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Abstract Hematopoiesis takes place in the bone marrow

of adult mammals and is the process by which blood cells

are replenished every day throughout life. Differentiation

of hematopoietic cells occurs in a stepwise manner through

intermediates of differentiation that could be phenotypi-

cally identified. This has allowed establishing

hematopoietic cell classification with hematopoietic stem

cells (HSCs) at the top of the hierarchy. HSCs are mostly

quiescent and serve as a reservoir for maintenance of

lifelong hematopoiesis. Over recent years, it has become

increasingly clear that HSC quiescence is not only due to

intrinsic properties, but is also mediated by cognate inter-

actions between HSCs and surrounding cells within micro-

anatomical sites called ‘‘niches’’. This hematopoietic/stro-

mal crosstalk model also applies to more mature

progenitors such as B cell progenitors, which are thought to

reside in distinct ‘‘niches’’. This prompted many research

teams to search for specific molecular mechanisms sup-

porting leuko-stromal crosstalk in the bone marrow and

acting at specific stage of differentiation to regulate

hematopoietic homeostasis. Here, we review recent data on

adhesion mechanisms involved in HSCs and B cell pro-

genitors interactions with surrounding bone marrow

stromal cells.
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Introduction

In the bone marrow (BM) of adult mammals, hematopoi-

etic stem and progenitor cells (HSPC) are in close contact

with specialized stromal cells forming micro-anatomical

units called niches. The niche is a complex three-dimen-

sional structure consisting in different types of

components: local supporting stromal cells, extracellular

matrix (ECM) and soluble factors. BM stromal cells

encompass a variety of cell populations such as fibroblasts,

reticular cells, endothelial cells, adipocytes and osteoblasts.

ECM provides structural integrity, anchorage for the cell,

initiates many signal transduction events and acts as a store

for cytokines and growth factors present in the niche,

making them readily available to the cells [1, 2]. Fibro-

nectin, collagens I, III, IV, tenascin, osteopontin and

laminin are major components of BM ECM [3–5]. HSC

and B cell progenitors are not randomly distributed in the

BM but are arranged in a positional hierarchy relative to

mesenchymal and osteoblastic progenitors, endothelial

cells and blood perfusion according to their maturation

stage (Fig. 1). This indicates that adhesion of HSPC to BM

microenvironment must be tightly controlled according to

the stage of hematopoietic differentiation and to the com-

position of the niches.

Cellular composition of HSCs niches

The endosteal niche

Hematopoietic stem cells with slow-dividing/quiescent

potential are localized close to endosteal lining of BM

cavities in trabecular regions of long bones, whereas more

differentiated hematopoietic progenitors are found mainly
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in the central BM region [6]. The endosteal niche provides

HSC anchorage through cell–cell interactions but also

growth factors and cytokines that regulate HSC self-re-

newal and maintain cells in the slow-cycling state

inhibiting their differentiation [7]. HSCs isolated from

endosteal regions by flow-cytometry show higher recon-

stitution activity and in vitro hematopoiesis as compared to

HSCs isolated from the centre of the BM [8]. Osteoblasts

(OBs) are the main contributors to the endosteal niche and

are organized in a layer along the endosteum at the inter-

face between bone and marrow [9]. The major function of

osteoblasts in bone remodelling is the secretion of non-

mineralized bone matrix proteins. Osteoblasts are derived

from mesenchymal stem cells (MSC) and display a

CD45-CD31-TER119-Sca1-CD51? phenotype. They

produce soluble factors that regulate HSC retention and

quiescence, such as CXC-chemokine ligand 12 (CXCL-

12), osteopontin (OPN), angiopoietin 1 (Ang-1), stem-cell

factor (SCF) or thrombopoietin (TPO) [10–12]. This is in

agreement with findings showing that OBs can expand the

number of HSCs by two- to fourfold in vitro and that

increased numbers of OBs in Mx1-cre, Bmpr1fl/fl mice is

correlated to increased pools of HSCs [13, 14]. However,

since targeted depletion of CXCL-12 or SCF in OBs does

not affect HSCs, it is likely that they rather represent a

secondary source for niche factors [15, 16]. In addition to

specific cellular composition, endosteal niches present

particular physico-chemical properties as compared to

central BM. In steady state, the endosteal region of the BM

is hypoxic with less than 2 % O2. The low perfusion of this

niche is not related to the distance from blood vessels, but

is rather due to low blood velocity, which results in poor

supply of nutrients and oxygen to the osteoblastic niche.

Hypoxia-inducible transcription factor (HIF-1a) signalling
has recently been identified as determinant regulators of

HSC quiescence in the endosteal niche [17]. The second

characteristic of this niche is the elevated Ca2? concen-

tration due to active bone remodelling with coupled bone

formation and degradation. Soluble Ca2? ions are released

by osteoclasts degrading the bone and are re-deposited in

the neo-formed bone matrix. HSCs express calcium-sens-

ing receptor (CaR) and it has been reported that cells

lacking this receptor fail to localize in endosteal niche [18].

The vascular niche

Immunolocalization of HSCs in BM sections has allowed

the discovery of a second specialized HSC niche: the

vascular niche [19]. Since only a fraction of HSCs are

localized close to BM sinusoids and because quiescent
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Fig. 1 Cellular composition of adult bone marrow niches. Cells

forming the different niches of the BM in contact with hematopoietic

stem cells (HSC) and cells of the B cell lineage are shown. Soluble

factors secreted by stromal cells are indicated in red. Arrows and

dashed arrows depict the presumed migration of hematopoietic stem

and progenitor cells from one niche to another. ECM extracellular

matrix
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HSCs have been found in osteoblastic niches, it is thought

that the vascular niche maintain HSCs which are in active

cell cycle phases and is replenished from dormant cells

localized in osteoblastic niches [20]. The blood vessels that

define the vascular niche are thin-walled sinusoids with a

wall consisting of a single endothelial cell layer with

intercellular gaps that are endowed with specific adhesive

properties [21–23]. Mesenchymal stromal cells, CXCL-12-

abundant reticular (CAR) cells and sympathetic neurons

together with Schwann cells constitute the perivascular

niche surrounding endothelial cells that are organized

around HSCs in a specific manner as individual units called

hemospheres [24]. BM endothelial cells (BMECs) are

functionally and phenotypically distinct from microvascu-

lature-endothelial cells from other organs [25]. They express

cytokines such as CXCL-12, granulocyte-macrophage col-

ony-stimulating factor (GM-CSF), SCF and adhesion

molecules such as E-selectin and vascular cell-adhesion

molecule 1 (VCAM-1). The earliest functional in vivo

evidence supporting BMECs role in the vascular niche was

the observation that the gp130 cytokine receptor deletion in

ECs led to BM hypocellularity and HSC decreased number

[26]. Furthermore, conditional deletion of vascular

endothelial growth factor receptor 2 (VEGFR-2) in adult

mice inhibits regeneration of sinusoidal ECs and prevents

hematopoietic reconstitution in irradiated animals [27]. This

paracrine effect of BMECs on HSC self-renewal has been

confirmed in vitro using serum/cytokine free EC cultures

and has allowed identification of endothelial Jagged-1 as a

key player in HSC self-renewal factor in vivo [28–30].

