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Abstract Despite significant progress in understanding

the homeostatic regulation of energy balance, successful

therapeutic options for curbing obesity remain elusive. One

potential target for the treatment of obesity is via manip-

ulation of the gut–brain axis, a complex bidirectional

communication system that is crucial in maintaining

energy homeostasis. Indeed, ingested nutrients induce

secretion of gut peptides that act either via paracrine sig-

naling through vagal and non-vagal neuronal relays, or in

an endocrine fashion via entry into circulation, to ulti-

mately signal to the central nervous system where

appropriate responses are generated. We review here the

current hypotheses of nutrient sensing mechanisms of

enteroendocrine cells, including the release of gut peptides,

mainly cholecystokinin, glucagon-like peptide-1, and pep-

tide YY, and subsequent gut-to-brain signaling pathways

promoting a reduction of food intake and an increase in

energy expenditure. Furthermore, this review highlights

recent research suggesting this energy regulating gut–brain

axis can be influenced by gut microbiota, potentially con-

tributing to the development of obesity.
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AgRP Agouti-related protein
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CB1 Cannabinoid receptor 1
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CCK-1R CCK-1 receptor

CNS Central nervous system

DVC Dorsal vagal complex

ENS Enteric nervous system

EEC Enteroendocrine cell

GI Gastrointestinal

GF Germ free

GLP-1 Glucagon-like peptide 1

GLP-1R GLP-1 receptor

GPR G-coupled protein receptor

IP Intraperitoneal

KO Knockout

LPS Lipopolysaccharide

NPY Neuropeptide Y

NTS Nucleus tractus solitarius

OTU Operational taxonomic unit

OXM Oxyntomodulin

PVN Paraventricular nucleus

PYY Peptide YY
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Introduction

Energy homeostasis involves an intricate and complex

balance between energy intake and expenditure that is

predominantly coordinated by the brain. The central ner-

vous system (CNS) receives constant neural and chemical

input regarding the body’s energy state from various

peripheral organs, and is responsible for integrating this

information and generating appropriate responses to

maintain homeostasis. These signals are generally charac-

terized as either more long-term adiposity or ‘tonic’

signals, such as leptin and insulin, which are released

continuously to reflect the amount of body fat, or short-

term, ‘episodic’ signals that fluctuate depending on the

ingestive status of the individual. The gastrointestinal (GI)

tract, being the first site of interaction with ingested

nutrients, is responsible for the majority of these episodic

signals, communicating important information regarding

the size and composition of an incoming meal to the

brain. This gut–brain axis is vital for the maintenance of

energy balance as these gut-derived signals, sometimes

referred to as satiation/satiety signals, are not only able to

reduce energy intake, but have more recently been

demonstrated to control energy expenditure. Ingested

nutrients induce secretion of gut peptides, namely chole-

cystokinin (CCK), glucagon-like peptide-1 (GLP-1), and

peptide YY (PYY), which through either activation of local

neuronal relays or endocrine signaling directly within the

CNS, initiate a gut–brain axis. While this gut–brain axis

has implications in glucose regulation, as reviewed recently

elsewhere [1], the present review will focus on the control

of food intake and energy expenditure to maintain energy

balance and how this control is disrupted in obesity. Fur-

thermore, we describe how this dysregulation of energy

homeostasis in obesity may be due to microbe-induced

alterations in gut–brain signaling pathways, given the more

recently implicated role of the gut microbiota in influenc-

ing host energy metabolism. A better understanding of this

gut–brain axis may lead to the development of more tar-

geted treatments that can favorably influence energy

balance to reduce adiposity and ameliorate obesity.

The gut–brain axis

The gut–brain axis represents a bi-directional signaling

axis that is vital for metabolic homeostasis. In the GI tract,

sensory information is transformed into signals of neural,

hormonal, and immunological origin, which are relayed to

the CNS. Although emerging evidence links changes in

intestinal immune signaling with alterations in gut-medi-

ated energy homeostasis (see below) [2], the majority of

established effects of the gut–brain axis on energy balance

are a result of neural and hormonal gut-derived signals.

Preabsorptive nutrients can generate signals at multiple

sites throughout the GI tract, to communicate with the

brain regarding not only the caloric value of a meal, but

possibly the precise macronutrient composition of ingested

calories through individualized nutrient-specific sensory

mechanisms [3]. Gut-derived signals are then relayed to a

number of brain areas to generate responses that ultimately

result in both acute and more chronic changes in energy

intake and energy expenditure, to maintain energy home-

ostasis during both feeding and fasting (Fig. 1).

Level of the gut

The majority of signaling by intestinal nutrients occurs

through the release of gut peptides. Specifically,

enteroendocrine cells (EECs) lie within the intestinal

epithelium, open to the luminal contents, and express

chemosensory machinery on their apical surfaces allowing

them to respond to preabsorptive nutrients. Nutrient sens-

ing occurs through G-protein coupled receptors (GPRs),

electrogenic solute transporters and/or intracellular meta-

bolism, all of which subsequently lead to calcium influx

and gut peptide release into the subcellular space [4]. The

various subtypes of EECs are classically characterized by

both their localization within the GI tract as well as the

peptide(s) they secrete. The stomach contains X/A-like

cells that produce ghrelin as well as chief cells that produce

gastric leptin, the proximal small intestine contains I cells

and K cells that produce CCK and glucose-dependent

insulinotropic hormone, respectively, and the distal small

intestine contains L cells, which produce GLP-1/2, oxyn-

tomodulin (OXM) and PYY. However, recent findings

indicate co-expression of various gut peptides originally

thought to be synthesized in distinct EECs, throughout the

intestine, arguing that EECs are in fact represented by a

single cell type which produces varying spectra of gut

peptides depending on the environment [5]. Nonetheless,

synthesis and secretion of all of the above gut peptides is

induced by an influx of intestinal nutrients, and is mediated

by nutrient-specific sensory machinery expressed on the

EEC apical membrane. Following release from EECs, gut

peptides can enter the circulation to act on peripheral tar-

gets, including the brain, in an endocrine fashion.

However, there is ample evidence to suggest that gut

peptides largely signal to the brain via local, paracrine

action on receptors expressed in afferent neurons inner-

vating the gut wall.

