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Abstract As the primary protective barrier for neurons in

the brain, the blood–brain barrier (BBB) exists between the

blood microcirculation system and the brain parenchyma.

The normal BBB integrity is essential in protecting the

brain from systemic toxins and maintaining the necessary

level of nutrients and ions for neuronal function. This

integrity is mediated by structural BBB components, such

as tight junction proteins, integrins, annexins, and agrin, of

a multicellular system including endothelial cells, astro-

cytes, pericytes, etc. BBB dysfunction is a significant

contributor to the pathogeneses of a variety of brain dis-

orders. Many signaling factors have been identified to be

able to control BBB permeability through regulating the

structural components. Among those signaling factors are

inflammatory mediators, free radicals, vascular endothelial

growth factor, matrix metalloproteinases, microRNAs, etc.

In this review, we provide a summary of recent progress

regarding these structural components and signaling fac-

tors, relating to their roles in various brain disorders.

Attention is also devoted to recent research regarding

impact of pharmacological agents such as isoflurane on

BBB permeability and how iron ion passes across BBB.

Hopefully, a better understanding of the factors controlling

BBB permeability helps develop novel pharmacological

interventions of BBB hyperpermeability under pathological

conditions.
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Introduction

The blood–brain barrier (BBB) refers to an interface

between the brain parenchyma and the systemic circula-

tion. It regulates the entry of nutrients, vitamins, ions, and

other molecules into the brain, protects the brain from harm

caused by toxins and pathogens, and is critical to normal

brain functions [1]. BBB consists of a non-fenestrated layer

of brain microvascular endothelial cells (BMECs). The

BMECs are primary components of BBB and play a critical

role in regulating BBB permeability by a complex tight

junction (TJ) structure [2, 3]. A more recent and complete

view of BBB is that it refers to a neurovascular unit of

BMECs interacting with other brain cells, such as astro-

cytes, pericytes, neurons, and microglial cells [3, 4]. It was

clearly demonstrated as early as in 1987 that astrocytes

contribute to BMEC-mediated regulation of BBB perme-

ability and maintain cerebrovascular integrity [5]. It has

been shown that astrocytes release sonic hedgehog that up-

regulates TJ proteins in BMECs [5, 6]. However, activated

astrocytes seem to disrupt endothelial barrier integrity by

releasing biologically active molecules that activate ubiq-

uitin proteasome and degrade TJ proteins [7]. In addition,

microglia, pericytes and neurons maintain BBB integrity

and function via contributing to cerebral vessel stability

and modulating signaling mediators [8–11]. Disruption of

BBB integrity and functions is involved in a growing list of
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brain disorders (Table 1). Particularly, diminished BBB

function is an early event of multiple sclerosis (MS) and

amyotrophic lateral sclerosis [12–16], chronic inflamma-

tory disorders of the central nervous system (CNS), and a

hallmark of stroke [17–20]. In this review, factors con-

trolling BBB permeability are discussed in three chapters,

junctional proteins at the BBB, proteins of the basement

membranes of the BBB, and signaling mediators, in line

with their contributions to neurodegenerative diseases and

neurological disorders (Table 1). In addition, the impact of

pharmacological agents such as the volatile anesthetic

isoflurane on BBB permeability is reviewed. Recently, how

iron passes across the BBB has drawn much attention;

progress regarding this issue is also briefly reviewed.

Understanding the molecular mechanisms by which these

factors induce disruption of BBB integrity and function

may lead to develop safe and effective therapeutic

approaches to protect or restore the BBB integrity in many

brain disorders.

Junctional proteins at the BBB

TJ proteins

Brain microvascular endothelial cells have a highly spe-

cialized phenotype characterized by the presence of

intercellular TJs with high P-face association [21], which

restrict molecules from moving between the blood and the

brain and are responsible for the severe restrictions on

diffusion. Transmembrane TJs consist of three major

integral proteins—claudins, occludin, and junction adhe-

sion molecules. ZOs are cytoplasmic membrane-associated

accessory proteins that connect the cytoplasmic tails of

claudins and occludin to the actin cytoskeleton to maintain

the TJ structure. Altering TJ-associated proteins changes

BBB permeability [22]. Occludin, claudin-5, and ZO-1 are

considered sensitive indicators of normal and disturbed

functional states of the BBB. As described in the latter

paragraphs, many signaling mediators and pharmacological

Table 1 Mechanisms underlying BBB disruption in brain disorders

Disorders Mechanisms

Alzheimer’s ; ZO-1 by MMPs [146, 154, 225], cytokines [172], and ROS [226, 227]

Loss of pericytes by NF-jB [12] and APOE4 [154]

; Agrin and : agrin insolubility [109, 111, 112]

Parkinson’s ; Occludin and ZO-1 by MMP-3 [141]

: MMPs [140, 141]

Huntington’s Degradation of endothelial basal lamina and ; TJ proteins (claudin, occludin and ZOs) by MMP-2/9 [142]

ALS ; TJ proteins expression (ZO-1, occludin, and claudin) by MMP-2/9 [15, 16]

Migraine ; TJ proteins expression (ZO-1, occludin, and claudin) by MMP-2 [143] and MMP-9 [144, 145]

Traumatic brain injury ; TJ proteins expression (occludin, claudin-5, and ZO-1) by iNOS [164] and MMP-9 [100, 129, 149, 153]

Stroke ; TJ proteins expression (occludin, claudin-5, and ZO-1) by MMP-2 [20], MMP-9 [73, 100, 129, 130, 148, 151, 156,

158, 163], ROS [19, 23, 130, 156, 158, 228], VEGF [181, 182], pericyte-derived VEGF [11], and astrocytes-

derived VEGF [54–56, 183]

; TIMP-1/2 [73, 162, 163]

; Loss of a6b4 and b1 integrins [54]

; Agrin [110]

; AA1 [73]

: miRNA-21 ? ERK-mediated upregulation of MMP-9 [196]

: miRNA-15a [197]

Intracerebral hemorrhage : miRNA-130a ? : MMP-2/9 expression [159]

; TJ proteins expression by MMPs induced by NF-jB [161]

Multiple sclerosis ; a4b1 integrin [57, 58, 229]

: MMPs and NO [175]

; AA2 and claudin-1 by miRNA-155 [28]

Japanese encephalitis ; ZO-1 and claudin-5 by VEGF, IL-6, and MMP2/9 [7]

Autoimmune

encephalomyelitis

; Claudin-5 by VEGF [180]

ALS amyotrophic lateral sclerosis, ; decrease in protein expression or activity, : increase in protein expression or activity
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agents result in BBB dysfunction through modulating the

expression of TJ proteins or TJ related proteins, particu-

larly occludin, claudin-5, and/or ZO-1 [23, 24]. For

example, claudin-5-deficiency induced size-selective loos-

ening of the BBB [25], and we have observed that

hyperglycemia caused endothelial hyperpermeability by

altering the expression and distribution of ZO-1 in cultured

BMECs [26] and in brain microvessels from diabetic mice

(unpublished data). It is noteworthy that the role of clau-

din-1 in BBB permeability has recently been pursued by

several groups. Although the presence or absence of clau-

din-1 in BMECs is still controversial [27, 28], ectopic

expression of claudin-1 in Tie-2 tTA//TRE-claudin-1

double transgenic C57BL/6 mice was able to prevent BBB

leakage in chronic experimental autoimmune

encephalomyelitis [27], indicating the sealing function of

claudins. Loss of claudin-1 at the BBB has been associated

with barrier dysfunction in human glioblastoma multiforme

[29] and hepatitis C infection [30]. In addition, the cross-

talk between adherens junctions and TJs in maintaining

barrier integrity is an important and emerging topic (see

recent review [31] by Tietz and Engelhardt for details).