These results are in agreement with the fact that trans-

plantation of endothelial progenitor cells accelerates

recovery of BM sinusoidal vessels after irradiation and

correlates with higher recoveries in HSCs numbers [31].

More recently, Méndez-Ferrer et al. have identified a nestin-

expressing MSC population (Nestin? MSC) with adi-

pogenic, chrondrogenic and osteogenic potential derived

from neural crest and located around sinusoids [32, 33].

These MSCs express high levels of HSC maintenance fac-

tors, including CXCL-12, SCF, Ang-1, IL-7, VCAM-1 and

OPN. In vivo depletion of Nestin? MSCs results in 50 %

reduction in MPP and HSC [33]. Finally, CAR cells have

also been shown to be necessary for maintenance of BM

HSC content in vivo [34]. CAR cells are tightly associated

with sinusoidal endothelium and have a similar morphology

to vascular pericytes. They express HSC maintenance fac-

tors such as CXCL-12 and SCF and in vivo ablation of CAR

cells results in 50 % reduction in the repopulation unit

frequency in the BM. [35]. It has thus been suggested that

CAR cells and Nestin? MSCs represent two highly over-

lapping CXCL-12-expressing cell populations [36].

However, because Nestin? MSCs are approximately four

times less abundant than CAR cells, and contain all colony-

forming-unit fibroblast activity within the marrow, it may

well be that Nestin? MSCs represent a CAR cell subset or

that Nestin? cells are still heterogeneous in nature.

Cellular composition of B cell niches

While cellular composition of HSC niches has been

extensively studied, BM stromal cells supporting commit-

ted hematopoietic lineages are still poorly understood and

concern essentially B cell lineage. Following the work

initiated by Dexter and colleagues showing the existence of

adherent cells from the BM supporting long-term growth of

HSC and myeloid cells [37], protocols have been adapted

to establish long-term cultures of B cells [38]. Close con-

tacts between B cells and stromal cells with characteristics

of macrophage and reticular cells have been reported

in vitro and in vivo [39, 40]. However, the questions of

how these stromal cells could influence B cell differentia-

tion and where are they localized in the BM were still

remaining. The identification of cells producing CXCL-12

and IL-7 as main extrinsic factors involved in B cell dif-

ferentiation and proliferation has been the first

demonstration of a direct influence of BM microenviron-

ment on B cells. Indeed, the chemokine CXCL-12 has been

isolated from a stromal cell line, which sustains B cell

development in vitro and stimulates growth of pre-B cell

clones [41]. Soon after, it has been shown that B cell dif-

ferentiation is affected from the earliest pre-pro-B cell

stage in mice deficient for CXCL-12 or its receptor CXCR4

[42, 43]. Finally, CXCL-12 has been shown to be impli-

cated in the retention of pro-B and pre-B cells in the BM as

well as in the homing of plasma cells to the BM [44, 45].

Similar to CXCL-12, the IL-7 cytokine has been identified

based on its property to induce proliferation of B cell

progenitors [46]. Hardy and colleagues have then shown

that pro-B cells proliferate in presence of IL-7 [47]. In

addition, mice deficient for IL-7 or IL-7 receptor a chain

(IL7Ra) present an arrest of differentiation at the pre-pro-B
cell stage, and IL-7 controls EBF1 expression for B cell

commitment [48–50]. Finally, in addition to its role in B

cell differentiation and proliferation, IL-7 is also impli-

cated in pro-B cell survival and in the control of IgH gene

recombination [51]. In situ visualization and identification

of stromal cells expressing CXCL-12 has been possible by

the use of reporter mice in which one allele of CXCL-12

was replaced with the gene coding for GFP [52]. Pre-pro-B

cells are in contact with CAR cells mainly located away

from the endosteum [34]. IL-7, which is necessary at the

transition between the pre-pro-B and pro-B cell stage, has

been shown to be expressed by stromal cells distinct from

the CAR cells and pro-B cells are localized in the vicinity

of IL-7 expressing cells [52]. Once pro-B cells express a
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functional Igl chain as part of a pre-BCR and become pre-

B cells, they are relocalized away from the IL-7 expressing

stromal cells. These results are consistent with previous

reports showing that cooperation between IL-7R and pre-

BCR signals allows a better proliferation in a low con-

centration of IL-7 and therefore a more potent selection of

pre-BCR expressing cells [53, 54]. More recently, we have

shown that pre-B cells are in contact with stromal cells

expressing the pre-BCR ligand Galectin-1 (Gal-1) [55].

Such Gal-1 expressing stromal cells are distinct from IL-7

expressing cells and are scattered throughout the BM par-

enchyma. At the immature B cell stage, cells expressing a

self-reactive BCR are negatively selected by a process

called receptor editing, which consists in reinitiating rear-

rangement to replace autoreactive IgL chains [56]. DX5

expressing stromal cells have been shown to be in close

contact with immature B cells and to protect them from

BCR-mediated apoptosis [57, 58]. Altogether, these studies

suggest that differentiating B cells have to encounter dif-

ferent stromal cells expressing, respectively, CXCL-12, IL-

7, Gal-1 and DX5 to complete differentiation.

Adhesion molecules involved in bone marrow
leuko-stromal interactions

The precise localization of different hematopoietic cells

near different stromal cells in the BM is not the result of

random distribution indicating that hematopoietic cells at

different stages of differentiation are endowed with specific

adhesive and migrative properties. Alternatively and

according to instructive model, it may well be that stromal

cells acquire specific properties when in contact with

hematopoietic cells at precise stage of differentiation. In

the following part, we will focus on adhesion mechanisms

that are involved in retention of hematopoietic cells at

different stages of differentiation within specific niches.

