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Abstract A systematic understanding of different factors

influencing cell type specific microRNA profiles is essen-

tial for state-of-the art biomarker research. We carried out a

comprehensive analysis of the biological variability and

changes in cell type pattern over time for different cell

types and different isolation approaches in technical

replicates. All combinations of the parameters mentioned

above have been measured, resulting in 108 miRNA pro-

files that were evaluated by next-generation-sequencing.

The largest miRNA variability was due to inter-individual

differences (34 %), followed by the cell types (23.4 %) and

the isolation technique (17.2 %). The change over time in

cell miRNA composition was moderate (\3 %) being close

to the technical variations (\1 %). Largest variability (in-

cluding technical and biological variance) was observed for

CD8 cells while CD3 and CD4 cells showed significantly

lower variations. ANOVA highlighted that 51.5 % of all

miRNAs were significantly influenced by the purification

technique. While CD4 cells were least affected, especially

miRNA profiles of CD8 cells were fluctuating depending

on the cell purification approach. To provide researchers

access to the profiles and to allow further analyses of the

tested conditions we implemented a dynamic web resource.

Keywords microRNA � Next-generation sequencing �
Blood cells � FACS

Introduction

Understanding cell subtype specific molecular pattern

contributes to our understanding of normal physiological

processes and pathological alterations. The first step for

profiling of molecules in cell subtypes is the purification of

the respective cell types. Already this first step is known to

influence the generated molecular profiles substantially.

Especially for gene expression, different extraction tech-

niques including positive immune-magnetic selection,

negative immune-magnetic selection or fluorescent acti-

vated cell sorting (FACS) have been explored and

compared to each other. In a study led by Woelk, authors
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hypothesized that positive selection and FACS show sim-

ilar expression profiles because of their comparable higher

purity [1]. Contrary to this hypothesis, the authors found

that positive selection deviated more from FACS as com-

pared to negative selection. As final conclusion, the usage

of FACS for gene expression profiling was recommended.

In an earlier study on gene expression differences

depending on cell purification, Lyons and co-workers came

to the conclusion that a rapid positive selection should be

applied for microarray gene expression studies [2]. In their

work, however, FACS was not included as purification

technology. Already these—at the first glance contradict-

ing—results highlight that a systematic exploration of cell

purification is essential to analyze the relevance of

molecular variability for pathogenic processes independent

of technical factors.

Beyond protein coding genes, miRNAs have been

claimed as minimally invasive biomarkers that can be

measured frombodyfluids. Formultiple oncological, cardio-

vascular and neurological disorders, discriminatory miRNA

patterns have been suggested [3–10]. As biological source,

blood cells, serum and plasma are most commonly used.

Especially if peripheral blood mononuclear cells (PBMC)

are profiled, signatures of complex mixtures of different

blood components are generated. Comparable to protein

coding gene expression, the cell types contributing most to

the pathological patterns are now searched. In a recent study

we explored differential expression of miRNAs in cell types

of lung cancer patients and unaffected controls [11].We used

positive immuno-magnetic selection to extract CD3, CD19,

CD15, CD14, andCD56 cells and generatedmiRNApatterns

for patients and controls using microarray technology.

Thereby we discovered discriminatory patterns in each cell

type. Especially cells of the innate immune system allowed

almost perfect classification between cases and controls. In

another study, we aimed to improve the understanding of the

technical reproducibility and the variability of miRNA cell

subtypes over time [12]. Again, we applied positive

immuno-magnetic selection and performed microarray

measurements, indicating an overall high stability of blood

cell components’ miRNA profiles.

However a systematic investigation of miRNA blood

compounds is still missing. In the present study, we analyzed

the most likely sources for variations in miRNA abundance

of blood cell subtypes in a systematic manner. Since the so-

far applied microarray technology covers just a part of all

miRNAs we exchanged the measurement system and per-

formed our study using next-generation-sequencing (NGS)

to decipher the blood cell types’ miRNomes. As putative

factors contributing to the variations in miRNA expression

we considered (a) the cell purification process, (b) technical

variations of the whole process (i.e. template/cell prepara-

tion, library preparation and NGS), (c) changes of the

miRNA composition over time, (d) differences between the

cell types and (e) differences between individuals (inter-in-

dividual). To systematically explore the source of variations,

all combinations of these factors were investigated, resulting

in an exponentially growing number of samples to be pro-

filed.Wemeasured three blood donors for three different cell

types extracted by three different approaches and repeated all

measurements a second time after 2–3 weeks. Finally, all

calculations were done as technical replicates such that

3 9 3 9 3 9 2 9 2 = 108 samples had to be processed.

Thesewere then evaluated by bioinformatics approaches and

the most important sources for variations were explored.

