes leiomyoma,

leiomyosarcoma and renal cell carcinoma [7, 8]. Besides

these mutations, several other cancer-related mitochondrial

alterations have been identified, and mitochondria are now

emerging as key players in tumor transformation and

progression. This is not surprising since mitochondria are

not passive bystanders involved in bioenergetics. They

rather act as metabolic and signaling hubs, interconnecting

metabolism and cell signaling.

From a metabolic standpoint, one of the main activities

of mitochondria is to perform the TCA cycle where the

acetyl group of acetyl-coenzyme A (acetyl-CoA), mostly

derived from pyruvate, is progressively oxidized to CO2 to

provide reducing equivalents for oxidative phosphorylation

(OXPHOS) (Fig. 1). In addition to pyruvate, the TCA

cycle can be fueled by products of anaplerotic reactions

(from Greek [up] and pkgqóx [fill in]), among which

a-ketoglutarate (aKG) from glutaminolysis is a major

substrate [9]. OXPHOS occurs at the mitochondrial elec-

tron transport chain (ETC) and represents a highly efficient

pathway for ATP generation. Importantly, the TCA cycle

also generates intermediates connecting the cycle to other

metabolic pathways by means of the so-called cataplerotic

reactions (from Greek jasa [down] and pkgqóx [deplete])

that drain the TCA cycle from its metabolites. These

reactions provide substrates for biosynthesis, thus sup-

porting normal cellular functions, cell growth and

proliferation [10].

Besides metabolism sensu stricto, mitochondria are also

critical regulators of compartmentalized cellular signaling.

One typical example is the modulation of apoptosis, which

mitochondria achieve by regulating the release of cyto-

chrome c and calcium. Mitochondria further host several

signaling pathways involved in tumor transformation and

growth. For example, the mitochondrial fraction of signal

transducer and activator of transcription 3 (STAT3) pro-

motes OXPHOS and pancreatic cancer initiation [11, 12],

ERK activation promotes tumor cell resistance to apoptosis

by inhibiting the opening of the permeability transition

pore [13], and c-Src regulates OXPHOS by phosphorylat-

ing several ETC subunits [14]. These signaling pathways

are directly related to mitochondrial metabolism. It is

therefore not surprising that mitochondria exert critical

roles not only in tumorigenesis but also in cancer metas-

tasis, which is the topic of this review.

Oxidative phosphorylation and mitochondrial
reactive oxygen species

Mitochondria are involved in OXPHOS, which couples

redox reactions of the ETC to ATP synthesis (Fig. 1).

During this process, electrons derived from NADH and

FADH2 are transferred to molecular oxygen through

sequential redox reactions that generate a proton gradient

across the inner mitochondrial membrane. Four macro-

molecular protein complexes located at the inner

mitochondrial membrane are required for driving the1 http://globocan.iarc.fr.
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generation of the gradient, which triggers the activity of the

ATP-synthase complex at the inner mitochondrial mem-

brane. Thus, protons transferred from the intermembrane

space to the mitochondrial matrix through ATP-synthase

along their concentration gradient provide the energy for

ATP generation in mitochondria.

While O2 is fully reduced to water to foster ATP syn-

thesis in mitochondria, a small proportion is converted into

superoxide [15, 16] (Fig. 1). Superoxide is a radical anion

and a highly reactive oxygen species (ROS) acting as a

strong oxidant. In normal circumstances, superoxide is

detoxified by superoxide dismutases (SODs) that rapidly

convert it to H2O2. SODs are excellent catalysts that are

rate-limited primarily by the speed of diffusion of the

substrate in solution [17]. When superoxide is produced at

a supraphysiological rate and ROS rise to a critical level,

they can oxidize cytochrome c and impair its binding to the

inner mitochondrial membrane [18]. Cytochrome c is

normally bound to the phospholipid cardiolipin at the inner

mitochondrial membrane where it transfers electrons from

complex III to IV of the ETC. Following oxidation, this

interaction is repressed and cytochromec is released from

mitochondria, thus triggering apoptosis [19]. However,

mitochondrial ROS (mtROS) are not only triggering
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Fig. 1 Simplified scheme highlighting the contribution of mitochon-

dria, lipid and amino acid metabolism to tumor metastasis. The

scheme depicts a mitochondrion where enzymes are represented in

italicized blue font and their substrates in bold black. Upon entering

into the mitochondria, pyruvate is broken down during the catabolic

part of the tricarboxylic acid (TCA) cycle. This produces reducing

agents that fuel the electron transport chain (ETC) to generate the

proton motive force needed for the production of ATP and, as a

byproduct, mitochondrial reactive oxygen species (mtROS).