Cell–cell or cell–matrix interactions involve multiple

ligands and cell-adhesion molecules (CAMs), which com-

prise several groups of integral membrane proteins. The

CAMs mediate homophilic adhesion between cells of a

single type or heterophilic adhesion between cells of dif-

ferent types. They are distributed along the plasma

membranes and the cytosol-facing domains of these pro-

teins are usually connected to elements of the cytoskeleton.

CAMs interactions mediate mechanical adhesion between

cells and transduce intracellular signals. These adhesive

proteins not only maintain tissue integrity but also serve as

biosensors that modulate cell behaviour in response to

surrounding microenvironment. Cell to cell adhesion is

initiated by one or more CAMs and then reinforced by

clustering of certain adhesion molecules in specialized

junctions. There are five major classes of junctions: tight

junctions, gap junctions, adherens junctions, desmosomes

and hemidesmosomes. They perform a structural role to

hold cells together but they also connect the internal

cytoskeleton directly to the extracellular space, either to

another cell or to the ECM. Cytoskeleton-associated

junctions are organized into three parts: cell-adhesion

molecules; adapter proteins, which connect the CAMs to

cytoskeletal filaments; and the bundle of cytoskeletal fila-

ments itself. Cytoskeleton is essential not only for

stabilization of cell adhesion but also for cell shape,

polarity and migration. Remodelling of cytoskeleton

according to the cellular needs is mediated by members of

the Rho subfamily of small GTP-binding proteins (Rho,

Rac, Cdc42). Cell adhesion is regulated by multiple

mechanisms: specific adhesion molecules expression, reg-

ulation of CAMs surface density, receptor clustering and

receptor activation state. CAMs fall into six main classes:

cadherins, selectins, immunoglobulin superfamily (Ig-Sf),

mucin-like family, CD44 family and integrins (Fig. 2).

Adhesive properties of cadherins, selectins and integrins

depend on Ca2? ions, whereas adhesion mediated by Ig-

superfamily CAMs does not.

Cadherins

Cadherins are the major CAMs responsible for Ca2?-de-

pendent cell–cell adhesion. The cadherin superfamily

encompasses classical (E-cadherin, N-cadherin, P-cadherin

and VE-cadherin) and non-classical cadherins (desmo-

collin, desmoglein, T-cadherin and proto-cadherin).

Cadherins are homodimers, with the extracellular part of

each polypeptide folded into five extracellular cadherin

repeats with Ca2?-binding sites between each pair of

repeats. As the amount of Ca2? increases, the extracellular

parts of the cadherin chains become more rigid. When

enough Ca2? is bound, the cadherin dimer extends from the

surface, where it can bind to a cadherin dimer on a

neighbouring cell. Cadherin–cadherin interactions occur in

adherens junctions in which cadherins are clustered later-

ally to form zipper-like structures. If Ca2? is removed, the

extracellular part of the protein becomes floppy and

accessible to proteolytic enzymes [59]. Cadherins function

as transmembrane adhesion proteins that indirectly link the

actin cytoskeletons of neighbouring cells. Cadherin cyto-

plasmic tail interacts indirectly with actin filaments by a

group of intracellular anchor proteins called catenins. b-
Catenin binds directly to the cadherin cytoplasmic domain;

subsequently a-catenin binds to b-catenin and serves to

link the complex to the actin cytoskeleton by direct inter-

action with actin. These interactions are essential for

efficient cell–cell adhesion, as cadherins that lack their

cytoplasmic domain cannot hold cells strongly together.

The non-classical cadherins, involved in the desmosomes
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formation, interact with intermediate filaments by a dif-

ferent set of intracellular anchor proteins. Cells can

regulate the adhesive activity of cadherin proteins by the

phosphorylation of proteins anchored to the cadherin

cytoplasmic tail. Cadherins can transmit signals to the cell

interior. p120–catenin complex, which binds to the mem-

brane proximal domain of the cadherin, is implicated in

signalling to Rho GTPases. Vascular endothelial cadherin

(VE-cadherin) not only mediates adhesion between

endothelial cells but also required for endothelial cell

survival. Indeed, deletion of VE-cadherin impairs vascular

remodelling and endothelial cell survival while endothelial

cells still adhere one to each other via N-cadherin [60, 61].

Selectins

Selectins are cell-surface carbohydrate-binding proteins

that mediate a variety of transient, Ca2?-dependent, cell–

cell adhesion interactions in the bloodstream. Each selectin

is a transmembrane protein with a highly conserved lectin

domain that binds to a specific oligosaccharide on another

cell. The cell–cell adhesions mediated by selectins are

heterophilic: selectins bind to specific oligosaccharides on

glycoproteins and glycolipids. The three main selectin

types are: L-selectin expressed by Leukocytes, P-selectin

first identified in Platelets but also found in activated

endothelial cells and E-selectin specifically expressed by

activated endothelial cells. Selectins have an important role

in binding leukocytes to endothelial cells lining blood

vessels, thereby enabling the blood cells to migrate out of

the bloodstream into a tissue. For example in lymphoid

organs, the endothelial cells express oligosaccharides that

are recognized by L-selectin on lymphocytes, causing their

rolling on endothelial cells [62]. In inflammatory condition,

local chemical mediators induce endothelial E- and P-se-

lectin expression, which allows recruitment of leukocytes

expressing oligosaccharide on membrane glycolipids and

glycoproteins. Selectins do not act alone; they collaborate

with integrins, which strengthen the binding of the blood

cells to the endothelium. Selectins and integrins act in

sequence to let white blood cells leave the bloodstream and

enter tissues (recently reviewed in [63]). The selectins

mediate a weak adhesion because the binding of the lectin

domain of the selectin to its carbohydrate ligand is of low

affinity. This allows the white blood cell to adhere weakly

and reversibly to the endothelium, rolling along the surface

of the blood vessel propelled by the flow of blood. The

rolling continues until the blood cell activates integrins,

causing the cell to bind strongly to the endothelial cell

surface and to crawl out of the blood vessel between

adjacent endothelial cells.