Results

In the present study, we present a comprehensive analysis

of the most likely sources for variations including different

purification technologies to obtain blood cell type specific

miRNA patterns in a systematic manner. We deep-se-

quenced a total of 108 whole miRNomes from 108

independent library preparations from three individuals

without known disease affection (healthy blood donors).

The large number of samples is due to the combinatorial

complexity of different purification types from different

cell types as well as technical and biological replicates that

were required to assess the variation introduced by differ-

ent technologies as well as the biological variability.

Specifically, we included n = 3 individuals, for each of

them j = 3 different cell populations were considered

(CD3, CD4, CD8), which were purified using k = 3 dif-

ferent approaches (positive selection, negative selection

and FACS). Each experiment was done in l = 2 technical

replicates and was repeated after 2–3 weeks with samples

from the same individuals, resulting in m = 2 measure-

ments at different time points of the same donors. Thus, we

collected from the three individuals n 9 j 9 k 9 l 9

m = 3 9 3 9 3 9 2 9 2 = 108 samples. This approach

allows us to quantify five important sources of variation

including (a) the cell purification process, (b) technical

variations of the whole process (i.e. template/cell prepa-

ration, library preparation and NGS), (c) changes of the

miRNA composition over time, (d) differences between the

cell populations and (e) differences between individuals.

An overview of the sample collection procedure is pre-

sented in Fig. 1.

For the 108 samples a total of 2.4 billion reads were

generated by Illumina HiSeq NGS. On average 22.4 mil-

lion reads per sample were sequenced. To provide a high

quality data set and limit the influence of miRNAs close to

background noise, we excluded low abundant miRNAs as

well as experimental outliers. In the analysis we included

those miRNAs with a total of at least 100 counts from
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which at least 5 samples had to show at least 10 counts of

the respective miRNAs. Altogether, 726 miRNAs fulfilled

these criteria. Additionally, we excluded 11 samples where

less than 500,000 reads mapped to the miRBase [13]. The

number of reads per sample including the ones below

threshold are presented in Supplemental Figure 1.

Purity of different extraction approaches

First, we analyzed the CD3? subpopulation using PBMC as

starting material. Figure 2a shows a representative staining

of each donor indicating variable percentages of CD3

subpopulation in the PBMC preparation between the dif-

ferent donors. The same is true for CD3?/CD4? and CD3?/

CD8? subpopulations, uncovering for instance a high

CD3?/CD8? content in donor 2 compared to the other

donors (29.4 %, Fig. 2a, lower panel). Next, we assessed

the purity of the different cell isolation technologies

(Fig. 2b). The highest purity was reached for CD4 cells

using positive selection with mean/standard deviation of 99

and 2 %. A similar high purity was found for CD4 cells

following FACS selection (98.6, 1.7 %), for CD8 positive

selected cells (98.3, 1.4 %), for CD3 cells following FACS

selection (98, 2.5 %) and for CD8 FACS purified cells

(97.2, 3.3 %). The remaining purifications showed slightly

decreased purity around 94 %. The only outlier was CD8?

cells following negative selection with a purity of only

83.5 % and standard deviation of 4.2 % (Grubbs test

p value of 0.004). The purity of CD3 cells after positive

selection could not be analyzed by cytometry due to the

anti-CD3 antibody that cannot be removed after magnetic

isolation. For this sample, purity was therefore determined

by fluorescence microscopy through a staining with anti-

CD4 and anti-CD8 antibodies assuming that these cells are

CD3 positive cells. By this presumption, which probably

underestimated the real number of CD3 positive cells,

purity was 88.1 % with standard deviation of 5.1 %. The

numbers of each individual sample are summarized in

Supplemental Table 1.

NGS expression profiling and technical variability

As outlined above we performed all analyses with 726

miRNAs that were expressed in the measured profiles and

removed 11 samples with low read counts matching to the

miRBase. We first analyzed whether these 11 samples

Fig. 1 Schema of the study set-up. The blue box presents the nine different combinations of three cell types purified with three approaches.

Orange arrows indicate the technical replicates and green arrows the biological replicates leading to 36 samples per patient
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(highlighted in Supplemental Figure 1) specifically belong

to a certain cell type, individual or purification technology.

We did not observe a significant enrichment for any of the

tested characteristics. The smallest p value was reached for

the purification technology, of the 11 samples two were

from positive selection, two from FACS and seven from

negative selection, indicating a slight tendency for drop out

of samples purified by negative selection (p = 0.105). The

remaining 97 samples were normalized such that the read

counts of all samples showed the same distribution

(quantile normalization) before further analysis.

Next, we investigated the technical reproducibility of

different cell types and different extraction approaches.