The stomach and proximal small intestine, where the

majority of digestion and absorption occur, are highly

innervated by vagal and splanchnic nerves, with afferents

far outnumbering efferents, supporting the pivotal role of

neuronal gut-to-brain signaling [6, 7]. Indeed, vagal

738 P. V. Bauer et al.

123



afferent fibers extend into the lamina propria of the

intestinal villi, terminating in close proximity to the baso-

lateral surface of EECs, and express receptors for gut

peptides including ghrelin, leptin, CCK, GLP-1, and PYY,

whose receptor activation leads to neuronal firing [8]. In

addition, gut peptides might also activate vagal and spinal

afferents indirectly, via activation of neurons of the enteric

nervous system (ENS), which have also been shown to

express gut peptide receptors [9–11]. While classically

implicated in local neuronal reflexes controlling intestinal

function [12], it is plausible that the ENS plays a role in the

gut–brain axis by relaying nutrient-derived signals to vagal

afferents, given that: intrinsic ENS neurons are positioned

in close proximity to both EECs and afferent nerve ter-

minals, intestinal nutrient infusion leads to c-Fos activation

in the myenteric plexus [13], and the ENS has been

implicated in the activation of vagal afferents in the gut

[14]. Nonetheless, while the precise mechanisms remain

unclear, nutrient-induced gut peptide secretion activates

local afferent signaling to initiate a gut–brain neuronal

signaling axis.

Connection to the brain

Vagal afferent neurons terminate in the nucleus tractus

solitarius (NTS) of the dorsal vagal complex (DVC) of

the brainstem [15], while spinal afferents synapse on

neurons of lamina 1 of the spinal dorsal horn which

project to the NTS. The NTS integrates both vagal and

spinal gut-derived signals, which are subsequently

relayed to the hypothalamus [16, 17]. Intestinal nutrient

infusion leads to c-Fos activation in the NTS, and this

response is attenuated by blockade of gut–brain vagal

communication via treatment of intestinal vagal afferents

with the neurotoxin capsaicin [18]. This effect is attrib-

uted to nutrient-induced gut peptide release, where for

example, peripheral CCK administration activates NTS

neurons via capsaicin-sensitive vagal afferents [19].

Vagal afferent activation of NTS neurons is mediated by

the activation of n-methyl-D-aspartate receptors in affer-

ent neuron terminals, which leads to phosphorylation of

ERK 1/2 and synapsin I to stimulate neurotransmitter

release from NTS neurons [19]. Various neuronal popu-

lations within the NTS are activated by gut peptide-vagal

afferent signaling, including POMC and catecholaminer-

gic neurons [20], and NTS melanocortin receptor

signaling is required for gut peptide-induced ERK 1/2

activation and suppression of food intake [21]. On the

other hand, much less is known about the importance of

the ENS or of spinal afferents in mediating the gut–

brainstem axis. Nevertheless, studies have implicated

spinal afferents in the control of food intake (see below),

suggesting that they may represent an additive or

redundant pathway of gut–brain signaling.

Fig. 1 Gut–brain communication through gut peptides. Gut peptides

are released from enteroendocrine cells in response to preabsorptive

nutrients and act to relay information regarding incoming energy to

the brain. Once released into the subcellular space, gut peptides can

act locally on gut peptide receptors expressed on vagal or spinal

afferent nerve terminals innervating the gut to activate gut–brain

neuronal signaling. Gut peptides might also act indirectly via

receptors on intrinsic neurons of the enteric nervous system to relay

neuronal signaling to afferent nerves. In contrast, gut peptides can

diffuse into the systemic circulation or lymphatics to eventually reach

the brain and act on central receptors in an endocrine fashion
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Interestingly, the brainstem contains motor output

neuronal circuitry controlling feeding behaviours, sup-

porting a role for gut–brainstem reflexes to acutely

regulate energy balance through alteration of motor

controls involved in feeding and energy expenditure.

Indeed, studies show that chronic decerebrate rats will

suppress food intake in response to intestinal nutrients

when only the brainstem remains intact [22]. However

NTS neurons additionally project to several higher order

brain regions, including the hypothalamus, where they

terminate in multiple nuclei that are involved in the

control of energy balance, namely the paraventricular

(PVN) and arcuate (ARC) nuclei. Further, both the NTS

of the brainstem and the ARC of the hypothalamus are

juxtaposed to areas that lack a defined blood–brain bar-

rier: the area postrema and median eminence,

respectively. Given that plasma levels of gut peptides

increase following a meal, there is evidence supporting a

model where gut peptides reach the systemic circulation,

diffuse through these leaky brain structures, and act

directly on brainstem and hypothalamic neurons, as

described in the following sections. For example, the Y2

receptor (Y2R), which binds the gut peptide PYY, has

been localized in the ARC, and peripheral injection of

PYY increases c-Fos immunoreactivity in the ARC [23].

Indeed, endocrine and neural activation of ARC neurons

by the gut–brain axis is of particular importance to

energy homeostasis, largely through the regulation of the

melanocortin system controlled by ARC POMC and

agouti-related protein (AgRP) neurons. POMC neurons

release a-melanocyte stimulating hormone, which

directly activates downstream neuronal melanocortin

receptors to inhibit food intake and increase energy

expenditure. AgRP neurons release AgRP, which antag-

onizes melanocortin receptors and neuropeptide Y

(NPY), an inhibitory neurotransmitter that stimulates

food intake and suppresses energy expenditure. As

described below, many gut peptides control energy bal-

ance through the regulation of ARC POMC and AgRP

neurons and their associated neuropeptides.

In summary, preabsorptive nutrients trigger a gut–brain

axis by stimulating the release of gut peptides, which via

multiple neural or humoral pathways, activate important

metabolic sites in the hindbrain and hypothalamus to reg-

ulate energy balance by altering both energy intake and

energy expenditure. This axis is nicely illustrated by Vin-

cent et al. who demonstrate that intestinal glucose infusion

activates gut peptide secreting cells in the mucosal mem-

brane, neurons of the myenteric plexus (ENS) and nodose

ganglion (vagal afferents), as well as neurons in both the

NTS and ARC [24].