Integrins

Integrins are cell adhesion proteins that either link to the

extracellular matrix (ECM) or mediate dynamic contacts to

other cells via binding to cell adhesion molecules [32].

They widely exist and vary among species. Integrins are

heterodimers and consist of a and b subunits that bind to

each other non-covalently. There are over 18 a and 8 b
subunits, which assemble over 24 distinct integrin proteins.

Integrins have various cellular functions and can activate

many intracellular signaling pathways [33]. Integrins

express at the BBB at a high level and play important roles

in the interactions between astrocytes and the endothelium.

Integrin receptors, working with dystroglycan, contribute

to endothelial cell–matrix adhesion and maintain adjacency

between abluminal endothelial cell face to astrocyte end-

feet [34, 35]. Specifically, avb8 integrin has been demon-

strated to play an essential role in formation of the adhesive

interaction, which was expressed by astrocytes and induced

transforming growth factor-b (TGF-b) to stabilize the

endothelium [36]. In a primary culture, avb5 and avb8

induced astrocyte adhesion to vitronectin and migration

[37]. Alphavb8 derived from neuroepithelial cells was able

to activate TGF-b1 and TGFBR1-ALK5-Smad3 signaling

in endothelial cells to maintain normal vascular patterning

and suppress endothelial sprouting [38, 39]. Alpha6b4

expressed by astrocytes was reported to strengthen the

attachment between end-feet and basal lamina in order to

maintain apposition to endothelium of microvessels [35].

Alphavb3 integrin promoted endothelial cell proliferation

and survival through mediating capillary endothelial cell

adhesion to fibronectin, which was introduced in the pro-

gress of angiogenesis [40]. It is clear that b1 integrins (the

ab heterodimers with b1 subunit) play a key role in

forming the matrix adhesion between cerebral endothelial

cells as a part of the BBB. In order to stabilize the TJ

integrity, b1 integrins mediate the attachment of ECM to

endothelial cells [41]. Expressed by endothelial cells along

with other receptors, b1 integrins have an important

function regulating the permeability of BBB [35]. In

addition, in the process of CNS development, an obvious

increased b1 integrin expression is a sign of cerebral blood

vessel maturation [42].

b2 Integrins are a group of integrins that is essential for

immune cell trafficking. Under inflammatory conditions, it

has been found that b2 integrins are involved in neutrophil

extravasation across inflamed BBB. There are many iso-

forms of b2 integrins such as lymphocyte function-

associated antigen (LFA-1) and macrophage-1 antigen

(Mac-1) [43, 44]. Many studies have investigated the roles

of b2 integrins and their ligands, such as intercellular

adhesion molecule 1 (ICAM-1), ICAM-2, and junctional

adhesion molecule-A, in immune cell extravasation across

the BBB under inflammatory conditions [45]. The adhesive

interaction between immune cells and BMECs during

inflammation requires b2 integrin activation to engage with

their endothelial ICAMs. Both LFA-1 and Mac-1 with their

endothelial ligands (ICAM-1 and ICAM-2) mediate neu-

trophil crawling on the BBB during inflammation [43, 45].

It seems that LFA-1 mediates shear-resistant arrest of

neutrophils by ICAM-1 on the flamed BBB while neu-

trophil polarization is subsequently mediated by Mac-1

[45]. It was suggested that G protein-coupled receptors

(GPCR) mediated b2 integrin activation [46] because

GPCR inhibition resulted in reduction of neutrophil arrest

and polarization. In the complete absence of either b2

integrins or their ligands, crawling of neutrophils on the

inflamed BBB was abrogated [45].

Alpha 4 integrins are also involved in mediating the

migration of immune cells across the BBB during neu-

roinflammation [47, 48]. Alpha4 integrin family consists of

several isoforms such as a4b1 [very late antigen-4 (VLA-

4)] and a4b7 [lymphocyte Peyer’s patch adhesion mole-

cules (LPAM-1)]. It has been well known that the

interaction between a4 integrins and vascular cell adhesion

protein 1 (VCAM-1) contributes to T cell recruitment

across BMECs. Lacking a4 integrins or VCAM-1 activity

reduced the adhesion of encephalitogenic T cell blast to the

BBB [49, 50]. It has been reported that VLA-4 predomi-

nantly regulated leukocyte extravasation to the inflamed

brain while LPAM-1 had a role in immune cell trafficking

to other inflamed systems such as the gut [50, 51]. The

integrin a4 expression was up-regulated during MS brain
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lesions [52]. Moreover, recombinant VCAM-1 has been

shown to bind to a4 integrins and to compromise BBB

function in vitro through a mechanism that is mediated by

activation of intracellular signaling pathways including

MAP kinase. Pharmacological inhibitors (e.g. natalizumab)

of the a4 integrin-VCAM-1 interaction protected the BBB

during inflammatory conditions via blocking leukocyte

adhesion to BMECs [51, 52]. Furthermore, preventing the

interaction between a4 integrins and VCAM-1 by anti-a4

integrin monoclonal antibodies reduced inflammatory cell

recruitment across the BBB during experimental autoim-

mune encephalomyelitis (EAE) in vivo [47]. Early

treatment of EAE mice with a synthetic VLA-4 antagonist

significantly reduced the clinical severity of the EAE

condition [53].

Decreased expression of integrins has been found in

neurological disorders and is considered to contribute to

abnormal BBB permeability in such conditions. For

example, it was shown that a6b4 was lost rapidly from

astrocyte end-feet after focal ischemia [54]. Endothelial

expression of b1 integrin, accompanied with the expression

of subunits a1, a3, and a6, was significantly decreased

within ischemic core 2 h after middle cerebral artery

occlusion [55, 56]. In addition, Rice et al. and von Andrian

et al. demonstrated that the counter-receptor on the vas-

cular endothelium interacting with the a4b1 integrin on

leukocytes had a significant effect on MS [57, 58]. Taken

together, the above-mentioned findings suggest that nor-

malizing integrin expression would be a potential approach

to secure BBB integrity in these brain disorders.

Annexins

Annexins are Ca2? and phospholipid-binding proteins that

regulate cellular Ca2? concentrations and membrane orga-

nization and traffic. Among many annexins, annexin A1

(AA1) is the most investigated. AA1 is a protein of 37 kDa

and has been shown to function in intercellular trafficking

due to its relation to membrane components and cytoskeletal

proteins [59]. It was reported that AA1 possessed anti-in-

flammatory effects by regulating macrophage phagocytosis

and neutrophil migration [60]. It might also play a significant

role in differentiation [61], plasma membrane repair [62],

proliferation [63], and apoptosis [64]. In the brain, AA1 is

expressed in pericytes [65] and BMECs [66], where it may

regulate prostaglandin (PG) E2 production [67]. AA1 is also

strongly expressed in the ependymal cells of rats [68] and

humans [69]. Glial expressions of AA1 are mainly seen in

microglia [65], but not in oligodendrocytes [70, 71]. In CNS,

the protective role of AA1 has been observed in neurode-

generation [72] and ischemia [73].