Increased mtROS levels have been proposed to increase resistance

to stress (mitohormesis). Furthermore, several anaplerotic reactions

replenish the TCA cycle. Many of these reactions promote tumor

metastasis, as indicated in red. Other abbreviations: HIF-1 hypoxia-

inducible factor-1, MCL-1 myeloid cell leukemia-1, NF-kB nuclear

factor-kB, NRF2 nuclear factor-like 2
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apoptosis. At non-lethal levels, they are essential for cel-

lular adaptation to stress [20] and to hypoxia through

activation of transcription factor hypoxia-inducible factor-

1 (HIF-1) [21], as well as for the induction of autophagy

[22] and mitochondrial biogenesis by activation of the

transcriptional coactivator peroxisome proliferator-acti-

vated receptor c coactivator-1 (PGC-1) [23].

The initial observation by Warburg that some tumor cells

perform glycolysis at a high rate even in presence of oxygen

prompted him to formulate the hypothesis according to

which mitochondria are not functional in tumors [3]. Except

for some specific cases, this hypothesis has not been con-

firmed [24]. Still, the perception of the role of mitochondria

in tumor cells has often been reduced to the provision of

biosynthetic intermediates for cellular proliferation [25]. But

mitochondria are also emerging as essential mediators of

tumorigenesis. In fact, complete abolition of ETC activity

was shown to prevent tumorigenesis in a Kirsten Rat Sar-

coma (KRAS)-driven mouse model of lung cancer [26], in

murine breast cancer and melanoma models [27], and it

inhibited the in vivo growth of human breast cancer cells

[28]. In models of pancreatic cancer, mitochondrial targeting

of STAT3 stimulated ETC activity and tumor transformation

[11, 12], further emphasizing the critical role of mitochon-

dria in cancer. Along the same lines, cancer cells responsible

for tumor relapse following oncogene ablation specifically

rely on OXPHOS for survival [29]. Consistently, the

antidiabetic drug metformin, a dual AMPK activator and

ETC Complex I inhibitor [30], acts synergistically with

chemotherapy to eradicate resistant tumor cells and promote

cancer remission [31]. This observation has been recently

linked to the activity of metformin as an inhibitor of ETC

Complex I [30, 32].

With regard to the specific contribution of OXPHOS to

tumor metastasis, several groups challenged the view that

ETC is dispensable for tumor migration and metastasis [27,

33–37]. Disseminating cancer cells actually display

increased levels of mitochondrial respiration, at least in

breast and melanoma models [35]. This is driven by the

upregulation of PGC-1a, a master gene regulating mito-

chondrial biogenesis and metabolism, making PGC-1a
expression a marker of poor prognosis in invasive ductal

breast carcinoma [35]. Another piece of evidence arguing

for an important contribution of mitochondria to tumor

metastasis derives from the work of Tan et al. [27] who

demonstrated that active mitochondria are required for

tumor growth in vivo and that upon experimentally induced

loss of mitochondrial DNA (q0 cells), cancer cells are

capable of restoring mitochondrial respiration by ‘‘steal-

ing’’ mitochondria from host cells. Interestingly, this work

further showed that tumor cells display an increased

mitochondrial activity (elevated O2 consumption and

increased presence of cristae) along with the progressive

acquisition of metastatic traits, with circulating tumor cells

characterized by an intermediate metabolic phenotype

compared to primary and secondary tumors (see Figure 1

in companion paper). One of the advantages conferred by

an elevation of OXPHOS activity could be a stronger

resistance to apoptosis through the induction of a pro-ox-

idant state [38]. Altered mitochondrial metabolism has also

been proposed to promote metastasis by inducing stress

tolerance during nutrient deprivation [39].