Gut–brain axis in the control of food intake

When fasted rats are re-fed, food intake decreases within

minutes of re-feeding and continues to steadily decline

throughout a meal [25], indicating that negative feedback

signals are sent to the brain rapidly after food enters the GI

tract to prevent an excess of incoming nutrients. One of the

first signals generated is that of the mechanoreception of a

food bolus entering the stomach. When a gastric cuff is put

in place to close off the pyloric sphincter and allow the

stomach to fill without emptying, saline loading of the

stomach volume-dependently reduces food intake in as

quickly as 3 min [26]. Indeed, the vagal and spinal affer-

ents innervating the stomach express stretch-receptive

calcium channels [27], and gastric distention causes vagal

afferent firing and activation of neurons in the hindbrain

[28], supporting a neuronal stomach–brain axis that lowers

food intake. Nutrients are emptied into the small intestine

via the pyloric sphincter, and the rate of gastric emptying

begins to slow upon arrival of nutrients into the small

intestine, further increasing the distention of the stomach

upon subsequent ingestion of food. Slowing of gastric

emptying is accomplished through the release of CCK and

GLP-1 [29, 30] and vagal activation, as subdiaphragmatic

vagotomy, a surgery that involves severing the afferent

fibers of the vagus at the brainstem, attenuates the effects

of CCK or GLP-1 on gastric emptying [31, 32].

Although the negative feedback on gastric emptying

following nutrient influx contributes to reductions in food

intake, direct intestinal infusion of nutrients inhibits sham

feeding (a procedure where ingested nutrients are drained

from the stomach directly and do not reach the small

intestine) [33, 34], indicating that nutrients in the intestine

can per se suppress food intake, independent of effects on

gastric emptying. Indeed, nutrient-induced release of a

number of gut peptides, summarized below, is associated

with signaling to the brain to control food intake. Subdi-

aphragmatic vagotomy or capsaicin treatment completely

reverse the acute feeding suppressive effects of intestinal

nutrient infusions [35, 36], indicating that a gut–brain

neuronal axis involving vagal afferents innervating the

small intestine mediates these effects. In addition, celiac-

superior mesenteric ganglionectomy, a surgery involving

the transection of non-vagal, splanchnic nerves originating

from the intestine, also blocks the feeding suppressive

effects of intraduodenal nutrients, additionally implicating

spinal afferents in the gut–brain axis control of food intake

[37]. Interestingly, gut peptide receptor antagonists, such as

devazepide, a CCK-1 receptor (CCK-1R) antagonist, block

both the suppression of food intake and the neural activa-

tion that is associated with nutrient ingestion [14].
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CCK

Cholecystokinin is released from I-cells of the small

intestine mainly in response to intestinal fatty acids and

proteins. CCK is the most well-established satiation signal

[38], but it has also been shown to play important roles in

activating the gut–brain axis to control gut motility, food

intake, energy expenditure, and glucose homeostasis [39].

Co-infusion of an antagonist for the CCK-1R, which is

expressed on vagal afferents innervating the intestine [40],

attenuates both vagal firing and suppression of food intake

following intraduodenal fatty acids and protein [41, 42],

implicating CCK as a mediator of fat and protein induced

satiation. Exogenous CCK-8 injection, which acutely

lowers food intake, has been shown to activate a specific

population of neurons in the NTS of the brainstem which

project to the PVN of the hypothalamus, and lesion of these

neurons blocks the feeding suppressive effects of exoge-

nous CCK-8 [43]. Indeed, the PVN contains anorexigenic

thyrotropin releasing hormone neurons which are involved

in feeding behaviour [44]. In addition to acting on local

vagally expressed receptors, CCK is released into circula-

tion, as the postprandial state is associated with a rise in

plasma CCK [45, 46], which potentially reaches the brain

to suppress food intake through direct, central action [47,

48]. Indeed, CCK can act directly on CCK-1 receptors in

the NTS, as well as in six different regions of the

hypothalamus to suppress feeding [49–51]. However, these

effects are likely mainly reflective of the actions of cen-

trally produced CCK [52], as most studies demonstrate that

chemical and surgical ablation of vagal signaling abolishes

the feeding suppressive effects of peripheral CCK, impli-

cating the neuronal gut–brain axis [53]. Further, CCK

injections into peripheral arteries supplying the proximal

small intestine more potently lower food intake than do

systemic CCK injections [54, 55]. Thus, there is sufficient

evidence that post-ingestive CCK acts in a paracrine

fashion via peripheral CCK-1 receptors in the intestine.

This is in line with the more recently established glu-

coregulatory role of lipid-induced CCK, that acts on the

CCK-1R on vagal afferents to lower hepatic glucose pro-

duction via a neuronal gut–brain–liver axis, which is

described in more detail elsewhere [56].

GLP-1

Carbohydrates, lipids and proteins are all potent secreta-

gogues of GLP-1, which is produced mainly within L cells

of the distal small intestine and colon [57]. While the

effects of endogenous GLP-1 on food intake are more

controversial and less understood than those of CCK, an

increasing amount of evidence implicates GLP-1 as an

important satiation signal [58]. Given that GLP-1 is

released within 15 min of nutrient ingestion [59], before

nutrients would reach the distal small intestine to directly

stimulate L cells, it is hypothesized that nutrients in the

proximal small intestine trigger GLP-1 release from the

ileum via a neuro-hormonal reflex, involving the vagus

[57]. Indeed, when nutrients are infused into the duodenum

and not allowed to flow into the distal small intestine,

significant GLP-1 secretion is stimulated, and this is

reversed when the distal intestine is removed [60, 61].

However, recent evidence has confirmed the presence of

GLP-1 expressing EECs in the proximal intestine [62]

indicating that direct nutrient sensing by EECs might in

fact stimulate early GLP-1 release from the duodenum

instead [63], or in addition to, the aforementioned reflex.

Nonetheless, GLP-1 is secreted in response to intestinal

nutrients, and several studies indicate that endogenous

GLP-1 plays a physiological role in suppressing food

intake via a paracrine effect [64, 65]. Intestinally secreted

GLP-1 is rapidly degraded in circulation, resulting in only

25 % of secreted GLP-1 reaching the hepatoportal circu-

lation and less than 10 % reaching the systemic circulation

[66]. Thus, a likely role is supported for local, paracrine

action in the intestine. Indeed, vagal afferent neurons

express the GLP-1 receptor [67] and GLP-1 directly

induces firing of cultured vagal afferent neurons [68].