Ig-superfamily

The molecules responsible for Ca2?-independent cell–cell

adhesion belong to the large immunoglobulin superfamily

(Ig-Sf) of proteins. These proteins contain one or more Ig-

like domains that are classified as V or C according to their
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similarity with the variable or constant domains of

immunoglobulins. Ig CAMs have a large amino-terminal

extracellular domain containing Ig folds, a single trans-

membrane helical segment and a cytoplasmic tail. The

latter interacts with cytoskeletal protein such as actin,

ankyrins or spectrins and activates intracellular signalling

pathways [64]. Outside the cell Ig CAMs mediate primarily

homophilic cell–cell adhesion but also some heterophilic

interactions. Indeed, in the context of antigen presentation,

leuko-stromal or leuko-endothelial interactions, Ig CAMs

are major counter-receptors for integrins. Members of the

Ig CAM family function in a wide variety of cell types and

are involved in many different biological processes. The

most well characterized CAMs of this family in the context

of BM homeostasis are ICAM-1 (CD54), ICAM-2

(CD102), ICAM-3 (CD50), PECAM-1 (CD31), VCAM-1

(CD106), Junctional Adhesion Molecules (JAMs),

endothelial cell-selective adhesion molecule (ESAM) and

ALCAM (CD166).

The mucin-like family

Mucin-like family or sialomucins represent an emerging

adhesion molecular family consisting in a group of

heavily glycosylated proteins rich in serine and threonine

residues [65]. The CD34 antigen was the first sialomucin

to be described as cell surface marker of human

hematopoietic stem and progenitor cells (HSPCs) [66].

Additional members expressed by HSCs include

CD45RA, PSGL-1, CD43 or CD164 [67]. Mucin-like

molecules have been successively reported as anti-adhe-

sive receptors endowed with cytoprotective functions or

as pro-adhesive molecules interacting with selectins. For

example, CD34 and GlyCAM-1 expressed on certain

endothelial cells of lymph nodes bind to L-selectin on

leukocytes. Conversely, PSGL-1 expressed on leukocytes

interacts with endothelial E-selectin and P-selectin in

inflammatory conditions.

CD44

CD44 is a highly elongated molecule composed of three

distinct regions: N-terminal, middle and C-terminal

domains. CD44 is encoded by a single gene, but exists in

more than 20 isoforms because of alternative splicing and

different post-translational modifications [68, 69]. The

extracellular part is responsible for binding hyaluronic acid

but CD44 can also interact with other ligands, such as

OPN, collagens, matrix metalloproteinases (MMPs) or

E-selectin. The cytoplasmic tail is associated with actin

filaments of cytoskeleton through an ankyrin-like mole-

cule. CD44 has been implicated in thymus homing of BM

prothymocyte [70].

Integrins

Integrins are heterodimers of a and b subunits and each

subunit has a large extracellular domain, a single mem-

brane-spanning region and a short cytoplasmic domain.

Both subunits contribute to the ligand-binding site and 18

types of a subunits can pair in various combinations with 8

types of b subunits. Integrins bind to ECM proteins such as

fibronectin, laminin or collagen [71] and to Ig CAMs such

as ICAMs, JAMs or VCAM-1. Integrins containing b2
chain are exclusively expressed by hematopoietic cells and

can bind Ig Sf molecules in addition to seric factors such as

iC3b, Factor X or fibrinogen. The main ligands of integrin

a4b1 are VCAM-1 and the alternatively spliced CS-1

segment of fibronectin [72, 73], although a4b1 can bind to

alternative ligands such as OPN, thrombospondin or JAM-

B [74–77]. Integrins typically exhibit relatively low

affinities for their ligands. However, the multiple weak

interactions generated by binding of hundreds or thousands

of integrin molecules to their ligand allow a cell to remain

firmly anchored providing the so-called ‘‘velcro effect’’.

Alternatively, in situations where cells are migrating,

specific contacts must be highly dynamic, a phenomenon

which is facilitated if individual interactions are of weak

affinity. Integrins undergo dynamic changes during the

ligand binding process, including relative movements of

subunits and conformational changes within domains [78].

Integrins can exist in various affinity states for their

ligands; these affinity states can be regulated either by

extracellular factors such as divalent cations or by intra-

cellular signalling involving small GTPases [79, 80]. Cells

attach to the ECM through two types of integrin-dependent

structures: focal adhesions and hemidesmosomes [81, 82].

Intracellular integrin domain interacts with a variety of

signalling and structural proteins: the adapter proteins talin

and vinculin to form focal adhesion, the adaptor protein

paxillin to activate focal adhesion kinase (FAK) or the

related kinase Pyk-2, actin or intermediate filaments.

Because integrins do not have intrinsic kinase activity, the

recruitment of these non-receptor kinases is essential for

activation of intracellular signalling pathway. Intracellular

adaptors recruited to integrin cytoplasmic tails activate a

number of Src-homology domain (SH)2 and SH3 con-

taining adaptor proteins which will result in activation of

phosphoinositide 3 kinase (PI3K) and mitogen-activated

protein kinase (MAPK) pathways.

Adhesion molecule expression by hematopoietic

stem and progenitor cells

BM HSPCs express a large panel of adhesion molecules.

Indeed, in human, they are identified by expression of the

mucin-like molecule CD34, but they express other
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molecules of the same family such as CD43, PSGL-1 and

CD164. Moreover, number of studies has shown that HSPC

express ICAM-1, PECAM-1, L-selectin, CD44, aLb2,
aVb3, a4b7, or the b1 integrin subfamily [83–86]. More

recently, others and we have reported that HSCs express

high levels of diverse Ig-Sf adhesion molecules such as

ALCAM [87, 88], ESAM [89, 90], JAM-A [91] or JAM-C

[92–94].

Adhesion mechanisms involved in HSC/Niche
interactions

In addition to their well-documented role in initiation and

maintenance of contact between HSCs and hematopoietic

microenvironment, CAMs act as bona fide signalling

molecules and directly participate to haematopoietic reg-

ulation. Coupling cell-adhesion with signalling allows

integration of cell localization within a given microenvi-

ronment with signals responsible for survival, growth and

differentiation. Haematopoiesis is sustained by a renewable

pool of stem cells that interacts with distinct, sequential

and specific microenvironments during normal develop-

ment and throughout adult life. Indeed, HSC location

changes during development. Initially, haematopoiesis

occurs in the yolk sac and the aorta-gonad-mesonephros

(AGM) region before moving to the foetal liver and finally

to the BM near birth. Since foetal trafficking of HSCs has

been recently reviewed [95], we will focus on adhesion

mechanisms used by adult HSC in several key biological

processes: homing (selective movement of HSCs to BM),

transmigration (movement of HSCs across the endothelial

barrier), lodgement (restricted settling of the cells in the

niche), engraftment (proliferation, self-renewal and differ-

entiation of HSCs) and mobilization (induced

relocalization of HSCs in the bloodstream) (Fig. 3).