In strong contrast to studies advocating for a contri-

bution of OXPHOS to cancer metastasis, a number of

independent authors reported that interfering with mito-

chondrial activity can promote metastasis. In particular,

overexpression of oncogenes such as BAX inhibitor-1

[40, 41] or loss of metastasis suppressor genes such as

KISS1 [42] induces metastasis together with a switch

from an oxidative to a glycolytic metabolism. Mito-

chondrial DNA (mtDNA) mutations can also promote

metastatic dissemination from prostate to bones and the

invasive growth of melanoma cells in vivo [43, 44].

Accordingly, specific mtDNA mutations are a marker of

poor prognosis in breast cancer and melanoma patients

[45, 46]. As a final example, mitochondrial stress result-

ing from mtDNA depletion or treatment with ionophores

that uncouple ETC activity from ATP generation pro-

moted an invasive behavior in human lung cancer cells

and C2C12 myoblasts [47, 48].

It has been reported that either increased or reduced

OXPHOS activity promotes metastatic dissemination. A

potential explanation of this conundrum is that two oppo-

site metabolic phenotypes might contribute to metastasis

by regulating different pathways. Indeed, on one hand,

increased mitochondrial metabolism has been shown to

promote resistance to apoptosis [35, 38, 49–51], whereas,

on the other hand, mitochondrial dysfunction can favor a

pro-metastatic behavior either by promoting glycolytic

compensation [52] or by impacting the NAD?/NADH

redox ratio that regulates sirtuin activity, thereby directly

promoting tumor metastasis [53]. We recently proposed a

parallel but not mutually exclusive interpretation. In dif-

ferent tumor cell models, we indeed observed that either an

increased or a dysfunctional mitochondrial activity are

equally capable of promoting an invasive tumor phenotype

[33]. We found that metabolic states of tumor cells corre-

sponding to increased TCA cycle activity or

experimentally induced ETC bottlenecking were associated

with increased mtROS generation, and mtROS were a

common mediator of metastasis for these two different

metabolic phenotypes: targeting mtROS with mitochon-

dria-targeted antioxidants mitoTEMPO or mitoQ inhibited

metastatic dissemination in a mouse melanoma B16F10

model and abolished spontaneous metastatic dissemination

in a model of MDA-MB-231 human breast cancer in mice
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[33]. Despite the fact that mtROS can promote apoptosis,

depending on their production level, they also behave as

second messengers for retrograde mitochondrial signaling

to the nucleus [54] (Fig. 1). Because mtROS are short-lived

and compartmentalized in mitochondria [20], they can

indeed spatially and temporally coordinate a localized

signaling cascade by oxidizing specific amino acid residues

[55]. One recent example comes from studies in C. elegans

where mtROS promoted cellular adaptation to stress by

stimulating, e.g., the p38-nuclear factor-like 2 (NRF2)

redox-sensitive pathway [56]. This in turn primed the

antioxidant machinery, resulting in increased lifespan of

the nematodes, a phenomenon that has been defined as

mitohormesis [56, 57]. In tumor cells, we found that

mtROS can cause metastasis by activating the proto-

oncogene Src and the focal adhesion kinase Pyk2, collec-

tively resulting in resistance to anoikis and increased

migration, invasion, metastasis take and spontaneous

metastasis [33, 58]. Consequently, targeting mtROS gen-

eration by complete inhibition of Complex I activity or

using specific mitochondria-targeted antioxidants was suf-

ficient to abolish metastasis formation in vivo. The fact that

mtROS are relevant for metastasis has been broadly

demonstrated, from the initial reports indicating that

metastatic cells accumulate more ROS than untransformed

cells [59] to the seminal work of Ishikawa et al. [60]

demonstrating that specific ROS-inducing mtDNA muta-

tions are sufficient to promote metastasis. In the latter

study, increased levels of mtROS activated the anti-apop-

totic protein myeloid cell leukemia-1 (MCL-1), a member

of the Bcl-2 family promoting tumor cell aggressiveness.

To date, several specific mtDNA mutations have been

reported to trigger tumor progression through the promo-

tion of ROS production [61–63]. From a molecular

standpoint, several downstream targets of mtROS have

been identified, including FAK [64], PYK2 [58], SNAIL

[65], p38 and NRF-2 [56, 66], nuclear factor-jB (NF-jB)

activation mediated by c-Src oxidation [67] and HIF-1

stabilization through mtROS-mediated prolylhydroxylase

(PHD) inactivation [21]. These mediators, in turn promote

increased cell resistance to stress [68, 69]. Due to the

particular nature of ROS, it is important to consider mtROS

in a spatial context. Consequently, there are important

caveats to consider when targeting mtROS with general

antioxidants that can alter the total cellular ROS pool in

tumor and host cells and interfere with therapy, explaining

the disappointing results of several clinical trials having

treated cancer patients with general antioxidants [58, 70].