Further, subdiaphragmatic vagotomy or capsaicin treat-

ment in rodents completely blocks the suppressive effects

of intraperitoneal (IP) GLP-1 [69, 70]. In contrast,

intravascular infusion of exogenous GLP-1 suppresses food

intake and these effects are not reversed by vagotomy or

capsaicin [71, 72], implicating a potential role for GLP-1

receptor (GLP-1R) signaling directly within the brain.

However, it is unlikely that the doses used in these studies

are indicative of endogenous GLP-1 circulating levels, thus

it is unlikely that nutrient-induced GLP-1 enters the cir-

culation to act centrally to lower food intake. One other

possibility is that rather than entering the portal circulation,

GLP-1 is released into the lymph. Indeed, following

intestinal glucose or fat infusion, GLP-1 levels dose-de-

pendently increase in the lymph, with levels higher than

that of plasma GLP-1, supported by lower levels of

dipeptidyl peptidase-4 in the lymph [73, 74]. Further,

gastric nutrient infusion causes a greater increase of GLP-1

in the lymph than in the hepatoportal vein [75]. This pre-

sents a plausible model where GLP-1 in fact reaches the

brain in significant quantities given its transport via the

lymph. The GLP-1R is expressed in the DVC of the NTS

and in hypothalamic nuclei including the ARC [76, 77],

and intracerebroventricular (i.c.v.) GLP-1 acutely and

potently suppresses food intake [78, 79], and this is pre-

vented by co-infusion of the antagonist exendin-9 [80].

However, i.c.v. infusion of exendin-9 does not prevent the

suppressive effects of IP GLP-1 [80], while IP co-injection

Regulation of energy balance by a gut–brain axis and involvement of the gut microbiota 741

123



of exendin-9 does, indicating that GLP-1R activation on

peripheral neurons may be more important in physiological

conditions where GLP-1 is released from the gut, while the

aforementioned studies may be identifying mechanisms for

centrally derived GLP-1 [81]. Although human evidence

for a local vagal GLP-1 signaling axis is lacking and dif-

ficult to distinguish, patients with pyloroplasty and truncal

vagotomy fail to suppress intake following GLP-1 admin-

istration, suggesting that vagal signaling is necessary for

the short-term effects of peripheral GLP-1 [82]. One

important caveat of many studies examining the role of

GLP-1 is the use of long-lasting agonists to mimic the

effects of endogenous GLP-1. Indeed, GLP-1R agonists,

exendin-4 and liraglutide, exhibit a much longer half-life

and can cross the blood–brain barrier, thus they are not an

ideal representation of GLP-1 that is released in response to

nutrients. However, it may be possible that the early sati-

ating effects of these drugs mimic endogenous GLP-1, as

subdiaphragmatic vagotomy attenuates short-term effects

(but not long-term) on food intake, while CNS GLP-1R

antagonism attenuates more long-term effects on food

intake [83]. Thus while studies utilizing GLP-1R agonists

are useful in determining the mode of action of pharma-

cological treatments, which can lead to more targeted and

improved drug options, further work is required to identify

the physiological role of local GLP-1 signaling.

PYY

Peptide YY is also released from L cells, along with GLP-

1, in response to intestinal nutrients [84], and given that

PYY-/- mice are hyperphagic, and do not respond to the

satiating effect of dietary protein [85], it is hypothesized to

play an important role in energy homeostasis. Direct

nutrient sensing by the distal intestine may promote PYY

secretion, as PYY is co-expressed with chemosensors such

as those for bitter and sweet taste nutrients in L cells [86].

However, PYY is released within 15 min of food intake,

indicating that PYY release involves a reflex arc via

proximal intestinal neural or chemical relay, releasing PYY

from the distal intestine [87]. Interestingly, plasma PYY

levels rise after feeding and stay elevated for several hours,

peaking 1–2 h following the onset of food intake [88],

suggesting that PYY plays a role in controlling long-term

satiety via endocrine signaling, where CCK and possibly

GLP-1 are more important in the short-term regulation of

satiation. Circulating PYY3–36 is an agonist of Y2R, and

while exogenous PYY3–36 lowers food intake in rodents

and humans, it fails to do so in Y2R
-/- mice [23] or with

co-injection of a Y2R antagonist [30]. Receptors for PYY

are expressed in the nodose ganglion and possibly on vagal

afferent terminals (as demonstrated via axonal transport)

[89], and peripheral injection of PYY causes vagal firing as

well as neuron activation in the NTS and ARC, which is

abolished by vagotomy [89, 90], supporting a role for

peripheral PYY action on vagal afferents. However, not all

studies support this notion, as peripheral PYY injection can

suppress food intake in peripherally capsaicin-treated rats

[30], indicating that gut–brain vagal signaling is not

imperative for PYY’s effects on food intake. Interestingly,

administration of the Y2R antagonist directly into the

hypothalamus prevents the satiating effects of peripheral

PYY3–36. Indeed, peripheral PYY3–36 increases c-Fos in the

ARC of the hypothalamus [23], while direct administration

of PYY3–36 into the ARC lowers food intake [23] and mice

that lack the hypothalamic Y2R are hyperphagic [91]. Y2R

is expressed predominantly by orexigenic NPY neurons in

the ARC [92], and peripheral PYY3–36 causes a decrease in

NPY mRNA through its action on Y2R [23], while Y2R

antagonism increases NPY [93]. Given that NPY neurons

of the ARC inhibit anorexigenic POMC neurons to increase

food intake, it is not surprising that peripheral PYY3–36

increases c-Fos in POMC neurons [23]. Thus, the current

model indicates that PYY3–36, which increases in the

plasma postprandially, suppresses food intake through the

inhibition of NPY and subsequent activation of POMC

neurons, exerting long-term suppressive effects through

melanocortin signaling.