To this end, we calculated for all technical replicates the

Pearson correlation coefficient, which reached a high

value of 0.982 on average. We ranked all correlation

coefficients from highest to lowest and then performed

an enrichment analysis to find conditions that have

specifically high or low technical reproducibility. The

generated running sum statistics for the different con-

ditions indicate that technical reproducibility is similar

for the three different donors (donor 1, 0.978; donor 2,

0.979; donor 3, 0.989). Similarly, no difference between

positive sorting, negative sorting and FACS was found

in terms of technical reproducibility (correlation of 0.98,

0.988 and 0.978, respectively). For the different cell

types, we however found enrichment for CD3 and CD4

cells with respect to high correlation and thus high

technical reproducibility. In line with this observation,

the average correlation for CD3 and CD4 cells was

0.989 and 0.998, while for CD8 cells just average cor-

relation of 0.959 was reached. Thus, CD8 cells showed a

significantly (p = 0.015) lower technical reproducibility

as compared to CD3 and CD4 cells.

Variability of cell type patterns over time

Our study set-up also allows quantification of the stability

of patterns over time since the same individuals were re-

profiled 2–3 weeks after the first analysis. On average, the

correlation almost reached the values calculated for the

technical reproducibility, reaching a value of 0.971. Since

we observed large technical variations for CD8 cells,

which may partially depend on the purity of CD8 cells

(compare Fig. 2 and Supplemental Table 1), we also

expected a higher variation with respect to the different

time points compared to CD3 or CD4 cells. Indeed, CD3

cells showed a correlation of 0.988, CD4 cells of 0.997

and CD8 cells of only 0.932, again corresponding to a

significantly increased variability (p = 0.0004). Impor-

tantly, this variability is the consequence of technical as

well as biological variations. In contrast to the technical

reproducibility analysis presented above we here also

observed larger deviations with respect to the purification

technology: while positive and negative selection showed

correlation values of 0.976 and 0.982, FACS sorting

values were slightly decreased (0.959). Finally, also

divergent stability over time for the three different indi-

viduals was discovered. The three individuals showed

correlation values of 0.958, 0.974 and 0.985. The overall

lowest deviation after 2–3 weeks was found for CD4 cells

of donor 3, with a correlation of 0.999, while the largest

divergence was observed for CD8 cells of donor 1 with

correlation of 0.918.

Fig. 2 Cell purity. a Analysis of PBMC samples before isolation of

subtypes. The CD3 cell subsets within PBMC of each donor are

shown as histograms. CD3? cells were selected to differentiate into

CD4? and CD8? subtypes. Average percentages are displayed for

each donor. b Purities of isolated CD3?, CD4? or CD8? subtypes are

shown for positive selection, negative selection and FACS. Pie charts

display the average percentages of CD3?, CD4? or CD8? subtypes

across donors for each isolation method except for CD3 positively

isolated (mean ± standard deviation)
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Cluster and principal component analysis

The results presented in the previous sections demonstrate

that miRNA cell type pattern are generally stable over time

and can be measured reproducible by NGS. Technical

replicates and the time course of the respective individuals

matched very well to each other further validating the

stability of miRNA cell type pattern. The technical repro-

ducibility is also a necessary basis to analyze different

sources for variation in a quantitative manner.

So far, we considered different sources for variation

only separately from each other. To understand the overall

influence of the combination of different factors, we

applied cluster and principal component analysis. Figure 3

presents the second vs. first principal component (PC) as

scatter plot. The identical plot is presented three times only

the color scheme has been changed in each variant.

Figure 3a is colored with respect to the three donors,

Fig. 3b with respect to the different cell types and Fig. 3c

with respect to the isolation technique. We observe that the

three donors can be well distinguished, especially focusing

on the second PC. Donor 1 has the smallest values (approx.

-5 to -20), followed by donor 3 (which clusters around 2)

and donor 2 (with most values between ?5 and ?15). In

Fig. 3b, c it is evident that all dots in the left part of the

images belong to the CD8 sample purified by FACS, which

are in consequence most different compared to the other

purification techniques/cell populations.

To further explore the variability we performed hierar-

chical clustering and colored the clusters with respect to

individuals, cell types and purification technologies. The

resulting heat map is presented in Fig. 4. Here, we can see

that individuals’ pattern generally cluster well together, but

again FACS-purified CD8 cells (leftmost cluster of 8

Fig. 3 Scatter plot for the first vs. second principal component colored in red, blue and green with respect to the three donors (a), the different
cell types (b) and the different purification techniques (c)
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samples) and CD8 cells in general showed substantial

divergence from other samples. As indicated by the pre-

vious analyses, technical replicates and time courses

revealed a very good clustering, underlining the high

reproducibility of the profiling in general.

Given the five factors: different individuals, different

cell types, different purification technologies, different

time points and technical replicates, we asked on the per-

centage of variability that the factors—either alone or in

combination—contribute to the overall variance. An

approach that is well suited for such analyses is principal

variance component analysis (PVCA), yielding the per-

centile of variability for each factor and combinations of

factors. The highest value of 34 % was reached for the

donor, followed by the different cell types (23.4 %) and

different isolation techniques (17.2 %). Already these three

factors alone explain 74.7 % of the variance. The fourth

most relevant factor was the composition of cell type and

isolation technique (10.6 %). While already the change

over time in cell miRNA composition was moderate

(\3 %), the technical variations were even smaller (\1 %).