Although, glycolytic compensation following mtDNA

mutation certainly contributes to the pro-metastatic phe-

notype [42], it is not sufficient by itself [71]. In

oncocytoma, for example, total loss of Complex I activity

was reported to correlate with the emergence of tumors that

rarely progress [72]. Oncocytomas normally occur in

endocrine and exocrine tissues (e.g., thyroid, parathyroid,

kidneys, salivary and pituitary glands), and are character-

ized by mitochondrial hyperplasia seen as a compensatory

mechanism caused by complete inactivation of Complex I

activity [72–75]. Further evidence is required to define the

overall levels of mtROS in these tumors and their gly-

colytic rate. Overall, metabolic analyses of oncocytomas

point at the necessity to maintain residual ETC activity for

tumor invasiveness.

TCA cycle

The TCA cycle comprises eight consecutive reaction steps,

starting from the condensation of acetyl-CoA with a

molecule of oxaloacetate by citrate synthase (CS) to form

citrate (Fig. 1). Interestingly, CS expression was found to

be increased in pancreatic ductal adenocarcinoma [76] and

in metastatic versus benign ovarian carcinoma [77]. Evi-

dence is controversial for its role in metastasis, as it has

been shown that CS downregulation either decreases (as

seen after transient siRNA knock-down) [77] or increases

(following stable shRNA expression) [78] invasion. One

possible explanation for these opposite observations might

be an adaptive phenotype following long-term knock-down

of CS.

The product of the CS reaction, citrate, is then converted

to isocitrate by aconitase (Aco). This reaction requires the

conversion of citrate into the enzyme-bound intermediate

cis-aconitate. Aco reactivation is particularly relevant for

tumorigenesis in prostate cancer, where Aco is normally

inactivated by the high concentration of zinc ions present in

prostate cells [79]. In vitro, Aco activation has also been

associated with the metastatic behavior of PC-3 M human

prostate cancer cells [80].

Isocitrate is converted to aKG by IDHs, with the con-

comitant generation of NADH by IDH3 localized in

mitochondria and NADPH by IDH1 and IDH2 that traffic

between the cytoplasm and mitochondria. aKG is not only

a metabolic intermediate of the TCA cycle but also an

important co-substrate of several enzymes, especially the

vast family of oxygenases that performs functions ranging

from collagen synthesis to histone demethylation [81]. It is

therefore not surprising that aKG controls complex bio-

logic functions, with, for example, high levels of aKG

promoting the maintenance of the pluripotency of embry-

onic stem cells (eSCs) by regulating whole genome

methylation [82]. One of the classes of oxygenases

requiring aKG as a co-substrate is PHDs, i.e., prolylhy-

droxylases that behave as oxygen sensors. PHD2 in

particular tags HIF-1 subunit a for proteasome-mediated

degradation under normoxia [83], and low levels of aKG
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would therefore theoretically promote normoxic HIF-1

activation and tumor progression. aKG also mediates the

activation of mammalian target of rapamycin complex 1

(mTORC1) in synergy with leucine [84]. It increases the

lifespan of C. elegans by promoting a moderate mito-

chondrial inhibition through binding to ATP-synthase [85].

Biological activities of aKG are thus numerous. Yet,

blocking the anaplerotic reactions supplementing aKG

(such as glutaminolysis and alanine transamination) inhi-

bits cell transformation and tumor invasion [26, 86], while

supplementation with cell-permeable aKG is sufficient to

rescue the clonogenic potential of tumor cells [86]. High

intracellular levels of aKG are likely pro-metastastic, but

because aKG also promotes transformation, specific

research is still required to discriminate between its impact

on tumor transformation and metastasis. Beyond the fact

that it catalyzes aKG production, the IDH reaction is of

particular interest because heterozygous mutations of IDH1

and IDH2 are quite common in gliomas [87]. These

mutations can result in a neomorphic enzymatic activity

that allows heterodimeric IDH complexes to catalyze the

conversion of aKG into the oncometabolite D-2-hydrox-

yglutarate (D-2HG) [6]. Mutations of IDH1 and IDH2

genes have been found in colon cancer [88], acute myeloid

leukemia [89] and enchondroma [90]. Despite the fact that

D-2HG promotes tumorigenesis by altering DNA-methy-

lation genome-wide (primarily by antagonizing aKG-

dependent dioxygenases) [91], limited evidence links the

IDH1 and IDH2 mutations to an increased metastatic

potential [92].