Homing

Strictly speaking, homing to the BM refers to specific

leuko-endothelial interactions of circulating HSCs with

BMECs allowing specific trans-endothelial migration of

HSCs in BM parenchyma. Extravasation of circulating

HSCs within the BM requires a set of molecular interac-

tions that support the recognition of BM sinusoidal

endothelium by circulating HSCs. HSCs are captured by

and roll on E-selectin, P-selectins and VCAM-1 which are

constitutively expressed by endothelial cells of the BM. In

1995, Papayannopoulou et al. have developed a progenitor

homing assay in adult mice and shown that homing was

significantly reduced (*50 %) by the inhibition of

VCAM-1 or its ligand a4b1 (VLA-4)—using function

blocking antibodies [96]. Three years later, Frenette et al.

have added P- and E-selectins to the picture by demon-

strating that homing of HSCs to the BM of E- and P-

selectin-deficient mice is severely impaired and can be

further compromised using a function blocking VCAM-1

antibody [97]. Intravital microscopy of adult BM vascu-

lature has confirmed the specific contribution of a4b1/
VCAM-1 and P- and E-selectins to rolling interactions of

progenitors on BM sinusoids and venules [98]. PSGL-1 has

been shown to be the major selectin ligand on HSCs [99].

Analyses of selectin ligand expression and function have

uncovered developmental regulation of key glycosylation

enzymes that synthesize selectin ligands. CD34? cord

blood-derived cells have reduced selectin mediated rolling

compared to adult CD34? cells obtained from the BM or

peripheral blood. This deficiency is due to reduced fuco-

syltransferase activity in neonatal CD34? cells [100].

Conversely, in vitro fucosylation of CD44 in mesenchymal

progenitor cells increased BM homing ability by convert-

ing CD44 into a bona fide E-selectin ligand [101]. CD44 is

expressed on HSPCs but is unable to bind to E-selectin

unless properly fucosylated [102]. CD44 may also con-

tribute to progenitor homing by interacting with hyaluronic

acid [103]. HSC express high levels of a4 integrins that

mediate rolling on VCAM-1. It has been shown that a4
integrin synergize with b2 integrins during the initial

endothelial capture of HSCs to the BM [104]. This was

confirmed in another study in which the function of a4
integrin in BM homing has been extended to a4b7/Mad-

CAM interaction [84]. Although results are contradictory,

a6 integrin has also been involved in HSC migration to the

BM either as positive or negative regulator of homing [105,

106]. Early on, it has been thought that integrin activation

converting rolling HSC in firmly adhered cells could be

controlled by CXCL-12 signalling through the seven-

transmembrane G protein-coupled receptor CXCR4

because of the central role of this axis in hematopoiesis and

in foetal BM colonization [107, 108]. Later on, blockade of

CXCR4 was shown to inhibit human CD34?CD38-

immature human progenitor engraftment in NOD/SCID

mice while CXCR4 overexpression increased their abilities

to engraft [109, 110]. In another study, CXCL-12 was

shown to mediate activation of aLb2, a4 and a5b1 inte-

grins [111]. However, engraftment does not only reflect

homing and a more recent study using short term homing

assays has demonstrated that CXCR4 is dispensable for

HSC homing to the BM [112]. Rho family proteins Rac1

and Rac2 are activated in response to CXCL-12/CXCR4

signalling. Downstream signals from CXCR4 involve the

activation of PI3K, aPKC-f and ERK signalling, although

aPKC-f is dispensable for hematopoietic activity as

demonstrated using conditional knock-out mice [113–115].

The combination of Flt3 ligand and CXCL-12 acts syner-

gistically in the migration of CD34? cells while prolonged
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exposure to Flt3 ligand may down-regulate CXCR4

expression and impair the migration of CD34? cells toward

CXCL-12 [116]. Following firm adhesion, CXCL-12

induces an integrin-dependent transmigration of progeni-

tors across the endothelial lining cells, a phenomenon

referred to as diapedesis. Various adhesion molecules and

associated proteins such as CD9 [117], CD99 [118] or

PECAM-1 [119] have been shown to contribute to HSCs

trans-endothelial migration. Trans-endothelial migration is

also facilitated by CXCL-12 dependent modulation of

CD44 cell adhesion by increasing its avidity to hyaluronan

in the BM sinusoidal endothelium [103].

Lodgement

Lodgement has often been used interchangeably with

homing, but it implies a more definitive settling of HSCs in

their niche. Within the BM, HSCs are attracted to CXCL-

12 rich regions near blood vessels and the endosteum

where they lodge into special microenvironments, respec-

tively, the vascular/endothelial and the endosteal/

osteoblastic niches. HSCs take advantage of selectively

expressed cell surface molecules capable of mediating

strong niche interactions. To retain HSCs, the niches

express cell adhesion molecules, matrix proteins, growth

factors and chemokines that regulate stem cell quiescence

and attraction to the niche. Differential engraftment of

human CD34?CD38- stem cells injected either directly in

the marrow or intravenously has allowed demonstrating

that the CXCR4 receptor is necessary for SCID-repopu-

lating cell engraftment even when the homing step is

bypassed by intra-marrow injection [120]. HSCs have been

localized near spindle-shaped N-cadherin expressing

osteoblasts in the endosteal niche [13], however this was

not due to homophilic N-cadherin-mediated retention since

HSC activity is restricted to cells lacking N-cadherin

expression [121]. This has been confirmed in follow-up

studies showing that low levels of N-cadherin distinguish

the HSC population, which is primed to migrate out of the

niche [122]. Parathyroid hormone (PTH) has been reported

to increase osteoblasts CXCL-12 expression reinforcing

HSCs retention in the endosteal niche [123] and increase

the number of HSCs in BM [6]. Other studies suggest that

the transmembrane form of stem cell factor (tm-SCF) plays

an important role in the lodgement into the endosteal niche.