A bar chart detailing the composition of the variance for

the different factors is presented in Fig. 5.

Analysis of variance of cell types and purification

technique

One central question of our study was to explore differ-

ences in the cell types and depending on the purification

techniques. Thus, we performed an ANOVA with the

respective nine groups, i.e. each of the three cell types and

each of the three purification techniques. Following

adjustment for multiple testing, 476 miRNAs reached a

significant deviation in at least one of the nine groups. The

lowest p values were as small as 10-46 (miR-4772-5p).

Fig. 4 Heat map as result of a cluster analysis of 50 miRNAs with

highest variability. Color scheme is used analogously to Fig. 3

Fig. 5 Contribution of different

factors to the overall variability

sorted from highest to lowest
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Inspecting the patterns of the miRNAs and by clustering

the median expression in the nine respective groups we

observed almost all possible patterns. The cluster heat map

for a complete linkage hierarchical clustering on the ranks

of the median expression for the nine groups per miRNA

using the Euclidean distance is presented in Fig. 6. Using

26 different common measures for estimating the number

of clusters we observed between the minimal and maximal

values of 9 (7 of 26 approaches) and 50 clusters (3 of 26

approaches) on average 23.75 clusters in the data (median

of 18.5 clusters). Cutting the dendrogram at 1/1.2 of the

maximal height we finally extracted 16 clusters that are

presented as vertical color bar between the dendrogram and

heat map in Fig. 6.

The largest cluster contained 110 miRNAs (cluster 1,

highlighted in Fig. 6). In this cluster we observe miRNAs

with overall lowest expression in CD8 FACS patterns,

followed by increased expression in CD8 negatively

selected cells while most other cell types and purification

approaches show higher miRNA counts for markers in this

cluster. One example of this cluster is let-7g-3p (Fig. 7a)

representing the pattern most frequently observed. In case

of let-7g-3p (p\ 10-10), positive immuno-magnetic

selection of cells showed in general a higher expression as

compared to negative selection and FACS sorting.

In contrast to the expression of miRNAs in this largest

cluster, we observed 64 miRNAs with overall highest

expression in CD8 cells obtained by FACS while all other

approaches show lower abundance. One representative

example is miR-4772-5p (Fig. 7b). With the 64 cluster

members, this pattern was among the most frequently

observed ones.

miR-138-5p (p\ 10-37) shows a comparable high

expression in all CD3 cell purification techniques (Fig. 7c)

but is predominantly high in negative selected cell popu-

lations. This miRNAs represents 29 other miRNAs.

However, while miR-138-5p is comparably low expressed

in CD4 and CD8 isolated by FACS or positive selection, its

expression in negatively purified CD4 and CD8 cell pop-

ulations exceeded the other purification techniques

significantly and was even higher compared to all isolation

methods of CD3 cells. Another more extreme example for

high expression just in negative selected cell populations is

miR-126-3p (p\ 10-13, Fig. 7d).

Nevertheless, we also found miRNAs that only mini-

mally varied between the different purification approaches

but strongly varied between different cell types. E.g. one

representative of the group of 29 miRNAs lower expressed

in the CD8 cell population as compared to the CD3 and

CD4 population independently of the purification tech-

nique is miR-151b (p\ 10-5, see Fig. 7e).

Beyond the significantly affected miRNAs with repre-

sentative examples in panels a–e, we identified miRNAs

that were not affected at all, either by cell type or by

purification approach. Exemplarily, miR-628-3p

(p = 0.96) is presented in panel f. The patterns for all

miRNAs can be accessed from the web resource described

at the end of the results section.

Finally, we analyzed the direct influence of purification

technique on the different cell types by considering the cell

types separately from each other and doing the ANOVA

for each of the cell types. After adjustment for multiple

testing, 77 miRNAs were significantly affected by the

purification approach for CD3 cells, 17 for CD4 cells, and

Fig. 6 Clustering of the ranks

of median expression in the nine

cell type and purification

technique combinations.

Vertical color bar between the

heat map and the dendrogram

indicates the 16 most dominant

clusters
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354 for CD8 cells. Especially for CD8 cells, the large

number may be explained by the deviation resulting from

FACS purification.