In the TCA cycle, aKG is then sequentially converted to

succinyl-CoA (with the generation of NADH), succinate

(with the concurrent generation of GTP) and fumarate (by

SDH) (Fig. 1). FH then converts fumarate into malate,

which is used to generate oxaloacetate by malate dehy-

drogenase. This final reaction produces one additional

molecule of NADH from NAD?. SDH is a macromolecular

complex composed of four different subunits located on the

internal face of the inner mitochondrial membrane. A

major characteristic of this enzymatic complex is that it is

shared between the TCA cycle and the ETC where it

composes Complex II. Indeed, following succinate oxida-

tion, SDH covalently binds a molecule of FAD that is

reduced to FADH2, which is followed by the transfer of

two electrons from FADH2 to ubiquinone (also known as

coenzyme Q [CoQ]), yielding ubiquinol [CoQH2] in the

ETC. Mutations of SDH5, the protein responsible for

covalently attaching FAD to SDH, are causally linked to

tumorigenesis [7, 8, 93–96] as they lead to accumulation of

succinate, which has been identified as an oncometabolite

promoting transformation [97]. On the other hand, fuma-

rate accumulation linked to FH deficiency promotes the

formation of hereditary uterine fibroids, skin leiomyomas,

papillary renal cell cancers, sarcomas, pheochromocytomas

and paragangliomas [98–100]. Mechanistically, succinate

and fumarate are competitive inhibitors of aKG-dependent

dioxygenases (i.e., enzymes that catalyze the incorporation

of the two atoms of oxygen of O2 into a substrate). They

promote HIF-1 stabilization by inhibiting PHDs [97] and

induce a whole genome epigenetic dysregulation by

inhibiting both histone demethylases and the ten-eleven

translocation (TET) family of 5-methlycytosine hydroxy-

lases [5, 101, 102]. Both metabolites thus share a common

way of inducing transformation [103]. In addition, fuma-

rate accumulation results in a spontaneous reaction leading

to posttranslational modification of cysteines in proteins

known as ‘succination’ (i.e., a chemical modification of

proteins formed by a Michael addition reaction between

fumarate and thiol groups) [104]. Succination notably

impairs the function of Kelch-like ECH-associated protein

1 (KEAP1), thus relieving transcription factor NRF2 from

KEAP1-mediated inhibition and promoting an antioxidant

response [105, 106]. In contrast, succination can also affect

glutathione, promoting oxidative stress [107]. Despite the

vast influence of succinate and fumarate on epigenetic

regulation and signaling pathways, only a limited amount

of evidence links these oncometabolites to metastatic

progression. While the experimental re-expression of FH in

a FH-deficient renal cell carcinoma line impaired tumor

cell migration and invasion in vitro [108], treatment with

dimethylfumarate, a cell-permeable form of fumarate,

strongly reduced invasion and metastasis formation in

melanoma [109–111]. To date, only the loss of SDH5 has

been clearly shown to drive the acquisition of a mes-

enchymal and prometastatic phenotype in lung cancer

cells, further correlating with reduced levels of SDH5 in a

small group of metastatic versus non-metastatic lung

patients [112]. However, no evidence links this effect to the

enzymatic activity of SDH. Rather, SDH5 was found to

form a complex with glycogen synthase kinase (GSK-3b, a

mediator of b-catenin degradation) and protein phos-

phatase A (PP2A): when present, SDH5 activates GSK-3b
and prevents the epithelial-to-mesenchymal transition

(EMT). When SDH5 is lost, b-catenin accumulates,

translocates to the cell nucleus and promotes EMT [112].

The TCA cycle is amphibolic: it not only mediates

catabolic reactions aimed at energy production but also

produces precursors for cell growth. Cancer cells are cap-

able of reducing aKG to isocitrate, which has been termed

reductive or reverse TCA cycle [113], ultimately increasing

citrate and acetyl-CoA levels to promote lipogenesis.