There is compelling evidence supporting AA1 as a

critical physiological regulator of BBB integrity. First,

endogenous AA1 regulates cytoskeleton by binding to

actin. It can directly bind to b-actin, especially the

cytosolic form rather than the fibrillar one. With predom-

inant binding to soluble actin, AA1 may have a potential

function in stabilizing actin oligomers before forming

cytoskeleton [74]. It also works as a linkage between

cytoskeleton and plasma membrane and helps to facilitate

TJ functions. Second, AA1 signaling inhibits GTPase

RhoA [75] that is able to lead to a downstream reaction,

destabilizing actin cytoskeleton and enhancing paracellular

permeability [76]. Third, AA1 knockout mice have a sig-

nificant decrease in occludin and vascular endothelial

(VE)-cadherin and an increase in BBB permeability

although levels of claudin-5 and ZO-1 remain the same

[75]. Furthermore, neutrophil extravasation in an animal

model of stroke can be blocked by AA1 active fragments

[73], corroborating AA1’s protective effect on BBB. In

addition, AA2 has been shown to regulate endothelial cell

morphology and junctional integrity via its association with

VE-cadherin because silencing AA2 expression increased

phosphorylation of VE-cadherin and BBB permeability

in vitro [28, 77].

Vascular endothelial cell-specific phosphotyrosine

phosphatase

Vascular endothelial cell-specific phosphotyrosine phos-

phatase (VE-PTP) is a member of the receptor-type protein

tyrosine phosphatase family that is exclusively expressed

in endothelial cells. VE-PTP plays a critical role in

embryonic development and angiogenesis. Mice lacking

VE-PTP exhibited severe vascular malformation and died

during early embryonic period [78, 79]. Furthermore, VE-

PTP, working with its adhesive VE-cadherin partner, reg-

ulates the endothelial barrier function by an increased VE-

PTP/VE-cadherin interaction [80]. Dissociation of VE-PTP

from VE-cadherin is mediated by many inflammatory

factors such as VEGF and then results in destabilization of

endothelial cell integrity. Indeed, down-regulation of VE-

PTP expression increased trans-endothelial permeability

due to reduction of VE-cadherin adhesiveness [81, 82].

Moreover, cytokines (e.g. IL-1) that inhibit PTP activity

increased BBB permeability [83]. Collectively, these

findings suggest that modulating PTP activity could be an

approach to regulate BBB permeability properties.

Platelet endothelial cell adhesion molecule-1

Platelet endothelial cell adhesion molecule-1 (PECAM-1)

is a transmembrane glycoprotein that is expressed in the

intercellular junctions of the endothelial cells. PECAM-1

mediates angiogenesis in BBB development as well as

migration and interaction of leukocytes to the endothelial
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cells. These effects indicate that PECAM-1 is a crucial

molecule in neuroinflammation [84, 85]. Mice lacking

PECAM-1 had deficiency in their inflammatory responses

and exhibited an increased ability of inflammatory cells to

cross the BBB due to prolonged changes in the BBB per-

meability [86, 87]. In addition, PECAM-1 seems to have an

indirect role in modulating leukocyte extravasation

behavior via increased b1 and b2 integrin affinity. This

increase in integrin affinity mediates adhesion of leuko-

cytes to vascular endothelial cells and enhances their trans-

endothelial migration during neuroinflammation [87–89].

Proteins of the basement membranes of the BBB

The BBB is composed of both cellular components and

basement membranes (BMs). Two BMs exist between

blood and brain, endothelial BM and parenchymal BM.

Endothelial BM lining the capillaries consists of collagen

IV, fibronectin, laminins, etc. [90]. Each of these mem-

brane components contributes to BBB integrity [91]. Some

cells such as pericytes are embedded within the endothelial

membrane. Parenchymal BM is primarily formed by the

end-foot processes of astrocytes and neurons, ECM, and

laminins. The BMs line the perivascular space and act as a

barrier for leukocyte migration into the CNS during

inflammatory perivascular cuff conditions [92].

Laminins

Laminins belong to a family of high-molecular weight

(*400 kDa) glycoproteins of the ECM. There are four

major isoforms of laminins at the BBB, including laminins

1, 2, 8, and 10. Laminins 8 and 10 are secreted in the

endothelial BM while laminins 1 and 2 are mainly secreted

by astrocytes in the parenchymal BM [93–95]. It has been

known that pericytes regulate the secretion of these lami-

nins [96]. Results from studies performed on mice lacking

the major c1 subunit of laminins support the notion that

laminins play a crucial role in BM assembly. This targeted

mutation resulted in early embryonic lethality due to

defects in BM formation [97]. Yao et al. recently demon-

strated that in conditional knockout mice and an acute

adenovirus-mediated knockdown model, lack of astrocytic

laminins induced BBB breakdown, possibly by increasing

pericyte differentiation from the BBB-stabilizing resting

stage to the BBB-disrupting contractile stage and

decreasing TJ protein expression [98]. Moreover, it has

been shown that decreased levels of laminins contribute to

BBB damage caused by ischemia. Hamann et al. reported

that ischemia significantly reduced the content of diverse

basal lamina antigens including laminins [99]. Mostly

recently, Cai et al. revealed that degradation of collagen IV

and laminins was accompanied by increased BBB leakage

after recombinant tissue plasminogen activator treatments,

indicating that the BM works as an important barrier for

preventing BBB disruption and hemorrhagic transforma-

tion after thrombolysis in stroke [100].

Collagen IV and fibronectin

All three major cells at BBB, endothelial cells, astrocytes,

and pericytes, secrete collagen IV and fibronectin. Colla-

gen IV chains form a covalently stabilized polygonal

framework. It is responsible for the mechanical resistance

of the basal lamina and mediates BM stabilization and

integrity through retaining laminins [101]. Fibronectin

exists in two forms, insoluble glycoprotein dimer and sol-

uble disulphide linked dimer. The insoluble fibronectin

serves as a linker in the ECM and is an important com-

ponent of the ECM. Fibronectin binds other ECM

components such as collagen, fibrin, and heparan sulfate

proteoglycans. Collagen IV- or fibronectin-mutated mice

exhibited embryonic death due to defects in vascular

development and loss of BM stability, respectively [101,

102]. Similar to laminins, collagen IV and fibronectin are

susceptible to ischemic damage and contribute to BBB

hyperpermeability in ischemic stroke [99]. Collagen IV has

been reported to decrease significantly at 3 and 24 h after

focal ischemic brain injury [103, 104]. The loss of basal

lamina components including laminins, collagen IV and

fibronectin during ischemic brain injury seems to be a

result of protein degradation caused by plasmin, MMPs and

cathepsins (see review for detail [105]).