RT-qPCR validation

Validation of high-throughput results is essential to dis-

cover potentially false positive findings. We thus carried

out RT-qPCR of the miRNAs described in the previous

section. Since miRNAs with larger delta Cq values are

lower expressed (in contrast to NGS where large values

correspond to high expression) and delta Cq values are on

log2 scale we calculated pseudo expression counts (see

‘‘Methods’’). These pseudo counts facilitate the direct

comparison between NGS and RT-qPCR results. In the

cluster analysis presented above let-7g-3p was in the lar-

gest cluster containing miRNAs being lowest expressed in

CD8 FACS cells. This finding was replicated in RT-qPCR,

where CD8 FACS cells were lowest (7.8 counts), followed

by CD3 negative selected cells (9.1 counts). The results for

all cell types are presented as bar chart in Supplemental

Figure 2A.

As example of 64 miRNAs with overall highest

expression in CD8 cells obtained by FACS followed by the

other CD8 cells while all other approaches show lower

abundance we described miR-4772-5p. Again, this result

was reproduced. CD8 FACS cells had 3.2 counts, followed

by negative (2.6) and positive selection (1.3) while all other

results were below 1 (Supplemental Figure 2B). Moreover,

melting curve analysis of this miRNA identified different

Tm (temperature of melting) peaks that potentially corre-

spond to iso-forms of this miRNA. Inspecting the NGS

reads we also observed respective iso-forms with length

between 24 and 27 bases.

miR-138-5p was highest expressed in all CD3 cell types,

and negative selected CD4 and CD8 cells. As for the first

two examples this pattern was reproduced by RT-qPCR

(Supplemental Figure 2C). An example for a miRNA with

exceptional high expression in negative selected cells was

miR-126-3p. Also in RT-qPCR, the negative selected cell

types had highest expression. Also concordant to the NGS

results, positive selected cell types had lowest expression

(Supplemental Figure 2D).

miR-151b was originally reported to be lower expressed

in all CD8 cells independent of the purification approach.

This result was just partially confirmed, indeed CD8 cells

selected by FACS showed very high expression (Supple-

mental Figure 2E), altogether the variation observed for

this miRNA with respect to the different experimental set-

ups was substantially smaller as compared to the variations

observed by NGS. Since this replication did not matched

we investigated two further examples following this pat-

tern, miR-125-5p and miR-21-5p. Expression pattern in

NGS and RT-qPCR for the first miRNA are presented in

Supplemental Figure 3A and B and for miR-21-5p in

Supplemental Figure 3C and D. In both case NGS and

qRT-PCR approaches matched well and the original results

were confirmed. As counter example to this expression

pattern we picked miR-345-5p, which was highest

expressed in CD8 cells compared to the other cell types.

Indeed, this miRNA had average counts of 2.8 in CD8 cells

and 1.3 counts in the other cell types, independently of the

purification technique (Supplemental Figure 3E and F).

As marker that was not significantly affected we

reported miR-628-3p. This miRNA also showed the overall

lowest variation of expression values in the RT-qPCR

experiments (maximal expression 7.6 and minimal

expression 5.4 across all cell types and purification tech-

niques). The expression values for this miRNA are

presented in Supplemental Figure 2F.

To quantify the overall degree of reproducibility we

calculated Pearson correlation coefficient for the RT-qPCR

measurements and NGS expression for each miRNA sep-

arately and then for all data points together. The worst

correlation was calculated for the previously described

outlier miR-151b (correlation coefficient of 0.04). For all

other miRNAs significant correlation was observed. Nota-

bly, five of the tested miRNAs had correlation values

exceeding 0.9, reaching up to 0.99. In detail, correlation

values sorted in increasing order were 0.66 for let-7g-3p,

0.88 for miR-21-5p, 0.91 for miR-125a-5p, 0.93 for miR-

345-5p, 0.93 for miR-138-5p, 0.97 for miR-126-3p and

0.99 for miR-4772-5p. Taking all single data points toge-

ther, correlation was 0.98 and highly significant

(p\ 10-10). To allow for direct comparison of all mea-

surements for the different miRNAs we show the values as

scatter plot in Fig. 7b.

Novel miRNAs that are differentially regulated

between cell types

NGS data also allow for discovering novel miRNA can-

didates [14]. Altogether, miRDeep2 using default

parameters proposed 648 novel miRNA precursors. Of

those, we discarded 263 candidates since they matched

other RNA resources in a BLAST analysis. For the

cFig. 7 a Box-plots for the nine combinations of three cell types and

three purification techniques. CD3 cells are colored in shades of

orange, CD4 cells in shades of blue and CD8 cells in shades of green.

y-axis describes the normalized NGS read count per miRNA. a–

f Present each an own miRNA. b Scatter plot that directly compares

the RT-qPCR measurements to the NGS data. Each miRNA is

represented by an own color. For each miRNA, nine data points

representing the different combinations of cell types and purification

techniques are included
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remaining miRNAs we focused on those that are differ-

entially abundant in different cell types. Following

Bonferroni adjustment for multiple testing, four miRNAs

remained significant. These are detailed in Table 1. In two

cases, CD8 cells showed highest abundance with average

reads of 4.4 and 2.2 reads per sample. CD4 cells had values

of 0.3 and 0 reads and CD3 cells of 2 and 1.1 reads for both

miRNAs. The two other candidates had highest values in

CD3 cells, namely 1.4 and 8.3 reads. In contrast, CD4 cells

had values of 0.8 and 1.9 and CD8 cells of 0.1 and 2.3

counts. Generally, highest abundance was discovered for

the positively selected cells.