Glutamine directly fuels this pathway, especially when

oxygen is limiting or when mitochondria are dysfunctional

[114, 115]. The trigger for such ‘‘anti-clockwise’’ TCA

cycle has been suggested to be an increased aKG/citrate

ratio [116]. Although this phenotype has been strongly
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linked to tumor growth [114, 115, 117–119], little is known

about the specific contribution of reductive carboxylation

to tumor metastasis. It has nevertheless been reported that

steroid receptor coactivator 2 (SRC2) promotes lipogenesis

by stimulating glutamine utilization and reductive car-

boxylation in prostate cancer, and SRC2 is particularly

enriched in metastatic lesions in patients with prostate

cancer [120, 121]. In animal models, SRC2 depletion

strongly reduced tumor cell viability, tumor growth and

spontaneous metastasis. Although, these data suggest that

the metabolic phenotype characterized by a pronounced

reductive carboxylation might promote the emergence of

aggressive tumor cell clones prone to metastasis, further

experiments are required to test this possibility.

Lipid metabolism

Lipid accumulation is so common in tumors that it can by

itself be considered as a hallmark of cancer [122]. The

transcription factors, sterol regulatory element-binding

proteins -1 and -2 (SREBP-1/-2) are the main transcrip-

tional regulators of the lipogenic program, inducing

cholesterol and fatty acid biosynthesis [123, 124]. SREBPs

are downstream targets of the phosphoinositide 3-kinase

(PI3K)–protein kinase B (PKB/Akt)–mTORC1 signaling

pathway. Their inhibition represses tumor growth by

depleting lipid rafts at the plasma membrane, thereby

impairing Akt activation [125]. Conversely, upregulation

of SREBP expression renders tumor cells more resistant to

apoptosis and makes them more aggressive, especially in

conditions where nutrient and oxygen availability are

limited [126]. As a matter of fact, the SREBP signature is a

marker of poor prognosis in glioblastoma [126]. Notably,

the mucin 1 oncoprotein (which is overexpressed in breast

cancer and is important for metastatic progression [127,

128]) and SRC2 (which is overexpressed in prostate

metastatic lesions [120], see above) are upstream regulators

of SREBPs and, thus, of lipid metabolism. Despite, further

studies are required to establish a cause–consequence

relationship, regulation of lipid metabolism and cancer

metastasis may thus be intertwined.

Acetyl-CoA is at the crossroad between the TCA cycle

and lipid synthesis, with its production being critical for

both metabolic pathways. Essential gatekeepers regulating

de novo lipid synthesis are ATP-citrate lyase (ACLY) that

converts citrate to oxaloacetate and acetyl-CoA, and fatty

acid synthase (FASN), a macromolecular complex that

catalyzes the condensation of carbon skeletons into fatty

acids. With a few exceptions, e.g., in liver and mammary

glands, FASN expression is low in normal tissues, but it

increases during transformation [129]. In the prostate,

FASN demonstrated pro-oncogenic properties, as forced

overexpression was sufficient to induce resistance to

apoptosis and the transformation of normal prostate cells in

mice [130]. Similarly, ACLY is required for tumor growth

and its inhibition is a promising strategy for tumor therapy

[131, 132].

Lipid synthesis is essential for the production of mem-

branes necessary for cell proliferation. In addition to

promoting cell proliferation, data indicate that lipid synthe-

sis further contributes to tumor progression and metastasis,

with a strong increase in FASN and ACLY expression in

breast cancer [132, 133], retinoblastoma [134], lung cancer

[132] and colon cancer [135]. Inhibition of FASN and

ACLY was found to impair the metastatic progression of

colon cancer cells by reducing CD44- and hepatocyte

growth factor receptor (HGFR)-mediated signaling, result-

ing in reduced tumor cell migration and clonogenicity on

soft agar [136]. Because lipid synthesis endows tumor cells

with an increased resistance to apoptosis [126], tumor cells

can be expected to rewire their energy metabolism towards

increased lipid synthesis to overcome therapy, an adaptation

that further confers a more aggressive phenotype. In con-

trast, blockade of lipid synthesis can inhibit metastatic

dissemination following anti-angiogenic therapy [137]. This

observation holds great promise for future combination

therapies since one of the major drawbacks reducing the

efficacy of anti-angiogenic therapy is the induction of

metastases [138]. One of the major future challenges will be

the identification of the molecular mechanisms linking lipid

synthesis to the acquisition of invasive traits.

