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Abstract Pluripotent stem cells differentiate into almost

any specialized adult cell type of an organism. PSCs can be

derived either from the inner cell mass of a blastocyst—

giving rise to embryonic stem cells—or after reprogram-

ming of somatic terminally differentiated cells to obtain

ES-like cells, named induced pluripotent stem cells. The

potential use of these cells in the clinic, for investigating

in vitro early embryonic development or for screening the

effects of new drugs or xenobiotics, depends on capability

to maintain their genome integrity during prolonged culture

and differentiation. Both human and mouse PSCs are prone

to genomic and (epi)genetic instability during in vitro

culture, a feature that seriously limits their real potential

use. Culture-induced variations of specific chromosomes or

genes, are almost all unpredictable and, as a whole, differ

among independent cell lines. They may arise at different

culture passages, suggesting the absence of a safe passage

number maintaining genome integrity and rendering the

control of genomic stability mandatory since the very early

culture passages. The present review highlights the urgency

for further studies on the mechanisms involved in deter-

mining (epi)genetic and chromosome instability, exploiting

the knowledge acquired earlier on other cell types.
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Introduction

Pluripotent stem cells (PSCs) have the potential to differ-

entiate into almost any specialized adult cell type of an

organism. PSCs can be derived from the inner cell mass

(ICM) of a preimplantation blastocyst [1–3], giving rise to

embryonic stem cell (ESC) lines. ESCs are undifferentiated

and self-renewing cells that, once successfully established

in vitro, preserve features and developmental potential

(pluripotency) of the founder cells of the embryo. Almost a

decade ago, Yamanaka’s group, enforcing the ectopic

expression of four key transcription factors Oct-4, Sox2,

Klf4, and c-Myc, reprogrammed for the first time somatic

terminally differentiated fibroblast cells to pluripotency [4,

5]. These cells, called induced pluripotent stem cells

(iPSCs), show similar self-renewal and differentiation

potential of ESCs [4, 6, 7]. Since then, many other repro-

gramming methods have been proposed which entail either

the genome integration of reprogramming genes (single

cassette reprogramming vectors with Cre-Lox mediated

transgene excision) or not (Adenovirus, Sendai Virus,

PiggyBac, minicircle vectors, episomal plasmids), the

overexpression of reprogramming proteins (proteins and
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mRNA delivery), the modulation of the expression of

pluripotency or reprogramming genes (miRNA) and epi-

genetic chromatin remodeling (e.g., hydroxamic acid,

trichostatin A and valproic acid) [8].

The potential use of these cells in regenerative medi-

cine and tissue replacement, for investigating in vitro

early embryonic development, screening the effects of

new drugs or xenobiotics, relies on their capability to

maintain genetic integrity during prolonged culture and

differentiation [9]. Although PSCs have specialized

mechanisms to preserve their genome integrity, such as

facilitated apoptosis, a *100 times lower mutation fre-

quency compared to differentiated cells, high efficient

DNA repair mechanisms and antioxidant defense [10, 11],

they accumulate genetic and epigenetic abnormalities

when maintained in long-term culture in vitro [for

reviews, see 12, 13]. The diversity of culture protocols

among independent laboratories perplexes the identifica-

tion of the causes of such variations, although the

presence or absence of a feeder layer, the animal or

artificial source of serum and the different methods used

for cell passaging seem to be major factors affecting the

maintenance of a correct genome integrity [14].

In this review, we present a detailed overview of the alter-

ations observed during long-term culture of human or mouse

ESCs and iPSCs. We grouped these numerous alterations into

five main types, such as chromosome number and structural

variations, microsatellite instability, epigenetic instability and

aberrations of mitochondrial DNA; also, for each of them we

gave a synthesis of the known causal mechanisms.

Chromosome number variations

The loss of euploidy in PSCs during long-term culture has

been widely reported by several independent laboratories.