Interactive web service to browse and compare

profiles

To provide easy access to the measured cell type profiles

and to enable further analyses we set up a web repository,

which can be accessed at http://www.ccb.uni-saarland.de/

cf. Here, the analyses that are described in the manuscript

can be inspected in detail. Moreover, we implemented

capabilities for interactive comparison of cell types and

purification methods. Users can select two arbitrary groups

describing cell subtype and isolation technique. For

example, ‘‘CD4 FACS’’ vs. ‘‘CD4-pos’’ or ‘‘CD4 FACS’’

vs. ‘‘CD8 FACS’’ can be selected. Then, the respective

groups are compared to each other and graphical output as

well as tables are generated and presented to the user. The

interface and results are shown in Supplemental Figure 4

for the comparison of CD3 positively selected vs. CD4

positively selected cells. The middle panels present a

selection of the graphical output that is generated, includ-

ing a volcano plot, a scatter plot and a heat map. Already

the volcano plot indicates a higher expression of 13 miR-

NAs in CD3 positively selected cells (red dots in left panel)

while just six miRNAs were down-regulated (green dots in

left panel). The same can be seen in the scatter plot that

details median expression in CD3 positively vs. CD4

positively selected cells on a logarithmic scale. Here, blue

points are higher expressed in CD3 positively selected cells

while orange points are higher expressed in CD4 positively

selected cells. Additionally, the 20 most significant miR-

NAs are presented as heat map, the color scheme on top

indicates that CD3 positively selected and CD4 positively

selected cells can be perfectly separated from each other.

Below the graphical output, an interactive table is gener-

ated. This contains besides the miRNA name, the median

and standard deviation of expression in both groups, fold

change, logarithm of fold change, raw and adjusted Wil-

coxon–Mann–Whitney and t test p values as well as the

area under the receiver characteristics curve (AUC). In the

presented example we have discovered 24 miRNAs with

significant dys-regulation (adjusted t test p value of\0.05).

Of these, 9 were higher expressed in CD4 positively

selected cells while 15 were higher abundant in CD3

positively selected cells. The most significant miRNA was

miR-138-5p, with median count of 154 in CD3 positively

selected cells compared to only 16 in CD4 positively

selected cells. The adjusted t test p value was\10-8. The

miRNA, which was most significantly higher expressed in

CD4 positively selected cells is miR-222-5p, having

median read counts of 9 (CD3 positively selected) and 45

(CD4 positively selected) and a respective adjusted t test

p value of 0.003 (see Supplemental Figure 4, table for

selected miRNAs).

To further demonstrate the usability of our tool, we

searched the literature for other studies addressing the

same topic and compared the results. You and co-

workers previously published that for CD4 cells no

influence of positive vs. negative selected cells has been

observed by using OpenArray technology [15]. In their

study, 110 miRNAs were expressed but for none of them

differential expression was discovered. The main dif-

ference between both studies includes the bead size

(nanometer scale in You et al. vs. micrometer scale in

our study) and measurement of miRNAs (open array in

You et al. vs. NGS in our study). We used the data

generated in this study and the web resource to search

for differences in CD4 positive vs. CD4 negative

selected cells. Thereby, we discovered two miRNAs that

were significantly affected by the selection process,

including the afore-mentioned miR-222-5p as well as

miR-138-5p. The fold change for the latter miRNA was

as high as tenfold. The same miRNAs and multiple other

ones have been detected in the comparison of CD3

positive vs. CD3 negative selected samples.

Table 1 Novel miRNA candidates

miRNA Sequence av cd3 av cd4 av cd8 ttest cd3 vs. cd4 ttest cd3 vs. cd8 ttest cd4 vs. cd8

cell-mir-29 UCUGAUGGGGAAUGGCCUGCCU 2.0 0.3 4.4 2.2-05 5.2-03 6.6-07

cell-mir-1099* ACUUCGCACUGACUGUUUAGCA 1.1 0.0 2.2 9.8-04 4.7-02 1.1-05

cell-mir-359* UCAGGCGCGGAGGGGAACAGC 1.4 0.8 0.1 6.7-02 2.7-05 4.7-03

cell-mir-633 GCGCGAUGGACCGAGGGC 8.3 1.9 2.3 4.9-05 1.7-04 6.1-01
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Conclusions

While cell type specific gene expression patterns have

already been systematically explored and also different

purification techniques were compared to each other, for

miRNAs just few aspects have been investigated.