Besides the role of lipid synthesis in promoting invasion

and metastasis, it is becoming clear that fatty acid oxida-

tion by itself can also promote metastasis. Indeed, simple

depletion of exogenous lipids is sufficient to impair breast

cancer cell migration in vitro, even in the presence of

alternative oxidative fuels glucose and glutamine [139].

Similarly, in the non-small cell lung cancer cell line A549,

the addition of transforming growth factor b promotes

tumor invasiveness by increasing mitochondrial lipid oxi-

dation [140]. In this model, forced lipid oxidation alone

was sufficient to induce EMT. In agreement, cancer-asso-

ciated adipocytes are emerging as key regulators of

metastatic formation in both breast and ovarian cancers

where they fuel metastases by providing tumor cells with

energy substrates [141, 142].

Amino acid metabolism

Amino acid metabolism is a central part of cellular meta-

bolic homeostasis. Among all natural amino acids,

glutamine is one of the most characterized for its role in

tumor formation and metastasis [9]. This non-essential

amino acid is also one of the most abundant amino acids
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present in bodily fluids and one of the most heavily

depleted amino acid in tumor tissue, indicating the high

avidity of tumors for glutamine [143]. Glutaminolysis has

been proposed to be as important as glucose metabolism in

tumors [144] and is primarily induced by the Myc onco-

gene [145]. The first step of glutamine metabolism is

mediated by glutaminases GLS1 and GLS2 that catalyze

the conversion of glutamine to glutamate and ammonia

(NH3). Glutamate can further be deaminated to aKG by

glutamate dehydrogenase (GDH), with the concurrent

production of one molecule of NADH by GDH1 or

NADPH by GDH2. aKG can then be used in oxidative

TCA cycling, reductive TCA cycling or as a co-factor for

biochemical reactions, as detailed above. Alternatively,

glutamate can also be transaminated by the glutamic-

pyruvic transaminase or by glutamic-oxaloacetic transam-

inases (GOT1 or GOT2). GOT2 generates aspartate in the

mitochondria, which may then generate oxaloacetate in the

cytosol after a second transamination reaction catalyzed by

GOT1. Oxaloacetate is channeled to malate dehydroge-

nase, resulting in the production of pyruvate and NADPH.

This alternative pathway of glutamate has emerged as a

critical regulator of the redox balance in pancreatic ductal

adenocarcinoma [146]. Because glutamate can further be

used for glutathione synthesis, glutamine metabolism is

important not only for energy production but also for redox

regulation in cancer. Hence, GLS inhibition impairs tumor

cell migration and invasion [86] and promotes apoptosis in

cells undergoing EMT as a consequence of decreased

resistance to oxidative stress [147].

Interestingly, GDH1, the enzyme controlling NAD?-

dependent glutamate deamination, has been reported to be

overexpressed in metastases of gallbladder [148] and

murine hepatocarcinoma [149]. GDH1 is important for

redox homeostasis as it controls aKG production and the

subsequent generation of fumarate, which activates the

antioxidant enzyme glutathione peroxidase 1 [150]. Thus,

GDH1 has been shown to promote tumor progression by

increasing tumor cell resistance to oxidative stress. Its

specific contribution to the metastatic process remains to be

determined.

A more complex story of amino acids and their role in

cancer metastasis is that of proline. On one hand, proline

oxidase, which catalyzes proline degradation, has been

identified as a mitochondrial tumor suppressor due to its

pro-apoptotic properties coupled to increased ROS gener-

ation [151]. Interestingly, the Myc oncogene inhibits

proline degradation [145], by participating in the accu-

mulation of proline in growing tumors [143, 152]. Proline

further accumulates in tumors following degradation of the

extracellular matrix [153] and elevated proline synthesis in

glutamine catabolism [145]. On the other hand, proline

degradation can turn into an important source of energy

during nutrient deprivation, either by stimulating ATP

production or by inducing ROS-mediated autophagy [154].