Other intestinal factors

In addition to the more understood roles of CCK, GLP-1,

and PYY, a number of other intestinally derived hormones

and factors have been demonstrated to mediate the gut–

brain axis. Gut-derived serotonin (5-HT) is produced

within specialized EECs called enterochromaffin cells, is

released in response to nutrients [94], and acts locally on

receptors expressed by vagal afferents. Interestingly, while

5-HT receptor agonists can suppress food intake [95, 96],

and antagonism of 5-HT receptors attenuates the suppres-

sive effects of intestinal nutrients [97], a recent study

demonstrates that peripheral 5-HT can paradoxically con-

tribute to the development of obesity [98]. Thus, like many

other gut-derived peptides the role of 5-HT in energy

balance is likely more complex than originally hypothe-

sized, and requires further investigation.

In addition, a number of non-hormonal mediators within

the gut wall can activate the gut–brain axis. One such

intestinal factor is chylomicron-derived lipoprotein ApoA-

IV, which has been implicated in the control of food intake

in response to intestinal lipids. ApoA-IV is a lipoprotein

released from enterocytes during lipid absorption. Inter-

estingly, exogenous Apo-IV was found to acutely reduce

food intake [99], indicating that this lipoprotein might play

a role in signaling to activate the gut–brain axis upon

absorption of incoming lipids. In fact, the suppression of
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food intake in response to intestinal lipid infusion can be

attenuated by blocking the formation of chylomicrons with

Pluronic L-81 [100]. Pluronic L-81 also blocks the rise in

plasma CCK following lipid infusion [101], suggesting that

upon release from enterocytes, ApoA-IV signals to stimu-

late the release of CCK from adjacent EECs. Indeed, the

feeding suppressive effects of exogenous ApoA-IV are

blocked by CCK-1R antagonism, CCK receptor knockout

(KO), or by subdiaphragmatic vagotomy, supporting that

Apo-IV from chylomicrons triggers a CCK–CCK-1R-vagal

afferent gut–brain axis to suppress food intake [102].

Interestingly, fourth-ventricular infusion of Apo-IV sup-

presses food intake through activation of neurons in both

the NTS and ARC, and this requires CCK-1R receptors,

indicating that Apo-IV might reach the circulation to act

centrally in a similar CCK-dependent mechanism to sup-

press food intake [49].

Another group of signaling molecules that has been

implicated in the gut–brain axis is membrane lipid-derived

endocannabinoids. Given the potent orexigenic effects of

exogenous cannabinoids [103], cannabinoid receptor

antagonists, such as Rimonabant, were developed for the

treatment of obesity and successfully led to modest weight

loss despite side effects [104], suggesting that the endo-

cannabinoid system might be important in the

physiological regulation of food intake. Indeed, cannabi-

noid receptor 1 (CB1) is expressed in the nodose ganglia

[105] and peripheral CB1 receptor antagonism suppresses

food intake through capsaicin-sensitive, likely vagal, neu-

rons [106]. This suggests that endocannabinoids produced

in the intestine might play a role in the physiological

regulation of food intake, whereby increased production

leads to increased food intake during fasting. Indeed,

intestinal levels of the endocannabinoid anandamide

(AEA) increase following a 24-h fast, and peripheral AEA

stimulates short-term feeding, dependent on vagal afferents

[106]. CB1 agonists cause an inhibition in vagal afferent

firing [107], and the CB1 receptor has been shown to be

constitutively active [108], implicating a model where

increased intestinal endocannabinoid production and thus

vagal afferent CB1 signaling increases food intake during

fasting through the suppression of gut-derived satiety

signals.

Although the current review focuses mainly on the role

of EEC-derived gut–brain signaling, only about 1 % of the

intestinal cell population is comprised of EECS, while over

70 % of the body’s immune cells reside in gut-associated

tissues, and there is evidence that immune mediators

released within the gut wall play a role in gut–brain com-

munication [2]. Vagal afferent terminals express receptors

for, and respond to, immune products such as mast cell

mediators [109] and macrophage-derived cytokines [110].

In addition, the immune system might indirectly affect the

gut–brain axis where intestinal inflammation has been

linked to changes in EEC numbers and gut peptide

responses [111, 112], and immune mediators have been

shown to potentiate vagal responses to gut peptide hor-

mones [113, 114]. It is not surprising, therefore, that

changes in intestinal immune factors and inflammation are

linked to obesity and metabolic disorder (see [115] for an

in-depth review).

Gut–brain axis in the control of energy
expenditure

Despite energy intake being a major contributor to the

development of obesity, energy homeostasis involves a

balance between both intake and expenditure. Energy

expenditure can have a profound effect on body weight and

several studies have shown that decreased energy expen-

diture can predict weight gain [116–118]. Energy

expenditure consists of three components: basal metabolic

rate, thermogenesis, and the energy cost of physical

activity [119]. Adaptive thermogenesis, the regulated pro-

duction of heat, is influenced by environmental temperature

and diet [120]. Given that gut peptides can act as dietary

intermediates between the GI tract and the CNS to reduce

food intake, it is no surprise that gut peptides can alter

energy expenditure by activating energy regulation centers

of the CNS to initiate signaling pathways that ultimately

lead to a decrease in energy expenditure. Indeed, i.c.v.

administration of both GLP-1 [121] and OXM, a gut pep-

tide produced from the proglucagon gene [122], increases

energy expenditure in rodents. Further, intravenous

PYY3–36 has been suggested to increase energy expenditure

through an increase in postprandial thermogenesis and

resting metabolic rate [123]. However, paracrine regulation

of thermogenesis is also possible, as duodenal lipid sensing

has been shown to increase brown adipose tissue (BAT)

thermogenesis, through a CCK-dependent gut–brain–BAT

neuronal axis likely involving vagal afferents [124]. Given

that CCK can act through a gut–brain–BAT axis to regulate

energy expenditure, it is possible that other gut peptides,

such as GLP-1 and OXM, exert their effects on energy

expenditure through the activation of this axis. In support

of this idea, administration of these peptides has been

shown to increase BAT thermogenesis [125], however the

activation of a gut–brain–BAT axis in this context remains

to be elucidated. Further, a recent study indicates that

administration of a gut-restricted FXR agonist enhances the

thermogenesis and browning of white adipose tissue,

potentially through a similar gut–brain–adipose tissue axis

[126]. Studies are warranted to better characterize the

mechanisms by which nutrient sensing pathways contribute

to the regulation of energy expenditure, as the unveiling of
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a so-called gut–brain–BAT axis for the regulation of

energy expenditure could provide potential therapeutic

targets for the treatment and prevention of obesity and its

related diseases.