Mice lacking tm-SCF showed a significant impairment in

the lodgement of transplanted cells within the endosteal

region. The important role of tm-SCF in this process was

confirmed by analyzing the spatial distribution of HSC

isolated using a neutralizing antibody to c-kit, the SCF

receptor [124]. Studies by Kiel and collaborators have

shown that the majority of HSCs were in the perivascular

region with only a minority (*16 %) at the periendosteal

region. Histologic analysis revealed that 70 % of HSCs

identified based on the SLAM markers (CD48-CD150?-

LSK?) are near blood vessels [19]. Interaction with

sinusoidal endothelium at the vascular niche has been

suggested to induce hematopoietic cell expansion,
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differentiation and egress of mature progenitors [21].

BMECs produce a large set of soluble factors including

cytokines and hematopoietic growth factors, such as

CXCL-12, IL-6, G- and GM-CSF but also growth inhibitor

factors such as transforming growth factor-b (TGF-b) and
nitric oxide that all together regulate HSC activity in vas-

cular niche [125]. It has also been shown that inhibition of

the tyrosine kinase Tie2 receptor, expressed on endothe-

lium and on hematopoietic cells, leads to a delay in

hematopoietic recovery [21]. In addition, basic fibroblast

growth factor-2 (FGF-2), which is involved in vascular

development, has also been shown to be a major mediator

of HSC niche remodelling [126]. From an adhesive point of

view, the remarkable finding that HSC quiescence and self-

renewal are enhanced in E-Selectin knock-out mice indi-

cate a central role for BMECs [127], although the exact

mechanism through which E-Selectin influences HSC

remains to be determined.

Engraftment

Engraftment refers to the ability of HSCs to proliferate, to

self-renew and to generate multilineage progeny. Following

the lodgement into a suitable niche, HSCs expand their

numbers while maintaining a balance between quiescence,

self-renewal and lineage commitment. The physical inter-

action between stem cells and their niche components is a

critical regulator of this balance. The retention of HSCs in

the niche is regulated by adhesion molecules expressed by

BM stromal cells and HSC itself. Cell adhesion molecules

are not only required for HSC anchoring to the niche, but

also involved in the regulation of cell cycle status of HSCs.

During adult life, a proportion of HSCs are kept in a qui-

escent/dormant state (G0 phase of the cell cycle), which

contributes to their long-term maintenance, thus preventing

stem cell exhaustion and accumulation of mutations. The

dormant cells represent about 15 % of HSCs and divide

only about every 145 day, they represent a reserve stem cell

pool endowed with long-term reconstitution properties

[128]. This is thought to be due to differential adhesion of

dormant and cycling HSC to stromal cells of the niches,

such that when division occurs and adhesion is lost, HSCs

engage differentiation and/or proliferation. The matrix

glycoprotein OPN produced by osteoblasts interacts with

CD44 and b1 integrins on HSCs and can regulate negatively
the HSC proliferation and differentiation. OPN restricts

HSCs from excessive expansion, limiting the size of HSC

pool in the endosteal niche. OPN deficient mice exhibit

markedly enhanced cycling of HSCs [4]. Interaction of the

receptor tyrosine kinase Tie2, expressed on HSCs, with its

ligand Ang-1, expressed by OBs, upregulates b1 integrin,

which in turn promotes their interactions with ECM and

cellular components of the niche. Moreover, Tie2/Ang-1

pathway is involved in the maintenance of long-term

repopulating activity of HSCs in vivo inducing HSCs qui-

escence [10]. Similarly, c-kit/SCF interactions hold HSCs

anchored to the endosteal niche, thus promoting their qui-

escence [124]. The class III receptor tyrosine kinase c-Kit is

expressed on all HSCs and its ligand, SCF, is constitutively

produced by BM endothelial cells and perivascular stromal

cells as well as by other stromal cells. SCF/c-Kit interaction

has been shown to regulate integrin activation and HSC

adhesion to BM stromal cells [129–131]. TPO secreted by

OBs is an important mediator in supporting thrombopoietin

receptor (MPL)-dependent HSC/stromal cell adhesion

which results in increased HSCs quiescence as demon-

strated by the reduced pools of HSCs in Thpo and Mpl

deficient mice [11, 132]. The role of a4b1 integrin in HSC

retention has been evaluated using conditionally deficient

mice for which a rapid increase in the number of circulating

progenitors in blood was observed [133]. Other integrins

may also participate to the engraftment. aMb2 expressed on
progenitors and activated HSCs appear to retain progenitors

in situations where egress is enforced [134]. It has also been

shown that a9b1 is involved in HSC/osteoblast adhesion

and that anti-a9 and anti-b1 antibodies inhibit this inter-

action [135]. However, the function of integrins in leuko/

stromal interactions could not be dissociated from their

activation state, which is finely tuned by cytokines and

chemokine receptors signalling [136]. This is well illus-

trated by apparent contradictory results obtained from the

study of two independent CXCR4 conditional knock-out

strains of mice. Gene deletions were, respectively, induced

using Mx1-Cre or ROSA-Cre ERT2 systems and resulted in

increased numbers of circulating progenitor cells in both

cases. However, conclusions with respect of HSCs retention

and expansion were radically different with a marked

depletion in HSC numbers when deletion was induced using

poly(I:C) [34], while HSC numbers were expanded when

Tamoxifen was used for CXCR4 deletion [137]. This is

likely due to interference of poly(I:C) response with CXCL-

12/CXCR4 signalling within BM microenvironment. Rho

GTPases relay the signals delivered by CXCR4 or c-Kit

engagement. Rho GTPases encompass a class of intracel-

lular signalling enzymes such as Rho, Rac or cdc42 that

serve as crucial regulators of the actin cytoskeleton, cell

polarity and proliferation. Rac1-/-, but not Rac2-/-, HSCs

fail to engraft in the BM of irradiated recipient mice.