Using classical and molecular cytogenetic techniques, gain

or loss of entire chromosomes has been described in both

human and mouse ESC lines, with a strong species speci-

ficity. Gain of specific chromosomes appears to confer

growth advantage and higher culture adaptation to cells

carrying numerical variations (see paragraph ‘‘Chromo-

some structural variations’’).

IPSC lines maintain a normal karyotype during the very

early culture passages [5, 15], but, as for ESCs, they display

chromosome number variability during prolonged culture.

Gain of entire chromosomes 12, 17, 20 or, to a lesser

extent, 16 and X (particularly in female cell lines) fre-

quently occurs in human ESCs (hESCs) [16–22],

representing about 50 % of all aberrations observed [18]. A

progressive tendency to chromosome gain occurs during

culture and thus it is advisable to avoid their use beyond

passage 70 [23].

Since the first significant study reporting the presence of

alterations in the chromosome make-up of mouse ESC

(mESC) lines [24], it has become evident that chromosome

number variations are a general feature of mESCs. More

recently, cytogenetic analyses performed on 540 [25] and

97 [26] independent mESC lines show, by 20 passages, that

about half of the cell lines has modal chromosomal num-

bers of 41, 42 or 39 and about 25 % of all aberrations are

trisomies of chromosomes 8 and 11. These same recurrent

abnormalities are also described in other cell lines together

with other numerical random aberrations [25–32].

As for ESCs, genetic variations in iPSCs may originate

either early from individual starting cells or during pro-

longed culture, but they may be caused also by the

reprogramming process itself. Large scale screenings of

more than 320 lines show that about 10–20 % of either

mouse or human iPSC lines contain numerous chromoso-

mal aberrations [20, 21, 33–35] and of these, about

40-45 % are recurrent and involve full trisomy of chro-

mosomes 8, 12 or X or aneuploidy of chromosomes 6 (in

1.4 % of the cell lines analyzed), 11 (16.9 %), 12 (5.63 %),

19 (1.41 %) and Y (7.04 %) [21, 30, 33, 36–40]. The

recurrence of these specific aberrations suggests a process

of culture adaptation during reprogramming [33], perhaps

conferring a selective and/or proliferative advantage.

Mechanisms involved in the generation

of chromosome number variations

In eukaryotic cells, four main mechanisms have been

described to control spindle assembly, microtubule/kine-

tochore coupling, centrosome duplication and sister

chromatid cohesion during cell replication (‘‘Box 1’’). The

failure of one or more of them is the main cause of chro-

mosome number variations described in cancer and

differentiated cells [41, 42]. Up to date, an abnormal

number of centrosomes, with the formation of multipolar

spindles, has been the sole mechanism described as pos-

sible cause of chromosome number variability in hESCs

[43–45]. To this regard, an abnormal number of centro-

somes, associated with an altered expression level of

mitotic spindle-related molecules such as Aurora A, CDK2

[44], BUB1, CENPE and MAD2 [45] results in the for-

mation of multipolar spindles and centrosome number

variability in 12 hESC lines derived from normal or

parthenogenetic embryos, respectively.

Chromosome structural variations

The presence of structural variations (SVs; duplications,

deletions, insertions, inversions, translocations, and com-

plex rearrangements) in PSCs has been extensively
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reported making use of array comparative genomic

hybridization. The most recurrent SVs detected are chro-

mosome deletions, which cause loss of heterozygosity, and

duplications, also defined as copy number variations

(CNVs) [46]. Importantly, the presence of an additional

copy of some specific genes (see below) confers to cells

resistance to apoptosis, growth and/or survival advantage,

leading to culture adaptation.

Following prolonged culture, hESC lines display several

SVs, among which frequent additional segments of chro-

mosomes 1, 12, 17 or 20 and deletions of chromosomes 8,

10, 16, 18 and 22 have been described (Table 1). Inter-

estingly, additional SVs of chromosomes 1, 12, 17 or 20

have also been described in cancer cells in association with

growth and/or survival advantage. Specifically, the dupli-

cation of the 12p13 band, containing the cell-cycle

regulator CCND2, the pluripotency marker genes DPPA3

(Stella-Related), GDF3 and NANOG, has been associated

with proliferative advantage and culture adaptation [17].