We thus set out to explore the miRNA repertoire of

common blood cell types and common purification tech-

niques using next-generation-sequencing in a systematic

manner. Additionally, we performed technical replicates as

well as a time course of blood donors. While our analysis

suggested a stable miRNA repertoire over time that can be

very reproducibly measured, inter-individual variations

were substantial. Moreover, we also detected cell type

specific miRNA repertoires and found strong variations

dependent on the purification technique. Since the pre-

sented data set opens many possibilities for addressing

further questions beyond those covered in this work we set

up an interactive web resource. Using this resource,

researches can explore the details of the analyses presented

in this work but can also perform own comparisons and

analyses. While it is not possible to generally determine the

best purification strategy, our results can aid researchers in

selecting the best purification technique for the require-

ments and prerequisites in their studies.

Methods

Study set up

From three blood donors without known disease affection

108 samples were collected (36 samples per donor). These

36 samples are due to combinatorial complexity of our

systematic analysis. For each of the n = 3 donors, j = 3

different cell types were considered (CD3, CD4, CD8),

which were purified using k = 3 different approaches

(positive selection, negative selection and FACS sorting).

Each experiment was done in l = 2 technical replicates and

at m = 2 different time points (2–3 weeks apart). Thus, we

had to collect j 9 k 9 l 9 m = 3 9 3 9 2 9 2 = 36

samples for each of the donors. The study set up is sketched

in Fig. 1. The local ethics committee approved the study

and all participants gave informed consent.

Cell isolation and cell separation

Peripheral blood mononuclear cells (PBMC) were isolated

as described previously [16]. Shortly, the leucocyte

reduction chamber systems (LRS chamber, cones) from

platelet apheresis of healthy donors were provided by the

local blood bank. Cones were flushed with 8–10 ml HBSS

(PAA) and loaded on a standard density gradient [leuco-

cyte separation medium (LSM 1077, PAA)]. PBMC were

isolated by a density gradient centrifugation (450g, 30 min,

at room temperature with lowest acceleration and no break

used). The PBMC layer was washed in HBSS and

remaining red blood cells were removed by a 1–2 min

incubation in lysis buffer (155 mM NH4Cl, 10 mM

KHCO3, 0.1 mM EDTA, pH = 7.3). Cells were washed

again in HBSS, counted in a Z2 cell counter (Beck-

man&Coulter) and until further use kept on ice in PBS/

0.5 % BSA.

CD3? T (=CD3) cells, CD4? T (=CD4) cells and CD8?

T (=CD8) cells were isolated using three different methods:

(1) Dynabeads Untouched Human Cell isolation kit (CD3?,

#11344D; CD4?, #11346D or CD8? T cells #11348D, Life

Technologies), (2) Dynabeads� positive Human Cell iso-

lation kit (CD3?, #11151D; CD4?, #11331D; CD8? T

cells, #11333D, Life Technologies), (3) FACS (for details

see section ‘‘FACS of CD3?, CD4? and CD8? T cells’’).

Bead isolations were done as described by the manufac-

turer, but PBS/0.5 % BSA was used instead of PBS/0.1 %

BSA. To guarantee comparable time periods for isolation

as good as possible, different isolations were done in par-

allel by three different operators. Isolated cells were

counted either by Z2 cell counter (Beckman&Coulter) or

MoxiZ (VWR).

FACS of CD31, CD41 and CD81 T cells

A density of 1.6 9 107 PBMC/ml was used to isolate

CD3? T cells (2.0 9 107 cells), CD4? T cells (4.0 9 107

cells) and CD8? T cells (1.0–1.4 9 108 cells) using anti-

CD3-PerCP (SK7; Biolegend), anti-CD4-PE (MT310,

DAKO) and anti-CD8-FITC (DK25; DAKO) antibodies.

Cells were stained 40 min at 4 �C with the corresponding

antibody, washed twice and re-suspended in PBS/0.5 %

BSA. T-lymphocyte subsets were sorted in a FACSAriaIII

(BD Biosciences) fitted with a 70 lm nozzle. Sorting gates

were set as follows: doublets were excluded and living

cells were selected using FSC vs. SSC. The remaining cells

were separated based on the CD3, CD4 or CD8 expression.

Sorted cells were immediately centrifuged and pellets were

re-suspended in Trizol (Life Technologies) and stored at

-80 �C until RNA isolation.

Cytometry analysis of isolated cell populations

Purity of positively (except for CD3 positively selected

population, see below), negatively or sorted subpopulations

was determined by using the same antibodies as for the

sorting. If available, 1.0 9 106 cells were stained with anti-

CD3-PerCP, anti-CD4-PE and anti-CD8-FITC antibodies

for 20 min at RT. Cytometry analysis was done at the
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FACSAriaIII (BD Biosciences) with the same gating

strategy used for FACS. The analyses of all probes were

done as soon as possible after sorting was finished.