Gut–brain axis in the development of obesity
and the role of the gut microbiota

Increased consumption of highly palatable (high-fat, high-

sugar, hyper-caloric) foods, and possibly a reduction in

energy expenditure in westernized countries, are salient

contributors to the rising obesity rates worldwide [127, 128],

thus implicating altered gut–brain signaling mechanisms in

obesity. Indeed, nutrient sensing is impaired in obese and

high fat fed humans and animal models [39] as evidenced by

reductions in both postprandial levels of gut peptides [129–

131], as well as reduced sensitivity to such peptides [132–

134]. For example, obese rats exhibit reduced vagal sensi-

tivity to nutrients [135], as well as CCK [136] and GLP-1

[133], which may promote overeating and weight gain.

Although the role of nutrient sensing and vagal signaling in

the development of obesity has been extensively reviewed

elsewhere [107, 137], recent evidence suggests that the gut

microbiota may play a role in energy balance and could be a

mediating factor between obesogenic feeding and the

impaired nutrient sensing seen in obesity.

Gut microbiota

The gut microbiota is the term for the collective microbial

community of the entire GI tract, consisting of over 100

trillion microbes, outnumbering host cells by a factor of 10

[138, 139]. A complex co-evolution allows these

microorganisms to colonize and survive within the host

gut, forming a symbiotic relationship that provides a

nutrient-rich environment for the microbiota, and meta-

bolic, protective, and structural functions for the host.

When examining the metabolic impact of the gut micro-

biota, evidence suggests that it can regulate not only energy

extraction from the diet, through the production of short-

chain fatty acids (SCFA) from indigestible carbohydrates

[140], but it can also influence overall energy intake and

storage mechanisms [141, 142]. The effects of the gut

microbiota on host metabolism was first shown through the

use of germ-free (GF) mice, those lacking a gut microbiota,

which display reduced adiposity when compared to normal

mice, and exhibit resistance to diet-induced obesity, char-

acteristics likely due, in part, to reduced energy extraction

from the diet [140, 143]. While GF animals resemble

conditional KO animal models, allowing researchers to

examine mechanisms altered by the absence of a gut

microbiota or from insertion of a specific microbial

population (similar to a selective knock-in performed in

KO animals), caution must be raised when interpreting

results, as they have clear developmental differences from

conventionally raised animals [144]. For example, the

small intestine of GF animals is underdeveloped, with a

considerably reduced surface area, irregular villi, reduced

regeneration of epithelial cells, and slower peristalsis

[145]. In addition to intestinal physiology, GF animals

exhibit altered development of many body systems

including the immune system, the cardiovascular system,

and the CNS [144]. As such, studies involving microbiota

manipulation of conventionally raised animals, as opposed

to those that are completely sterile, may be a more physi-

ologically relevant method for investigating the impact of

the gut microbiota on host physiology. For example, high

fat feeding can induce drastic and rapid changes in the gut

microbiome [146, 147] and obese rodents and humans

exhibit significantly altered gut microbiota, with both

changes in composition and/or reductions in diversity [148,

149]. Preliminary studies suggested that obesity was

associated with an increase in the ratio of bacteria

belonging to the Firmicute phylum in comparison to the

Bacteroidetes phylum, which decreased following both diet

and surgically induced weight loss [150–152]. However,

some more recent studies have failed to replicate these

findings, and hypothesize that these effects were due more

to the diet than the obese phenotype [153, 154]. Nonethe-

less, it can be argued that despite variations in observed

phyla differences, specific changes at the genus and species

levels that are responsible for specific metabolic functions

are more important. For example, when the microbiota of

obese-prone rats and obese-resistant rats was transplanted

into GF recipients, researchers identified 25 operational

taxonomic units (OTUs) in the obese donors and recipients

that were absent in obese-resistant donors and recipients,

many of these OTUs belonging to microbial families

associated with energy extraction from the diet [155].

Accordingly, studies in mice and humans have shown that

obesity is associated with a microbiome enriched in genes

encoding enzymes involved in the extraction of calories

from indigestible carbohydrates [149, 152]. However, the

link between obesity or high fat feeding and microbial

energy harvest is not as clear as originally proposed [156].

Furthermore, while abundance of butyrate producing bac-

teria was positively correlated with BMI, a more abundant

network of bacteria labeled as primary degraders was

inversely correlated with BMI [157], further suggesting a

beneficial role for some, but not all, SCFAs [158–160].

Short-chain fatty acid signaling

The gut microbiota is responsible for the breakdown of

indigestible carbohydrates and the production of SCFA,
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which account for 5–10 % of human energy requirements

[161–164]. Manipulation of SCFA production through

administration of prebiotics, supplemental indigestible

carbohydrates that promote the growth and activity of

many microbial species in the gut, promotes weight loss

and improves metabolic parameters [165–167]. In addition,

SCFA, given both orally or directly into the intestine

reduce food intake and body weight in diabetic and healthy

rodents and humans [168–170]. SCFAs are produced pri-

marily in the distal GI tract with butyrate, propionate, and

acetate making up 90–95 % of the SCFA present in the

colon [171]. Butyrate is a major source of energy for the

colonic epithelium, while propionate primarily enters the

portal circulation to be used in gluconeogenesis and the

majority of acetate enters systemic circulation, reaching

peripheral tissues [172, 173].

In addition to these functions, one mechanism through

which SCFA are thought to influence host energy balance

is by activating signaling pathways in the intestinal

epithelium, resulting in gut peptide release in both rodents

and humans [170, 174]. SCFAs activate the GPRs, FFAR2

and FFAR3, formerly known as GPR43 and GPR41,

respectively [175, 176]. Although expressed in many other

tissues [177], both receptors have been localized to EECs,

with high expression in isolated L cells [178–180], and are

responsible for SCFA-induced release of gut peptides

[170]. For instance, although SCFAs stimulate GLP-1

release from primary intestinal murine cultures, this effect

is lost in FFAR2-/- and FFAR3-/- primary intestinal

cultures, and both FFAR2-/- and FFAR3-/- mice have

impaired GLP-1 release [181]. Furthermore, release of

GLP-1 and PYY following distal intestinal infusion of

propionate is absent in FFAR2-/- mice. Although the

relevance of intestinal FFAR2/3 signaling in whole body

energy homeostasis is debated [182] FFAR3 has recently

been localized to the peripheral nervous system [183, 184],

further suggesting that SCFAs signal via a gut–brain axis.