This pro-oxidant activity of proline has been proposed to

promote mitohormesis [56], i.e., adaptation to stress driven

by mitochondria (see also above). It most probably

explains the observation that increased proline metabolism

correlates with invasiveness and resistance to oxidative

stress in esophageal squamous cell cancer [155]. Along the

same lines, Comes et al. [156] recently reported that pro-

line supplementation on its own was sufficient to trigger a

genome-wide methylation remodeling and the acquisition

of an EMT-like phenotype by eSC, promoting eSC

metastasis in vivo.

Finally, amino acid metabolism could also promote

metastasis via a tumor cell-extrinsic action. For example,

the seminal work of Uyttenhove et al. [157] revealed that

cancer cells can escape immune defenses by stimulating

the degradation of tryptophan, an amino acid essential for

T-cell replication. Indoleamine 2,3-dioxygenase is the

main enzyme involved in tryptophan degradation and

constitutes a marker of tumor aggressiveness in ovarian

[158], thyroid [159], breast [160] and skin [161] cancers. In

another example, enhanced serine biosynthesis has been

associated with the induction of osteoclastogenesis and

increased formation of bone metastases in breast cancer

[162], although the molecular rationale behind this obser-

vation still remains to be elucidated.

Concluding remarks

In eukaryotic cells, mitochondria evolved as gatekeepers

not only of energy producing metabolism (cataplerosis)

but also of biosynthetic metabolism (anaplerosis) and

apoptosis. While a vast amount of experimental data point

at the key role of mitochondria in promoting tumor cell

growth and proliferation in primary tumors, a rather

limited number of studies directly addressed their con-

tribution to the metastatic process. The emerging picture

is that while mitochondrial metabolism is hijacked by

tumor cells to promote cell growth, proliferation, redox

homeostasis and survival, mitochondria could also act as

bioenergetic sensors conferring migratory, invasive and

metastatic phenotypes to cancer cells exposed to harsh

microenvironmental conditions. Together with de novo

produced D-2-hydroxyglutarate following specific IDH

mutations, mtROS and TCA cycle intermediates increas-

ingly produced in (pre)metastatic tumor cells, as well as

glutamate originating from glutaminolysis, could be

viewed as molecules involved in retrograde signaling

from mitochondria to the cell, suggesting that in certain

circumstances, mitochondria could drive cancer

metastasis.
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The origins of the changes affecting mitochondrial

metabolism in premetastatic cells, in metastatic progenitor

cells and tumor cells populating the metastatic lesion and

whether they can/must be reversed at specific steps of the

metastatic process remain to be determined. They could be

dependent or independent from mutations affecting geno-

mic or mitochondrial DNA. The observation that a

metabolic switch from OXPHOS to glycolysis can also

promote the metastatic phenotype (see companion paper)

argues for the existence of temporally well-defined meta-

bolic adaptations along the metastatic route. Alternatively,

different metabolic phenotypes could independently pro-

mote tumor metastasis, with the caveat that cause–effect

relationships must still be established in most instances. In

our opinion, resolving these uncertainties is a task of fun-

damental importance not only to improve the

understanding of the metabolism of metastatic progenitor

cells, but also to establish a strong rationale for the

development of antimetastatic treatment strategies.

A further degree of complexity of the metastatic process

arises from interactions between cellular populations with

different metabolic phenotypes inside a given tumor,

resulting, e.g., in metabolic symbiosis [163] and com-

mensalism [164]. For example, cancer-associated

fibroblasts can fuel the oxidative metabolism of prostate

cancer cells [165], which drives EMT and metastatic pro-

gression [166]. In this context, there are strong indications

that oxidative lipid metabolism, lipogenesis and amino acid

metabolism play critical roles that largely remain to be

explored from molecular and clinical standpoints. In par-

ticular, despite the identification of specific metabolic

reactions that promote metastasis, it will be pivotal to

understand the molecular determinants driving the meta-

static switch. It goes without saying that a better

delineation of specific changes affecting mitochondria,

lipid and amino acid metabolism could ultimately translate

into new, original therapeutic strategies directed against

cancer metastasis.

Conclusively, targeting tumor metastasis for therapy now

requires distinguishing metabolic changes that can drive

tumor metastasis from those that merely result from the

acquisition of the metastatic phenotype, and determining

whether sequential metabolic changes in a given metastatic

progenitor cell along its metastatic route and/or independent

metabolic changes in several different metastatic progenitor

cell populations account for the metastatic process.
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