Proliferative advantage and culture adaptation in cancer

cells is also associated with gain of chromosome 17q,

containing BIRC5, encoding for the anti-apoptotic gene

Survivin [47], and the miRNA has-mir-21, which regulates

the anti-apoptotic gene Bcl2 [48, 49]. The duplicated

20q11.21 region contains the stemness gene DNMT3B,

TPX2 and KIF3B, involved in the cell cycle, ID1 in cell

growth, BCL2L1 and PDRG1 in cell survival and the

immature form of the micro-RNA miR-1825 [50–53].

Several random SVs were detected in 49 (38.0 %) out of

129 mESC samples, revealing a high frequency of

chromosomal aberrations. In 5 out of 129 mESC lines, the

most recurrent aberration, acquired within 12 passages of

culture, is the gain of 11qE2, a region that is fully syntenic

with human 17q25, the latter a common aberration detected

in hPSCs. Also, deletions of chromosomes 10qB and 14qC-

14qE have been observed in 13.5 and 4.8 % of the mESC

lines analyzed, respectively [30]. In addition, duplications

of specific regions on chromosome 1, 2 and 12 were

described in other mESC lines [54].

Comprehensive genome-wide analyses revealed that

both hiPSCs and miPSCs accumulate a number of SVs

higher than ESCs (during more than 50 passages) [18, 40,

55–59]. Whilst certain SVs may arise in both ESCs and

iPSCs, some are specific of iPSCs and are recurrent (as

found in ESCs) and shared by more that 25 % of all hiPSC

lines analyzed; instead, others result from the amplification

of 1q31.1, 8q24.3 and 17q21.1 [60] unique to hiPSCs. Loss

of 8q24.3 region, observed in 12 % of cell lines analyzed,

is found specifically in hiPSC lines [21].

In miPSCs, both gain and loss of SVs are variable

among different cell lines and distributed along the

majority of chromosomes [59].

Mechanisms involved in the generation of structural

variations

The main processes, whose failure leads to chromosome

deletions or duplications, are the homologous recombina-

tion (HR)—a repair mechanism that requires the presence

of DNA sequence identity between chromosomes—and the

Table 1 Summary of SVs described in hESC lines during prolonged in vitro culture

Structural variations Aberration Putative candidates References

Genes miRNA

1q11–1p36

1q31.3

Gain MCL1, IL6R, PSMD4, PSMB4, UBE2Q, UBAP2L, RBM8A,

RPS27, PIAS3, POLR3C, HIST2H2AA, LASS2, MRPL9,

JTB, HAX1, SHC1, APH-1A, BCL9, ZNF364, SSR2,

MAPBPIP, CCT3, MEF2D, C1orf85

hsa-mir-9-1 [22, 66, 182]

Partial chromosome 12 or

isochromosome 12p

Gain NANOG, DPPA3 (Stella-Related), GDF3, CCND2 n.d. [17, 22, 183]

17q11–q12,

17q21–17q23.2,

17q25–qter

Gain BIRC5 miRNA has-

mir-21

[17, 22]

20q11.21 Gain DNMT3B, TPX2, KIF3B, BCL2L1 PDRG1 n.d. [22, 66–68]

8q24.3 Loss n.d. n.d. [18, 21, 46, 53,

184]10p13pter Loss n.d. n.d.

16q Loss n.d. n.d.

18q21qter Loss n.d. n.d.

22q13qter Loss n.d. n.d.

n.d. not detected
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non-homologous recombination (NHR), which, by con-

trast, either employs micro-homology or does not require

homology. These processes are highly conserved in higher

eukaryotes and among different species and are active in

PSCs [61, 62]. Repair of DNA double strand breaks

(DSBs) by HR could be the source of deletions arising in

PSCs during prolonged culture, whereas several NHR sub-

pathways (‘‘Box 2’’) [non-allelic homologous recombina-

tion (NAHR), non-homologous end-joining (NHEJ),

microhomology-mediated break-induced replication

(MMBIR) and fork stalling and template switching

(FoSTeS)] seem to be specifically involved in the genera-

tion of duplications [63, 64].