Agrin

Agrin is an extracellular heparan sulfate proteoglycan and

accumulates extensively in the BM of the brain

microvasculature [106]. It may play a role in BBB devel-

opment due to its presence around brain microvessels

during embryonic development [107]. Many lines of evi-

dence have revealed that agrin is involved in maintaining

BBB integrity and function. It was shown that loss of agrin

was correlated with the loss of TJ protein expression in

glioblastoma [108], Alzheimer’s disease (AD) [109], and

cerebral ischemia [110]. Recently, the role of agrin in AD

has attracted more attention due to its contribution to BBB

dysfunction. Donahue et al. reported that a large fraction of

the agrin in AD brains is insoluble in 1 % SDS while all the

agrin in a normal brain is soluble [111]. The authors pro-

posed that the insolubility was due to agrin’s tight

association with b-amyloid and that altered agrin expres-

sion in the microvasculature and the brain parenchyma

contributed to the pathogenesis of AD. Rauch et al. stated

that in mice lacking endothelial cell expression of agrin,
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the level of aquaporin 4, a BBB-associated component, was

reduced, and overexpression of agrin decreased Ab depo-

sition, indicating that agrin is important for maintaining

BBB composition and influences Ab homeostasis in mouse

models of AD [112]. Most recently, Steiner et al. reported

that agrin contributed to barrier characteristics of brain

endothelial cells by stabilizing junctional localization of

the adherent junction proteins VE-cadherin, b-catenin, and

ZO-1 [113]. Their results demonstrated that agrin signifi-

cantly enhanced the barrier characteristics of bEnd5

monolayers, accompanied by enhanced localization of VE-

cadherin, b-catenin, and ZO-1, but not of claudin-5 and

occludin. They further argued that agrin might stabilize

these proteins at cell-to-cell junctions rather than inducing

their enhanced-expression because protein levels of VE-

cadherin, b-catenin, and ZO-1 did not change. Their

argument was strengthened by results from an agrin defi-

ciency mouse model that expressed mini-agrin, in which

the vascular BMs had decreased junctional staining for VE-

cadherin.

Signaling mediators that regulate BBB
permeability

Cytokines

Cytokines are a group of polypeptides involved in

inflammatory responses. These polypeptides include many

families, such as interleukins (ILs) and tumor necrosis

factors (TNFs), which are predominantly present in the

brain during inflammation [114]. The normal activity of

neuroinflammation is mainly to restore the homeostasis in

the brain [115]. However, upon prolonged CNS inflam-

mation, inflammatory responses may influence the BBB

integrity and further result in a wide variety of CNS

pathologies. In fact, many studies have recently demon-

strated that neuroinflammation is a risk factor mediating

BBB dysfunction in various brain disorders [116]. For

example, early inflammation of the BBB was observed

together with changes in permeability in experimental

models of neurodegeneration [117]. Emerging evidence

suggests that the chronic release of pro-inflammatory

mediators from neurovascular cells is a major player in the

disruption of BBB integrity in MS [118]. Although the

mechanisms behind inflammation-induced BBB disruption

and hyperpermeability are not fully understood, there is

strong evidence that integrity of the BBB components can

be threatened in response to pro-inflammatory mediators.

It has been revealed that the BBB disruption during

neuroinflammation is largely associated with the release of

numerous cytokines, such as IL-1, IL-6, TNFa, and eico-

sanoids [119–121]. Inflammation initiates cytokine

production mainly through activation of leukocytes,

astrocytes, and microglial cells in the brain [122, 123].

Increase in alteration of TJ function and BBB permeability

is strongly linked with elevation of the cytokines (IL-1, IL-

6, and TNFa) in the brain. For example, Quagliarello et al.

reported that an increase in the level of IL-1 induced

meningitis and BBB breakdown in the rat [124]. Wang

et al. demonstrated that IL-1b increased BBB permeability

via suppression of astrocytic sonic hedgehog production,

leading to down-regulating TJ proteins such as claudin and

occludin [125]. In addition, IL-6 and TNFa were able to

elevate paracellular permeability in BMECs through a

down-regulation of TJ proteins and an increase in reactive

oxygen species (ROS) generation [126]. Furthermore, it

was found that TNFa mediated BBB permeability via

induction of cyclooxygenase-2 (COX2) and PG release in

BMECs [127]. Results reported by Nishioku et al. showed

that lipopolysaccharide (LPS)-activated microglia could

release TNFa and result in BBB dysfunction [128]. HPI201

and minocycline, which prevented the up-regulation of

TNF-a, IL-1b, and IL-6, improved TJ protein expression

and BBB integrity [129, 130]. In addition, TNFa up-reg-

ulated expression of chemokines and cell adhesion

molecules (e.g. ICAM-1) in BMECs; and these molecules

played a critical role in adhesion and migration of leuko-

cytes across BMECs [131]. Most recently, Rosenberg et al.

proposed that inflammatory cytokines that increase BBB

permeability could be used as biomarkers for vascular

cognitive impairment [132]. Taken together, it is clear that

certain cytokines have the ability to increase BBB per-

meability through down-regulating TJ proteins as well as

inducing other pro-inflammatory mediators such as PGs.

Eicosanoids

Eicosanoids are derived from arachidonic acid and include

PGs and leukotrienes (LTs). They are released by COX1

and COX2 in response to inflammation [133]. In addition

to the cytokines, these inflammatory mediators are pre-

dominant in CNS inflammation. Many studies have shown

that PGE2 causes BBB damage and dysfunction. For

instance, it was reported in 1998 that PGE2 contributed to

BBB disruption during experimental rat meningitis [134].

A recent study showed that increased PG production

facilitated the permeability of an in vitro model of BBB

with human BMECs [135]. Moreover, studies have

demonstrated that PGs enhanced BBB permeability in

LPS- and TNFa-administered mice. Furthermore, Cande-

lario-Jalil et al. demonstrated that COX inhibitors limited

BBB disruption during neuroinflammation [136]. Besides

PGs, LTs are also known to contribute to BBB hyperper-

meability. They are inflammatory mediators derived from

the arachidonic acid/lipoxygenase pathway. Injecting LTs
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(e.g. LTB4, LTC4, and LTE4) directly into the brain par-

enchyma increased BBB permeability. This effect could be

limited by pretreatment with lipoxygenase inhibitors [137].

Although the specific mechanisms underlying arachidonic

acid-induced BBB disruption have not been fully eluci-

dated, some studies demonstrated that arachidonic acid

could increase BBB permeability via ROS, which can be

generated from COX and lipoxygenase signaling pathways

[138, 139]. In addition, up-regulation of MMPs during

neuroinflammation could be a link between PG production

and BBB dysfunction because increased MMPs can

destruct the BMs [136].

MMPs

MMPs belong to a family of at least 25 zinc-dependent

endopeptidases and are extracellular enzymes that play a

pivotal role in CNS physiology and physiopathology.