Rac1-/- HSCs show impaired spatial localization to the

endosteum and interaction with the BM microenvironment

in vitro is markedly altered [138]. More recently, it has been

shown that Rac1 activity leads to reversible conformational

changes in human CXCR4 that potentiates CXCL-12/

CXCR4 BM retention mechanisms of HSCs [139]. An

important component of CXCL-12/CXCR4 pathway is the

atypical protein kinase C f (aPKC-f), which translocates to
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the cell membrane upon CXCL-12 stimulation. Accord-

ingly, inhibition of aPKC-f inhibits engraftment but not

homing of human CD34? cell in NOD/SCID mice,

although this essential function was not confirmed in a study

using hematopoietic-specific aPKC-f deficient mice [114,

115]. Finally, our laboratory has recently shown that JAM-

B/JAM-C adhesion axis is also implicated in retention of

HSCs within niches. Indeed, HSCs interact with, and adhere

to, JAM-B-expressing BM stromal cells [94, 140]. The

binding of JAM-B to HSCs is dependent on JAM-C

expression by hematopoietic stem cells, which is down-

regulated during transition from LT-HSC to ST-HSC [92].

Accordingly, imbalanced pools of HSC and myeloid pro-

genitors in Jam-b and Jam-c-deficient animals are likely

due to increased HSC cell cycle as a result of reduced

adhesion of HSC to stromal cells. Nevertheless, reduced

numbers of available niches for HSCs could not be excluded

since decreased proportion of endothelial cells, osteoblasts,

and mesenchymal stem cells has been observed in Jam-b-

deficient mice [94]. On the opposite to JAM-C, ESAM

expression by HSC is associated to cell cycling, but appears

mandatory for re-establishment of homeostatic hematopoi-

esis after a myeloablative treatment [141]. This would be in

agreement with the idea that cycling HSCs endowed with

long-term reconstitution potential contribute to

hematopoietic homeostasis in unperturbed hematopoiesis

[142]. In summary, homing and engraftment are partially

regulated by common mechanisms including cytokine sig-

nalling and adhesive interactions, but homing is a rapid

process, which leads to transient retention and does not

require cell division while engraftment does. Identification

of further adhesion interactions that are functionally

important to regulate HSC quiescence and cell cycling

remain essential to further manipulate the hematopoietic

system in order to improve outcome in patients treated with

BM grafts after conditioning.

Mobilization

Hematopoietic stem cells egress from the BM to the cir-

culation occurs under homeostatic conditions but is

dramatically increased when danger signals such as blood

loss or inflammation are present. Loss of BM retention is

mediated by disruption of adhesion interactions and dif-

ferential sensing of promigratory signals. Under

homeostatic conditions, HSCs egress follows a physiolog-

ically regulated circadian rhythm orchestrated by the

central nervous system acting on b-adrenoreceptors
expressed on non-hematopoietic cells that control levels of

CXCL-12 [143, 144]. It has been proposed that the role of

homeostatic HSC recirculation through blood, peripheral

tissue and lymph is to regenerate peripheral pool of tissue-

resident cells such as dendritic cells [145]. Nevertheless,

the primary function of constitutive HSC recirculation

consists essentially in niche regeneration and reseeding

hematopoiesis at distant BM site in order to maintain

constant number of HSC in the organism [146]. HSC

recruitment into the blood is enhanced during stress situ-

ations such as inflammation or bleeding, which induce up-

regulation of proteolytic activity, with concomitant down-

regulation of CXCL-12 and adhesion interactions, paving

the way for egressing HSCs [147, 148]. The major source

of cells for clinical transplantation protocols is via

peripheral blood (PB) mobilization of BM derived HSCs.

G-CSF is the most commonly used agent in the clinical

area that elicits robust mobilization in 5–10 days.

Accordingly, mice deficient for the G-CSF receptor (en-

coded by Csf3r) are unresponsive to G-CSF treatment

however Csf3r-/- HSCs can be mobilized by G-CSF in

chimeric mice harbouring mixtures of Csf3r?/? and Cs-

f3r-/- hematopoietic cells. This suggests that expression of

the CSF3R on HSCs is not required for G-CSF-mediated

mobilization suggesting that CSF3R-dependent signals act

in trans [149]. In a similar manner, down-regulation of

CXCL-12/CXCR4 and VCAM-1/a4b1 retention signals

following G-CSF-induced mobilization is indirect and

likely due to proteolytic enzyme release from activated

myeloid cells [150, 151]. However, studies using pro-

teases-deficient mice revealed that mobilization does not

only rely on VCAM-1 or CXCL-12 down-regulation since

HSC release may occur in a stimulus specific manner or in

absence of VCAM-1 down-regulation [152, 153]. This

suggests that mobilization relies on an intricated response

of BM microenvironment rather than a cell specific

response [154]. Along this line, multiple proteases such as

elastase, cathepsin-G, MMP-2, MMP-9 or CD26 have been

shown to cleave CXCL-12 and several anti-proteases such

as Serpin1 and Serpin3 have been shown to dramatically

drop following G-CSF administration, shifting the balance

between proteases and their inhibitors [155]. G-CSF stim-

ulation has also been shown to induce osteoclast bone

resorption and calcium release, which causes detachment

of HSCs from fibronectin [156]. However, more recently

Miyamoto et al. showed that mobilization after G-CSF

injection in osteopetrotic mouse models is comparable or

even higher compared with wild-type mice, suggesting that

osteoclasts are dispensable for HSC mobilization [157]. In

addition to G-CSF, several other compounds or drugs have

been shown to trigger HSC egress from the marrow. Sev-

eral cytokines have been suggested to increase the number

of circulating progenitors in blood, including IL-1, IL-3,

IL-6, IL-7, IL-8, IL-11, IL-12, GM-CSF and SCF. The

administration of CXCR4 antagonist AMD3100 disrupts

CXCL-12/CXCR4 interactions in the BM, leading to the

loss of HSC retention and enhanced HSCs mobilization

with synergistic effect with G-CSF [158]. Similarly,
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blocking a4 integrin with natalizumab in multiple sclerosis

patients results in a six fold increase in circulating CD34?

cells one day after the first dose [159]. Finally, disruption

of CD44 interaction using blocking antibody has also been

shown to induce HSPC mobilization and CD44 is known to

be down-regulated on mobilized immature human CD34?

cells [160, 161]. This is similar to what we recently

reported for the adhesion molecule JAM-C, suggesting that

coordinated regulation of some common adhesive mecha-

nism occurring at leuko-stromal and leuko-endothelial

cell–cell contacts may be essential for dynamic migration

of HSCs in and out of the BM. In addition to these micro-

environmental controls, cell-intrinsic mechanisms con-

tribute to HSCs recruitment to the circulation upon

demand. Cell autonomous mechanisms include signalling

cascades that potentiate HSC motility, such as activation of

Rho GTPases and generation of ROS [162]. Moreover,

during mobilization, OPN-expressing osteoblasts are

depleted through a reversible mechanism dependent on

trophic endosteal macrophages that support osteoblast

function [163, 164]. Altogether, these data support a model

in which HSC retention in the BM is dependent on multiple

signalling networks occurring into the BM microenviron-

ment. Perturbation of this network results in mobilization

of HSCs to the blood and loss of certain characteristic

features of HSC residing in the BM. Mobilized HSCs

express lower levels of c-Kit, integrin a4b1 and CXCR4

but higher levels of proapoptotic proteins such as caspase 3

and 4, and metalloproteinase enzymes. Moreover, mobi-

lized HSCs show significantly higher percentage of non-

cycling quiescent cells than their BM counterparts [165].