Antibody staining of CD3 positively

immunomagnetic selected populations

Cells were stained as described above with anti-CD4 and

anti CD8 antibodies. Samples were adhered to poly-L-or-

nithine-coated (0.1 mg/ml) glass coverslips and analyzed

on the stage of an Olympus IX 70 microscope equipped

with a 209 objective (UApo/340, N.A. 0.75) and appro-

priate filter sets from AHF (HQ-Cy3, #F41-007; HQ-

EGFP, #F41-017). For acquisition and analyses the soft-

ware TILL Vision was used.

RNA isolation

Total RNA from 3.0 9 106 cells were isolated using

TRIzol� Reagent (Life Technologies, #15596018) includ-

ing 1 ll Glycogen (5 lg/ll, Life Technologies, #10814-

010) following the manufacturer’s protocol.

Library prep and next-generation sequencing

For the library preparation, 100 ng of total RNA was used

per sample, as determined with a DNF-489 Standard Sen-

sitivity RNA Analysis Kit on the Fragment Analyzer

(Advanced Analytical Technologies). Preparation was

performed following the protocol of the TruSeq Small

RNA Sample Prep Kit (Illumina). Concentration of the

ready prepped libraries was measured with the Qiagen

Gene Read Library Quant Kit on a ViiA 7 Real Time PCR

system (Life Technologies). Libraries were then pooled in

batches of six samples in equal amounts and clustered with

a concentration of 14 pmol in one lane each of a single

read flowcell using the cBot (Illumina). Sequencing of 50

cycles was performed on a HiSeq 2000 (Illumina).

Demultiplexing of the raw sequencing data and generation

of the fastq files was done using CASAVA v.1.8.2.

In silico analysis

The de-multiplexed samples have been analyzed using the

miRDeep2 pipeline using standard parameters [17]. As output

an expressionmatrix has been calculated containingmiRNAs

in rows and samples in columns. All downstream calculations

were done using R version 3.0.2. First, low abundantmiRNAs

and experimental outliers were filtered. Only miRNAs with a

total of at least 100 counts and at least five samples showing at

least ten counts of these miRNAs were considered. Addi-

tionally, sampleswhere less than 500,000 readsmapped to the

miRBase have been excluded. The resulting reduced matrix

was quantile normalized and normalized expression intensity

values were used for further calculations. To detect differ-

ences between the tested conditions, principal component

analysis (PCA) and hierarchical clustering has been carried

out. To calculate p values, analysis of variance (ANOVA)was

performed. We also used principal variance component

analysis (PVCA) to discover the conditions adding largest part

of variance to the expression profiles. To assess differences

between groups, student t test as well as Wilcoxon–Mann–

Whitney tests were carried out and significance values were

adjusted for multiple testing using the Benjamini–Hochberg

approach [18]. Additionally, the area under the receiver

characteristics curve (AUC) was calculated. For clustering,

the hclust and the heatmap.2 function from R have been

applied. Complete Linkage hierarchical clustering on the

Euclidean distance has been performed. To assess the number

of clusters, 30 different common approaches have been car-

ried out using the NbClust package and a consensus vote has

been carried out. In detail we asked for between 9 and up to 50

clusters which cluster number is most supported by the

respective approaches given the miRNA expression data as

input. For the detection and coloring of matching patterns in

the cluster analysis the dendrogramhas been cut at 1/1.2 of the

maximal height.

RT-qPCR validation

Since the variance introduced by technical replicates and the

second measurement was small compared to the inter-indi-

vidual and cell type specific differences, we analyzed one

replicate of the samples from the first blood draw, i.e. 27

samples, using RT-qPCR. Quantitative RT-PCR was per-

formed using the miScript PCR system of Qiagen after

manufacturers instructions. In detail, 50 ng RNA was

reverse transcribed usingmiScript RT II kit (Qiagen, Hilden,

Germany) and diluted 1:10. We analyzed expression of 9

miRNAs (let-7g-3p, miR-4772-5p, miR-138-5p, miR-126-

3p, miR-151b,miR-628-3p, miR-125a-5p,miR-21-5p, miR-

345-5p) and RNU6B as endogenous control. Primers were

purchased from Qiagen (miScript Primer Assays). PCR

reactions were set up in duplicates in 20 ll total volume

using miScript SYBR Green PCR kit with 2 ll of diluted
cDNA as input and run on a StepOnePlus cycler (Ap-

pliedBiosystems). Threshold cycle (Cq) values were

calculated by StepOne Software v2.3 using a fixed threshold

of 0.2 and automatic baseline setting. All melting curves

were reviewed to ensure specific amplification. For miR-

4772-5p, different Tm peaks were observed that potentially

correspond to iso-forms of this miRNA. To make qRT-PCR

results better comparable to NGS results we transformed the

log2 RT-qPCR delta Cq values as follows:

Count ¼ 1000� 2�deltaCq
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