Numerous studies have demonstrated that dysregulation of

MMPs is a major cause of increased BBB leakage, cerebral

edema, hemorrhage, leukocyte infiltration, progressive

inflammatory reactions, and cerebral injury in many neu-

rological conditions, such as Parkinson’s disease [140,

141], Huntington’s disease [142], migraine [143–145], and

stroke [20]. MMP-2 and -9 are two prominent proteins that

cause BBB disruption in many conditions. For example,

Ab1-42 significantly up-regulated the level of MMP-2 and

-9 and induced alterations in TJ scaffold and BBB leakage

through a mechanism that involved receptor for advanced

glycation end-products [146]. MMP-2 and -9 were reported

to be responsible for BBB damage in HIV encephalopathy

[147]. Early appearance of MMP-9 triggered BBB dys-

function after focal cerebral ischemia in mice [148].

Increased MMP-9 expression was observed in pericontu-

sional brain; and MMP-9 inhibitors reduced brain swelling

and final lesion volume in focal injury models [149].

MMP-2 seemed not to play a role in the vasogenic edema

[149]. In addition, it was reported that MMP-1 was highly

expressed in brain metastatic cells and was capable of

degrading claudin and occludin but not ZO-1 [150]. The

expression of MMP-1 seemed to be induced by COX2-

mediated PGs. MMP-3 was also able to induce BBB

abnormality in Parkinson’s disease [141]. Mechanistically,

MMP-induced endothelial barrier disruption was accom-

panied by MMP-mediated proteolytic degradation of

claudin-5 in Japanese encephalitis-associated BBB break-

down [7]. Suppressing MMP-9-mediated degradation of

the claudin-5 and occludin reduced BBB permeability in

ischemic stroke [151].

Recent research has focused on pericytes as an impor-

tant source of MMPs and inflammatory cytokines. Takata

et al. reported that MMP-9 derived from pericytes induced

migration of the cells from the endothelium, leading to loss

of pericytes and ensuing BBB damage [152]. Machida

et al. recently demonstrated that pericytes played a pivotal

role, as a highly thrombin-sensitive and MMP-9-producing

cell, at the BBB in brain damage [153]. Halliday’s research

confirmed that pericytes maintained the integrity of the

BBB and degenerated in AD. It was also revealed that

apolipoprotein E4 (APOE4), a major genetic risk factor for

late-onset AD, led to accelerated pericyte loss and

enhanced activation of the low-density lipoprotein recep-

tor-related protein-1-dependent cyclophilin A-MMP-9

pathway that caused BBB opening via degradation of

endothelial TJ proteins and BMs in AD models [154, 155].

Another focus of research in the field is to identify

potential pharmacological approaches to inhibit MMPs, at

least in animal models. Takeuchi’s data demonstrated that

hydrogen was able to attenuate BBB disruption via sup-

pressing MMP-9 activity in the hippocampus and improved

neurological function outcome in a hypertensive stroke

model [156]. Hydrogen sulfide inhalation was found to be

able to decrease early BBB permeability and brain edema

induced by cardiac arrest and resuscitation, possibly by

decreasing MMP-9 and VEGF activity [157]. Allahtavakoli

et al. revealed that ascorbic acid might be a useful candi-

date to reduce the side effects of delayed application of

recombinant tissue plasminogen activator in stroke therapy

by suppressing overexpression of MMP-9 [158]. Yang

et al. reported that minocycline reduced reperfusion injury

by inhibiting MMPs and microglial activity and enhancing

TJ protein expression in ischemic brains [130]. Neu-

rotensin receptor agonist HPI201 and TGF-b1 significantly

decreased MMP-2 and -9 levels in stroke and traumatic

brain injury (TBI) models of adult rodents [100, 129]. Shi

et al. argued that ethyl pyruvate conferred long-term neu-

roprotection against TBI, possibly through breaking the

vicious cycle among MMP-9-mediated BBB disruption,

neuroinflammation, and long-lasting brain damage [153].

Wang et al. observed that miRNA-130a inhibitors reduced

brain edema, BBB permeability, and increased neurologi-

cal deficit scores, possibly due to decreased MMP-2/9

expression in an acute intracerebral hemorrhage (ICH)

model [159]. Wu et al. found that angiotensin 1–7 could

effectively restore claudin-5 and ZO-1 expression in rats by

down-regulating hypoxia-induced MMP-9 [160]. In addi-

tion, BBB disruption and brain edema formation play

important roles in the secondary neuronal death and neu-

rological dysfunction induced by ICH. Poloxamer 188, a

multiblock copolymer surfactant, was found to protect

against ICH, and the protective effect was associated with

preventing BBB disruption through NF-jB-MMP-medi-

ated TJ protein degradation [161]. Furthermore, tissue

destruction by MMPs is regulated by their endogenous

tissue inhibitors (TIMPs). TIMPs prevent excessive MMP-

related degradation of ECM components. Promoting
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secretion of TIMPs has been explored as an effect way to

inhibit MMP activities. Reuter et al. showed that simvas-

tatin decreased MMP expression in human BMECs and

experimental stroke mainly by means of increasing

expression and secretion of TIMP-1 and TIMP-2 [162].

Resveratrol was also reported to attenuate the cerebral

ischemia by maintaining the integrity of BBB via regula-

tion of MMP-9 and TIMP-1 [163] (Fig. 1).

Free radicals

Human body normally produces free radicals at low

concentrations as a defense mechanism. Overproduction

of free radicals is implicated in the pathogeneses of many

neurological diseases [140, 164, 165]. Reactive oxygen

and nitrogen species are important in the early and

delayed BBB disruption as the neuroinflammatory

responses progress (see Rosenberg’s reviews for details

[166, 167]). For example, studies have shown that LPS-

induced BBB disruption is mediated by ROS and reactive

nitrogen species (RNS) production [168, 169]. LPS-in-

duced microglial activation can increase NADPH oxidase,

one of the major enzymes that generate ROS. Many

reports have clearly demonstrated that ROS play a central

role in BBB dysfunction during ischemia–reperfusion

[166, 167]. For instance, Kamada et al. reported that

hyperglycemia increased ROS levels and MMP-9 activity,

exacerbating BBB dysfunction after ischemia and reper-

fusion [23]. Other studies showed that ROS induced BM

degradation, enhanced tyrosine phosphorylation of TJ

proteins by activating MMP-1/2/9 and decreasing TIMP-1

and -2, and led to increased permeability and monocyte

infiltration [24]. In addition, HIV-1 envelope protein

gp120 up-regulated MMP-2/9 expression, probably by

gp120-mediated ROS [147].

Although the exact mechanism by which ROS induce

BBB breakdown has not fully clarified, their harmful

effects on BBB integrity could be mediated by many

mechanisms such as MMP activation and TJ protein down-

regulation [170–172]. Moreover, ROS can change the

vascular tone and therefore influence cerebral blood flow.

Their vascular effects also include increasing platelet

aggregability and endothelial cell permeability, altering

reactivity to vasodilators, and leading to the formation of

focal lesions in endothelial cell membranes [14].