Although we learned a lot about adhesion interactions and

cytokines that regulate dynamic HSC interactions with the

niche over the last two decades, efforts must be done to

better translate the findings to pathological situations in

which niche interactions of sick hematopoietic cells are

rather deleterious.

Adhesion mechanisms involved in B Cell/Niche
interactions

Adhesion of developing B cells with stromal cells has been

shown to strongly rely on a4b1 integrin both in mouse and

in human. First, long term cultures of pre-B cells were

inhibited by the addition of anti-a4b1 antibody that

blocked interaction with VCAM-1 expressed by the stro-

mal cells [166]. In addition, the level of VCAM-1

expression by established BM stromal cell cultures was

shown to be important for adhesion and development of

human B cell precursors [167]. Most importantly, B cell

differentiation is severely compromised from the earliest

stages in the BM of integrin a4 deficient chimeric mice

demonstrating the crucial role played by this integrin for

the interaction with B cell niches [168]. Silberstein and

colleagues then demonstrated that sustained adhesion of

pro-B and pre-B cells to stromal cell niches was dependent

on a prolonged activation by CXCL-12 and relied on a4b1
integrin adhesion to VCAM-1 [169]. The increase in inte-

grin-dependent adhesion was associated with a sustained

activation of focal adhesion kinase (FAK) in pro-B and

pre-B cells, but not in more mature B cells. Furthermore,

the specific deletion of FAK in B cells induced a decrease

in B cell development from the pro-B cell stage and an

increase of pro-B cell egress to the periphery [170].

At the transition between pro-B and pre-B cell stage,

cells are selected based on the expression of the pre-BCR.

It was first suggested that pre-BCR activation was ligand-

independent and that a tonic signal could be induced thanks

to the localization of the pre-BCR in lipid rafts at the cell

surface [171]. It has also been proposed that the pre-BCR

was able to self-aggregate through the interaction of posi-

tively charged amino acids from the extra loop of k5 (k5-
EL) either with negatively charges residues of the extra

loop of VpreB on the adjacent pre-BCR or with the

asparagine N46 from the Igl CH1 domain [172, 173].

Other studies have shown the existence of a ligand-de-

pendent activation. The k5-EL interacts with heparan

sulphate proteoglycans present at the surface of BM stro-

mal cells [174]. The k5-EL is also able to interact with Gal-

1, inducing pre-BCR signalling [175]. Gal-1 is an S-type

lectin, which binds b-galactoside glycoconjugates through

a carbohydrate recognition domain (CRD). Gal-1 is

secreted by BM stromal cells, binds k5 through direct

protein–protein contacts [175, 176] and is anchored to the

pre-B cell and stromal cell surface by interacting with the

glycosylated chains of integrins including a4b1, a4b7,
a5b1 and aLb2 [177, 178]. Tripartite interaction between

pre-BCR, Gal-1 and integrins induce pre-BCR clustering

and then signalling when pre-B cell integrins bind to their

ligands present at the stromal cell surface. Finally, in the

case of mice deficient for the alpha 1,6-fucosyltransferase,

the core fucosylation of a4b1 was affected leading to an

impaired interaction with VCAM-1 and a block at the pro-

B to pre-B cell transition [179]. Altogether these results

demonstrate the importance of glycosylated integrins and

Gal-1 at the pre-BCR checkpoint and therefore in pre-B

cell differentiation. While the early-B cells need prolonged

contacts with stromal cells in the BM to accomplish their

maturation, immature B cells have to egress to the

periphery where they will terminate their selection.

Immature B cell retention in the parenchyma is dependent

on a4b1 integrin adhesion to VCAM-1 [180, 181]. Most

importantly, their egress from the BM and then detachment

from the stromal cells is controlled by Gai protein-coupled
receptors including CXCR4 and the receptor to
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Sphingosine-1 phosphate (S1PR) [182–184]. While S1PR

expression is important for the export of immature B cells,

a decrease in the level of CXCR4 is on the opposite

required. To finish, when they leave the BM, many

immature B cells stay in the sinusoids. This retention was

shown to be dependent on the expression of the integrin

a4b1 and the cannabinoid receptor 2 (CB2) and was pro-

posed to facilitate receptor editing by increasing the time

spent by B cells in the BM [182]. This concept is further

supported by the fact that a high BCR signal, which is

reminiscent of self-reactive B cells, antagonizes the

decrease in CXCR4 expression by immature B cells [183].

Outlook

An incredible amount of information about hematopoietic

cell crosstalk with BM microenvironment has been accu-

mulated over the last 25 years. Recent studies have

established a major role for endothelial cells in the regu-

lation and the maintenance of HSCs during adult life,

merging together two research fields: vascular biology and

haematology. However, this could have been anticipated

since definitive HSCs emerge from the haemangiogenic

endothelium in the dorsal aorta during embryonic life.

Whether maintenance of adult HSC share more in common

with embryonic development than promiscuous interac-

tions between HSC and endothelial cells remains to be

determined, but we will likely get new insights from

comparative studies of hematopoietic niches during

embryogenesis, adult life and ageing. Indeed, it is

becoming increasingly clear that haematological malig-

nancies result from expression of a genetic alteration in a

permissive microenvironment. However, we do not know a

lot about the differential adhesive signals that make or

convert a non-permissive microenvironment into a per-

missive one. Future studies aiming at identification of such

pathways will help defining the best-suited therapeutic

approaches to target leuko-stromal interactions in haema-

tological malignancies while maintaining a supportive

microenvironment for normal hematopoietic cells.
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