Gut microbiota and nutrient sensing

In addition to intestinal SCFA signaling, the gut microbiota

can influence gut–brain signaling via alterations in the

absorptive and secretory capacity of the intestinal epithelial

cells. GF mice exhibit altered levels of glucose transporters

and sweet taste receptors, and reduced expression of

FFAR2 and FFAR3, as well as long-chain fatty acid

receptors GPR40 and GPR120 [185, 186], which are

implicated in gut peptide secretion [56]. Accordingly, these

mice have reduced intestinal expression of CCK, GLP-1,

and PYY, which is associated with increased acceptance of

intralipid and sucrose, indicating that decreased nutrient

sensing in GF mice promotes increased energy intake [185,

186]. In addition, when GF mice are transplanted with the

microbiota of obese-prone or obese-resistant mice, the

obese donors and recipients exhibit alterations in intestinal

nutrient sensors and gut peptide levels in comparison to

obese-resistant donors and recipients [155]. Further, studies

indicate that specific bacterial strains can up-regulate

GPR120 or down-regulate GLP-1 expression in vitro [187].

Thus, it is plausible that changes in specific bacterial spe-

cies can alter luminal host nutrient-sensing and gut peptide

signaling.

Along these lines, studies with prebiotics have demon-

strated the capability of altering the gut microbiota to

subsequently improve gut nutrient-sensing mechanisms to

reduce food intake and weight gain. Prebiotic treatment has

been shown to increase the abundance of Faecalibacterium

prausnitzii and Bifidobacterium [188], which improve the

gut barrier through a GLP-2-dependent mechanism [189],

as well as through increased endocannabinoid signaling

[158]. This trophic effect of prebiotic treatment is associ-

ated with increased EEC differentiation and a subsequent

increase in gut peptide production [112]. In support of this,

GLP-1, GIP, and PYY are increased in both rodents and

humans in response to prebiotic treatment [190–192],

which is associated with increased satiety in humans [193]

and decreased food intake and adiposity in rodents [190–

192]. Thus, the gut microbiota can influence host luminal

nutrient sensing and gut peptide signaling, and it is possible

arises that gut microbiota manipulation can additionally

alter neuronal signaling and activation of the gut–brain axis

(Fig. 2).

Gut microbiota and neuronal signaling via gut–

brain axis

High fat feeding and obesity are associated with low-grade

inflammation, coined metabolic endotoxemia, which is

characterized by an increase in plasma lipopolysaccharide

(LPS) levels, a pro-inflammatory molecule derived from

the cell wall of Gram (-) bacteria [194]. It is hypothesized

that changes in the gut microbiota promote gut barrier

dysfunction, thus increasing circulating LPS levels (coined

metabolic endotoxemia) via a leaky gut, which can then

activate pro-inflammatory processes at peripheral sites

such as adipose tissue, through activation of its receptor,

toll-like receptor-4 (TLR-4) [112, 195]. When challenged

with a high fat diet, mice have increased circulating LPS

and systemic TLR-4 activation, white adipose tissue

inflammation, and reduced insulin sensitivity, all associ-

ated with changes in the microbiota composition [196]. In

addition to its potential peripheral actions, LPS may act

directly on the gut. For example, TLR4 activation is

increased in the gut of high fat fed obese rats, and this is

associated increased intestinal permeability and circulating

LPS [195], while intestinal deletion of MyD88, which is a
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central adaptor molecule to several TLRs, including TLR4,

protects against diet-induced obesity and metabolic endo-

toxemia [197]. In addition, LPS has been shown to inhibit

the pacemaker activity of the interstitial cells of Cajal

[198], highlighting the potential for LPS to influence cel-

lular depolarization, possibly in neurons. Indeed, vagal

afferents have been shown to express TLR-4 [199] and LPS

attenuates the ability of leptin to activate vagal afferent

neurons, both in vitro and in vivo [200, 201]. Thus, leptin

resistance at the level of vagal afferent neurons may be due

to increased LPS from high fat feeding. Given that vagal

leptin signaling is hypothesized to promote CCK signaling

and subsequent satiation, leptin resistance in vagal affer-

ents could inhibit CCK signaling in diet-induced obese rats,

providing a link between altered gut microbiota with CCK

resistance in models of high fat feeding and obesity [202].

A recently emerging concept is the ability of the gut

microbiota to directly alter CNS signaling. Whether the gut

microbiota impacts CNS signaling related to the regulation

of energy homeostasis is still relatively unknown, however,

ample evidence demonstrates that the gut microbiota can

influence CNS-mediated stress and anxiety behaviors. For

example, GF mice exhibit differences in motor control,

memory, and anxiety behavior, which are associated with

changes in brain chemistry [203–205]. Probiotic treatment

has been shown to normalize anxiety-like behavior in mice

with colitis, possibly through a vagally mediated mecha-

nism that regulates BDNF [206] and probiotic

supplementation in humans has been shown to improve

cognitive reactivity to sad mood through the reduction of

rumination and aggressive thoughts [207]. One mechanism

by which probiotics may be altering the gut–brain axis is

through improvements in local inflammation and gut bar-

rier integrity, as probiotics have been shown to attenuate

the HPA response to acute psychological stress through a

mechanism dependent on the prevention of gut barrier

impairment and a decrease in circulating LPS levels [208].

While CNS functions related to stress and anxiety are

clearly impacted by the gut microbiota, preliminary evi-

dence suggests this may also be true of energy balance. For

example, GF mice exhibit differences in anorexigenic and

orexigenic peptide levels in the brainstem and hypothala-

mus, and have an altered response to leptin [209]. Future

work should examine how manipulations in the gut

microbiota can impact CNS signaling mechanisms related

to energy homeostasis, either acutely or possibly at an early

age inducing developmental changes. Taken together, these

data demonstrate that the gut microbiota can impact both

local and central neural signaling, thus possibly influencing

host energy balance through a microbiota–gut–brain axis.