The brain has an essential defense system in response to

free radical generation, and this antioxidant system con-

tains small molecules such as glutathione and enzymes

such as superoxide dismutase and GSH peroxidase that

decrease levels of free radicals. It is believed that free

radical scavengers could reduce oxidative stress and sub-

sequently rescue BBB integrity [173]. Clinically,

glucocorticoids have been used to treat neuroinflammatory

conditions such as MS. Glucocorticoids seem to restore

BBB integrity via a broad spectrum by down-regulating

multiple inflammatory genes, such as cytokines [174],

enzymes (e.g. inducible NO synthase and MMPs) [175],

adhesion molecules [176]. Antioxidant gene delivery of

Cu/Zn superoxide dismutase or GSH peroxidase blunted

gp120-induced MMP production though down-regulating

TIMP-1 and -2 [147]. Moreover, administration of a per-

oxynitrite decomposition catalyst, 5,10,15,20-tetrakis (4-

sulfonatophenyl) porphyrinato iron (III), protected against

hemoglobin-induced neurovascular injuries, which possi-

bly in part by suppressing MMP-9 activation [177].

VEGF

VEGF is a specific mitogen; it binds to the vascular BM

and causes proliferation and migration of endothelial cells

[178]. Besides being the most prominent member of the

angiogenic growth factor family, VEGF has been known

since the 1980s to increase vascular permeability. VEGF

has been characterized as an inducer of vascular leakage in

response to hypoxia [17]. It has been reported that VEGF

alters the expression and distribution of TJ proteins, lead-

ing to BBB hyperpermeability in hypoxia and autoimmune

encephalomyelitis [179, 180]. VEGF exerted a major role

in BBB disruption leading to subsequent edema during

ischemic brain injury [181, 182]. It is noteworthy that

VEGF seemed to have a dual role in both enhancing

cerebral microvascular perfusion and increasing the BBB

leakage in the ischemic brain. Zhang et al. reported that

rhVEGF165 significantly enhanced cerebral microvascular

plasma perfusion and improved functional neurological

recovery when it was administered to ischemic rats at 48 h

after a stroke while administration at 1 h after stroke

exacerbated BBB leakage [182]. Pericytes and astrocytes
Fig. 1 A brief summary of MMPs as a factor controlling BBB

permeability
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seem to be the major sources of VEGF in pathological

conditions such as stroke [11, 183].

The mechanism that contributes to VEGF-mediated

BBB hyperpermeability is not fully understood. It was

reported that VEGF bound to the receptor tyrosine kinase,

VEGF receptor 2, to induce BBB permeability [184].

In vitro studies suggest that the receptors for VEGF are

located on the abluminal side of microvessels [185, 186].

Although it is known that VEGF increases BBB perme-

ability by down-regulating the expression of TJ proteins

[180], the specific target proteins of VEGF may vary,

depending on the pathological condition and other factors.

For example, our study has shown that claudin-5 seemed

not to play a role in hyperglycemia-induced BBB hyper-

permeability [26]. In contrast, Argaw’s data suggest that

down-regulation of claudin-5 by VEGF was central to

disruption of the BBB in autoimmune encephalomyelitis

[180]. Most recently, Japanese encephalitis virus-infected

astrocytes were found to release VEGF that activated

ubiquitin proteasome, degraded ZO-1, and disrupted

endothelial barrier integrity in cultured BMECs [7]. In

addition, several groups have reported that effect of

exogenous VEGF on endothelial cells is partially attributed

to NO generation from these cells through a NO synthase/

cGMP-dependent pathway [182, 187]. VEGF may also

induce microvascular hyperpermeability through activation

of vesicular–vacuolar organelles [188] (Fig. 2).

Hypoxia inducible factor 1

The transcriptional factor hypoxia inducible factor 1 (HIF-

1) is implicated in many cerebral vascular pathological

disorders. HIF-1 is a heterodimeric complex consisting of a

hypoxia inducible subunit HIF-1a and a constitutively

expressed subunit HIF-1b. Under hypoxic conditions, HIF-

1a is stabilized and translocated to the nucleus where it

dimerizes with HIF-1b. The activated HIF-1 complex

subsequently binds to hypoxic response elements in the

regulatory regions of targeted genes. It induces transcrip-

tion of more than a hundred genes with various functions

[62]. VEGF is one of the most well-known HIF-1 target

genes in vascular biology. Thus, one mechanism of HIF-1-

mediated BBB disruption is VEGF up-regulation. More-

over, HIF-1 may cause BBB damage via the induction of

MMP-2 and -9 [180]. It was reported that increased MMP

activity during ischemia resulted in fragmentation/relocal-

ization of occludin and claudin-5, leading to BBB opening

[189]. Inhibition of HIF-1 ameliorated hypoxia-induced

BBB disruption and the subsequent brain injury in animal

ischemic models [190, 191]. Suppression of HIF-1a and its

downstream VEGF and MMPs reduced hemorrhagic

transformation induced by hyperglycemia in ischemic rat

brains, which indicates a recovery of BBB function [192].

Yeh et al. showed that inhibition of HIF-1 by YC-1

decreased VEGF expression and suppressed the increase in

BBB permeability [191]. We were the first to report that

high glucose induced a time-dependent up-regulation of

HIF-1a in mouse and human primary BMECs, in which it

induced disarrangement of TJ proteins [26]. In addition,

HIF-1 was responsible for MMP-9-mediated BBB disrup-

tion that contributed white matter injury in hypertensive

rats with carotid artery occlusion and a Japanese permis-

sive diet [193].

MicroRNAs

MicroRNAs (miRNAs) are a family of non-protein-coding

small RNA molecules that negatively regulate protein

expression. Many miRNAs have recently been found to

regulate cellular signaling pathways and cell survival.

Various miRNAs have been discovered in different cellular

components of the BBB (Table 2). Several groups have

reported that certain miRNAs control endothelial cell

functions and BBB permeability. For example, Reijerkerk

et al. demonstrated that a large number of miRNAs were

down-regulated in BMECs with impaired BBB function

and that strengthening BBB function was generally asso-

ciated with increased miRNA expression [194].

Specifically, they reported that brain endothelial cells

overexpressing miRNA-125a-5p formed thicker and more

continuous junctional complexes of VE-cadherin and ZO-1

and increased BMEC barrier function. Conversely, specific

knockdown of the miRNA reduced the levels of VE-cad-

herin and ZO-1 along the BBB. In contrast, others have

demonstrated negative effects of miRNAs on BMECs and

BBB function. Lopez-Ramirez et al. observed that miRNA-

155 negatively affected BBB function during neuroin-

flammation [28]. MiRNA-155 was up-regulated by

inflammatory cytokines and expressed at the neurovascular

unit of MS patients and of mice with experimental

autoimmune encephalomyelitis. The miRNA up-regulation

mimicked cytokine-induced alterations in junctional orga-

nization and BBB permeability. Furthermore, they

demonstrated that miRNA-155 modulated brain endothelial

barrier function by targeting cell–cell complex molecules,

such as AA2, claudin-1, and molecules that are critical in

cell-to-ECM interactions including dedicator of cytokinesis

1 and syntenin-1. Kalani et al. reported that miRNA-29b

caused BBB hyperpermeability by regulating DNA (cy-

tosine-5-)-methyltransferase 3 beta and MMP-9 that can

disrupt the membrane and junction proteins leading to

leaky vasculature [195]. Furthermore, Deng et al. showed

that miRNA-21, but not -224, involved in ERK-mediated

upregulation of MMP-9 in rat hippocampus and BBB

dysfunction following cerebral ischemia [196]. Yin’s

results suggested that miRNA-15a was involved in
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ischemia-induced cerebral vascular endothelial injury

[197]. Another group showed that miRNA-26b and -28

seemed to contribute to BBB dysfunction in lupus mouse

brain [198]. Slava et al. demonstrated that miRNA-98

overexpression rescued the BBB during neuroinflammation

through reduction of leukocyte adhesion and cytokine

production. Their study also showed that inhibition of

glycogen synthase kinase 3b increased miRNA-98

expression in inflamed brain [199]. Moreover, miRNA-

181c has been reported to be induced in many malignancies

such as breast cancer [50]. Despite the exact mechanism by

which miRNA-181c mediates BBB breakdown is not yet

fully understood, Tominaga et al. found an increased level

of miRNA-181c in the blood circulation of breast cancer

patients with brain metastasis, indicating that the miRNA

plays a crucial role in brain metastasis [52]. In addition, a

recent study showed that miRNA-181c triggered the Toll-

like receptor 4 pathway, resulting in microglial activation

and neuroinflammation [200]. These observations suggest

the miRNAs are a new set of controllers of BBB perme-

ability under stress and pathological conditions.

Anesthetic agents

Besides endogenous mediators that control/regulate BBB

function and permeability, many pharmacological agents

have great impact on BBB permeability through regulating

the signaling mediators and the structural components. One

widely studied pharmacological agent is isoflurane, a

popular volatile anesthetic routinely used in human

patients. As early as in 1992, Chi et al. reported that

isoflurane decreased the transport of small hydrophilic

molecules across the BBB by measuring blood–brain

transfer coefficient and capillary permeability-surface area

Fig. 2 A brief summary of

VEGF as a factor controlling

BBB permeability

Table 2 MiRNA expression in different cells at the BBB

miRNAs Cellular components of the BBB

miRNA-15a Astrocytes, microglia [230]

miRNA-21 BMECs, astrocytes, microglia [231]

miRNA-26b BMECs [198]

miRNA-28 BMECs [198]

miRNA-29 Astrocytes [232]

miRNA-98 BMECs [199]

miRNA-125a-5p BMECs [194]

miRNA-155 BMECs [28], astrocytes [233]

miRNA-181c Microglia [200]
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[201]. Later on, Tetrault et al. demonstrated that high doses

of isoflurane (3 %) opened the BBB in the cortex and

thalamus while milder doses (1 %) only opened the BBB in

the thalamus in cats by monitoring the extravasation of

Evans blue [202]. Their results also showed that the

opening of the BBB was associated with an evaluated

increase in cerebral volume of 2–2.8 %, indicating brain

edema [202].

The mechanism of isoflurane-mediated hyperperme-

ability of BBB seems to involve in its direct or indirect

effects on the TJ proteins. Most recently, Cao et al. studied

the effects of isoflurane on BBB in aged rats. Their results

showed that 1.5 % isoflurane resulted in reversible time-

dependent morphological damage of the BBB ultrastruc-

ture and significant decreases in expression of the TJ

protein occludin in 24-month old rats. They concluded that

occludin down-regulation was one of the mediators of

isoflurane-induced BBB disruption, and might contribute to

hippocampus-dependent cognitive impairment after

isoflurane exposure in aged rats [203]. In a model of TBI,

ZO-1 expression was more significantly disrupted in

sevoflurane than isoflurane-exposed animals with con-

trolled cortical impact, while claudin-5 was less affected in

the pericontusional area [155]. Moreover, Zhao et al.

reported in 2014 that isoflurane treatment induced a time-

and concentration-dependent decrease in occludin mRNA

and protein levels in human BMECs, which was partially

abrogated by silencing the alpha subunit of HIF-1 [204].

Isoflurane-mediated HIF-1a expression up-regulated the

level of VEGF, which decreased the expression of occludin

and TGF-b3 that accelerated the endocytosis of occludin

[204]. If HIF-1 activation is indeed responsible for isoflu-

rane-induced BBB abnormality, it is still not clear how

isoflurane up-regulates the transcriptional factor (Fig. 3).

Furthermore, several recent reports suggest that under

pathological conditions, isoflurane may exaggerate brain

injury by further opening the BBB. Dittmar et al. investi-

gated the effect of a 2-h isoflurane exposure on apoptosis of

the cerebral endothelium following 24 h of hypoxia in an

in vitro BBB model. They found that isoflurane treatments

resulted in severe cellular morphological changes and a

significant dose-dependent increase in DNA fragmentation

in trans-differentiated human umbilical vein endothelial

cells, possibly due to increases in pro-apoptotic Bax levels

and decreases in the level of anti-apoptotic Bcl-2 [205]. In a

rat stroke model of embolic occlusion of middle cerebral

artery, Bezerra et al. observed that BBB permeability

measured by blood-to-brain forward rate constant was ele-

vated in the ipsilateral hemisphere in animals under either

halothane or isoflurane anesthesia. However, isoflurane-

anesthetized rats demonstrated less BBB damage than

halothane-anesthetized group [155]. In addition, BBB dis-

ruption causes cerebral edema formation and is a major

cause for high mortality after TBI. Results from Thal’s study

demonstrated that 24 h after controlled cortical impact,

brain water content of mice subjected to either sevoflurane

or isoflurane increased significantly while in healthy mice,

anesthesia did not influence brain water content [206].

In summary, isoflurane is able to affect BBB perme-

ability at normal conditions, to induce brain edema, and to

exaggerate BBB injuries under pathological conditions

such as stroke and TBI. This effect may be attributed to its

impact on TJ protein expression, possibly through regu-

lating HIF-1 activity. In addition, other anesthetic agents

have also been shown to affect BBB permeability. Similar

to isoflurane, sevoflurane was able to induce structural

changes in BMECs and increase BBB permeability [155,

206, 207]. An in vitro study showed that thiopental induced

BBB opening at high concentrations (*100 lg/ml) while

fentanyl and methohexital did not affect BBB permeability

[208]. Future research is required to investigate the exact

molecular mechanisms of anesthetic-mediated BBB open-

ing and to mitigate the adverse effect on patients.

Factors that regulate transcellular transport
of iron through BBB

The above discussion focuses on paracellular permeability

of the BBB. Transcellular transport across BBB might be

affected by the same or different signaling mediators as

those discussed above. In this section, recent progress on

transcellular transport of iron ion is briefly reviewed. Brain

is one of the most abundant iron-containing organs. When

there is iron deficiency or overload in the brain, the nervous

system suffers from disturbed functions. Hence, it is

essential to maintain brain iron homeostasis. The key to

iron balance in the brain lays in the regulation of brain iron

uptake. The regulation of iron transport across the BBB is

of major importance to brain iron uptake [209]. Available

data suggest that uptake of plasma transferrin binding iron

(Tf-Fe) occurs at the luminal membrane of BMECs, mainly

Fig. 3 Proposed mechanism

responsible for isoflurane-medi-

ated BBB hyperpermeability
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through the classic transferrin receptors (TfR)-mediated

endocytosis [210]. In BMECs, due to the acidification of

the microenvironment within endosomes, iron ions disso-

ciate from Tf and are reduced from Fe3? to Fe2?. Ferrous

ion can translocate across the endosomal membrane via a

proton driven transporter, divalent metal transport 1 [211].