Conclusion and perspective

Obesity has become a worldwide social and economic

crisis, and to date, modern medicine has struggled to

develop effective therapeutic options. Instead, obesity

therapy is in a precarious situation, where doctors are

Fig. 2 Potential influences of

the gut microbiota on host gut–

brain axis. The gut microbiota

has been associated with

changes in anorexigenic and

orexigenic peptide levels in the

brainstem and hypothalamus, as

well as with changes in motor

control, memory, and anxiety

behavior, while the

development and activity of the

ENS has been shown to be

affected by an altered or absent

gut microbiota. In addition, the

gut microbiota has been

associated with changes in EEC

differentiation, expression of

nutrient receptors, the

expression and release of gut

peptides, and activation of

EECs via SCFAs. CNS central

nervous system, ENS enteric

nervous system, EEC

enteroendocrine cell, SCFA

short-chain fatty acid
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relying on therapeutic options without knowing the exact

mechanisms for their success. Gastric bypass remains the

most effective weight loss treatment available, yet

researchers are still uncertain as to how and why gastric

bypass achieves both rapid and sustained weight loss. It is

interesting to note that favourable alterations in the gut–

brain axis may contribute to the weight loss effect of

gastric bypass, given that bariatric surgery can increase the

number of gut peptide expressing EECs [210] and, conse-

quently, postprandial gut peptide secretion [211]. As such,

targeting of the gut–brain axis represents a very promising

area of therapy. For example, gut peptide mimetic drugs

have proved successful in both rodents [212, 213], as well

as clinically [214, 215] in reducing food intake and obesity.

Furthermore, increasing energy expenditure may prove an

effective strategy, and targeting intestinal mechanisms to

increase thermogenesis could be the best option. However,

given the redundancy in, and compensatory capacity of, the

regulation of energy homeostasis, single target approaches

to normalize energy balance may not achieve sustained

success. However, the development of monomeric peptide

co- and tri-agonists could bypass these challenges. For

example, one recently developed tri-agonist can increase

glucagon action to promote energy expenditure, while

activating the GLP-1R and GIP receptor to reduce food

intake and improve glucose control [216]. Therefore, novel

drugs targeting the gut to reduce intake while increasing

expenditure may prove to be the most efficacious strategies

for the treatment of obesity.

Pharmaceutical agents targeting the gut microbiota

provide another strategy for battling obesity and associated

metabolic disorders, as improvements in metabolic

parameters following gastric bypass have also been asso-

ciated with rapid and sustained shifts in the intestinal

microbiota [150, 154, 166, 217]. Interestingly, GF mice

colonized with the microbiota of those who have

Fig. 3 Effects of an altered gut microbiome on the gut–brain axis

potentially contributing to obesity. High fat feeding can alter host gut

microbiota to impair gut–brain axis signaling pathways described

within the current review, which can lead to increased food intake and

weight gain. Detailed are the currently known mechanisms through

which the gut microbiota can negatively impact the gut–brain axis

control of energy homeostasis, such as changes in both nutrient

sensing and gut peptide response, production of bacterial metabolites,

namely SCFAs, and via increased intestinal permeability and

metabolic endotoxemia. Numerous other mechanisms likely exist

but remain to be further explored. Furthermore, perturbations in early

life development or use of antibiotics may lead to an aberrant gut

microbiota that can promote similar harmful physiological changes.

EEC enteroendocrine cell, LPS lipopolysaccharide, SCFA short-chain

fatty acid
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undergone bariatric surgery, show reduced adipose tissue

deposition and increased energy expenditure as compared

to their control counterpart, indicating that the gut micro-

biota may play a direct role in the metabolic improvements

seen following bariatric surgery possibly through alter-

ations in SCFA production or decreased metabolic

endotoxemia via improvements in gut barrier [166, 218,

219]. Consequently, manipulations of the gut microbiota

may prove efficacious for the treatment of obesity,

although the time period in which intervention is most

effective remains to be elucidated, and appears vital for

success. For example, studies in mice demonstrate that

antibiotic treatment can have beneficial effects on lowering

body weight and food intake in high fat fed adult mice

[220, 221]. However, when given early in life, agents such

as antibiotics that disrupt the microbiota composition and

consequently the metabolic activity of the microbiota, can

affect host energy balance and can have long-lasting effects

on body weight in adulthood [222–225], which is consis-

tent with the role of the microbiota in host development.

Indeed, the assembly of the gut microbiota is associated

with the development of intestinal immunity and reduc-

tions in intestinal defense can lead to metabolic

perturbations [224, 226]. Interestingly, breastfeeding,

which plays an important role in the development of the gut

microbiota, is associated with altered secretion of gut

peptides [227], and early life stress, such as maternal

separation, leads to gut dysbiosis and subsequent devel-

opment of anxiety-like behaviour and altered brain

chemistry in mice [228]. Therefore, it is possible that the

negative metabolic effects associated with early life per-

turbation of the gut microbiota are due to altered

development of the gut–brain axis. As a result, it will be

crucial to identify not only which microbes must be

manipulated and how, but additionally what time period in

an individual’s life would yield the most effective treat-

ment outcome. The delivery of treatments aimed at

manipulating the adult gut microbiota is also not straight-

forward, as fecal microbiota transplantation for the

treatment of Clostridium difficile infection has been shown

to promote weight gain [229]. However, targeted manipu-

lation in individuals with metabolic dysregulations has

been effective, as fecal microbiota transplantation from

lean donors to individuals with metabolic syndrome

improves insulin sensitivity of recipients [230]. Taken

together, this evidence suggests that early gut microbiota

changes due to a western diet (high in fat and sugar) can

impair the gut–brain signaling axis, both at the level of gut-

sensing mechanisms as well as neural relays, ultimately

resulting in weight gain and obesity (Fig. 3). However,

much remains to be understood as to how and when these

interactions between microbe and host occur, in addition to

the specific microbial players. Consequently, a better

understanding of these principles can lead to the develop-

ment of therapeutic options targeting the gut microbiota,

providing a useful strategy for the treatment of obesity and

related diseases.
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