Most of the Tf and TfR will return to the luminal mem-

brane. Iron ion is proposed to be transported across the

abluminal membrane of the BBB into the interstitial fluid

of the brain [212]. This process likely involves iron

exporter ferroportin1 (FPN1) on the abluminal membrane,

but the exact mechanism remains to be explored. Available

studies showed that both hephaestin and FPN1 have been

identified in BMECs. In addition, iron efflux from BMECs

by FPN1 may require the action of an exocytoplasmic

ferroxidase, possibly ceruloplasmin produced by glial cells

[213].

At the systematic level, brain iron homeostasis may be

regulated by a peptide ‘hormone’ named hepcidin. Hepcidin

binds to the extracellular loop of FPN1 and causes its

internalization and degradation, and thereby reduces cel-

lular iron efflux. Recent data indicate that brain hepcidin

stimulates internalization of FPN1 to regulate iron efflux

from the BMECs [214]. The observation indicates that

hepcidin may play an important regulatory role in brain iron

metabolism. The expression of hepcidin can be regulated by

high iron levels, inflammation, erythropoiesis, or hypoxia

[215]. When iron levels are high, hemojuvelin and TfR2

increase hepcidin expression. In addition, IL-6, a cytokine

that regulates paracellular permeability, is able to stimulate

hepcidin expression through molecular pathways that could

include binding of STAT3 to the hepcidin promoter.

Perspectives

Blood–brain barrier permeability is tightly controlled by

many component factors of BMECs, astrocytes, pericytes

and microglial cells. The TJ structure is essential to the

integrity of BBB. It establishes a linkage between

endothelial cells, which is tight enough to form a barrier to

separate brain cells from exposure to the systemic circu-

lation. As discussed above, altered TJ protein expression

and structural arrangement underlines the mechanism of

BBB dysfunction in many brain disorders. Hence, nor-

malizing TJ protein expression and arrangement is an

important pharmacological goal to enhance the BBB

integrity under pathological conditions. The regulation of

the expression of TJ proteins including their interactions,

stereochemistry, and their signaling mediators are direc-

tions of future studies. Meanwhile, many other proteins

play important roles in maintaining BBB permeability and

functions. As evident from many recent reports, integrins

binding to ECM together with annexins and agrin play an

essential role in BBB integrity and functions. Yet, the

functions of integrins, annexin and agrin in BMEC are still

not well revealed, especially their interactions with TJs.

These are interesting areas to be explored in the future.

Inflammation plays a central role in the pathogeneses of

neurodegenerative and neurological disorders. Evidence is

being accumulated for the harmful effects of neuroinflam-

mation on BBB integrity. Inflammatory mediators such as

cytokines, eicosanoids, or free radicals have been reported

to cause BBB damage. Results from recent studies are

consistent in supporting that TJ protein alternation is the

most predominant mechanism underlying neuroinflamma-

tion-induced BBB disruption. Although the mechanism has

not fully been understood, activation of microglial cells

may act as the first step in BBB disruption in CNS

inflammation. Recent studies have established a link

between microglial activation and BBB breakdown [216].

Interestingly, microglial cells seem to be a double-edge

sword. On one hand, these cells regulate the integrity of the

mature BBB. On the other hand, the microglial response

may activate different signaling pathways through pro-in-

flammatory mediators. Inactivation of microglial cells is

most likely not the suitable therapeutic approach because

their activation can mediate many beneficial physiological

functions such as phagocytosis of damaged neurons [217].

Thus, targeting the microglial signaling pathways that

mediate inflammation-induced BBB breakdown would be a

promising therapeutic strategy. Sonic hedgehog has been

known to maintain BBB integrity via TJ protein up-regu-

lation [218]. Overexpression of sonic hedgehog could be an

effective experimental approach to restore BBB properties

after inflammation. Furthermore, many studies have shown

that anti-inflammatory and antioxidative agents could limit

BBB disruption after neuroinflammation. Inhibition of the

COX signaling pathway with indomethacin protected

against TNF-a-induced BBB disruption in vivo. This COX

inhibition was associated with a decrease in MMP-9 and -3

activities [136]. Recently, a report showed that ginseno-

sides, a group of anti-inflammatory and antioxidant

bioactive compounds, reduced BBB disruption following

cerebral ischemia [53] by suppressing the expression of pro-

inflammatory mediators such as NO synthase, IL-1b, and

MMP-9 [53, 200]. Moreover, caffeic acid phenethyl ester,

an anti-inflammatory and antioxidative agent [219], limited

BBB opening in a TBI rodent model through preserving TJ

proteins such as claudin-5 [220].

Emerging evidence suggests that the brain is a target of

diabetes, resulting in diabetic encephalopathy [221]. The

pathophysiology of diabetic encephalopathy is still largely

elusive. Cerebral microvascular disturbances could play an

important role in diabetes-induced brain abnormality. In

fact, BBB dysfunction (i.e. hyperpermeability) has been
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demonstrated in diabetic patients by magnetic resonance

imaging [222] and in animal models of diabetes [223].

However, the mechanism responsible for BBB hyperper-

meability in diabetes is not known. To understand the

mechanism of diabetes-induced BBB dysfunction is crucial

for the prevention and treatment of diabetes-induced neu-

rological diseases. Future studies may focus on the

following to reveal the mechanism, inflammatory media-

tors, MMPs, HIF-1, VEGF, ROS, and miRNAs that control

the permeability of BBB. In fact, excessive generation of

ROS has been recognized as an integral part to the

pathophysiology of diabetes, particularly in diabetes-in-

duced vascular diseases [224]. Expression and activation of

HIF-1 in hyperglycemia-exposed brain endothelial cells are

believed to be closely associated with the brain microvas-

cular damage and to be induced by free radicals. We

recently demonstrated that high glucose activated HIF-1 in

mouse and human BMECs [26]. It will be useful to

determine what specific ROS and inflammatory mediators

are generated and responsible for the enhanced activities of

HIF-1 and BBB dysfunction in diabetes. In addition,

anesthetic agents such as isoflurane may change BBB

permeability in diabetic patients. More research is needed

to find its molecular mechanism to minimize the adverse

effects on patients. Moreover, change in iron transport

across BBB in diabetic patients is also an important and

interesting topic to be addressed.

In summary, BBB is a very important component in the

body regulating the brain homeostasis. Permeability of BBB

is regulated by many factors such as junctional proteins, BM

proteins, cytokines, VEGF, HIF-1, ROS, miRNAs, etc.

Recent research has made great progress in revealing the

mechanisms by which they regulate BBB permeability.

Changes of BBB permeability are involved in the patho-

geneses of many brain disorders. Further studies are needed

to reveal a better understanding of BBB permeability regu-

lation, particularly in neuroinflammatory and diabetic

conditions, and to develop novel and specific therapeutic

approach to mitigate the harmful effect of BBB dysfunction.
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