One or more of these mechanisms are directly involved

in the onset of SVs in PSCs. The recurrent gain of the

20q11-13 region, in several hESC lines (i.e., SA01, H1,

VUB05, H7 and HSF1), might be caused by error-prone

HR events, as reported for the synthenic mouse 2H region,

‘hypermutable’ for the presence of microsatellite

D2MIT140 [65–68]. In addition, NAHR and NHEJ in

hESM01, hESM01f and HS27 hESC lines are responsible

for the mis-rejoining of DSBs, resulting in SVs [46].

In E14, AB2.2 and JM8 mESC lines, NAHR is

responsible of the appearance of frequent CNVs during

routine culture [69]. More recently, in TC1 and Xrcc4-/-

mESC lines, FoSTeS and MMBIR were proposed as can-

didate mechanisms for CNVs, as well as other more

complex rearrangements [70].

Both hiPSC and miPSC lines harbor higher levels of

SVs than ESCs [21, 33, 40, 55–57, 59], likely originated by

NHEJ, FoSTeS or MMBIR, which appear the prevalent

mechanisms during reprogramming and culture adaptation

[57, 58].

Microsatellites instability

Microsatellites are highly polymorphic stretches of repeti-

tive DNA regions, disseminated throughout the genome

and very abundant in eukaryotes. Microsatellite instability

(MSI) is a common hallmark observed in tumor cells,

which display additions or deletions of repeated units [71].

To this regard, only a very recent paper tackles the

occurrence of MSI in PSCs when maintained in culture for

a long period. Specifically, ten hESC lines that were ana-

lyzed for 122 microsatellites dispersed over the whole

genome, screened at early, medium and late passages from

passage 7 to 334, showed that 2 out of 10 hESC lines

accumulate altered (both deletions and duplications)

microsatellites patterns, involving about 1–20 % of the

total number of alleles, indicating very low and fluctuating

frequency of MSI. The novel alleles observed could take

over during prolonged culture as passenger mutations,

without conferring a selective advantage [53].

Mechanisms involved in microsatellite instability

In cancer cells, the main cause of MSI is the inactivation or

deficiency in the post-replicative mismatch repair (MMR)

process [72] (‘‘Box 3’’), due to the failure of some key

MMR genes. This failure was not observed in hESC lines,

whose expression of MMR genes and proteins resulted

unaltered [53].

Epigenetic instability

DNA methylation and histone tail modification are the

major epigenetic processes that contribute to regulate gene

expression in early developmental phases [for reviews, see

73, 74]. During prolonged in vitro culture, an increasing

number of studies reported the accumulation of epigenetic

alterations in PSCs [18, 66, 75–77]. These alterations

dramatically affect their pluripotency status [78, 79] and,

persisting during differentiation, are associated with aber-

rant phenotypes [80]. Following, we will summarize some

alterations of the epigenetic status of PSCs, comprising

modifications in imprinted genes, DNA and histone

methylation and X-chromosome inactivation (XCI) [81,

82].

Imprinted genes

In several hESC and hiPSC lines, an epigenetic drift in the

methylation pattern of some paternally (e.g., H19, PEG1,

SNRPN and IGF2) or maternally (e.g., MEG3, IGF2R and

SLC22A18) imprinted genes has been observed during

prolonged culture in many independent laboratories [83–

87]. These data were recently reinforced by a very com-

prehensive study that, analyzing more than 200 hPSC lines,

demonstrated an overall variable allelic expression of

several imprinted loci (DIRAS3, NAP1L5, MEST, H19,

ZIM2/PEG3, PLAGL1, GRB10 and GNAS) compared to

somatic cells [88].

In several mESC lines, the epigenetic status of H19,

Peg1, Snrpn and Igf2r imprinted genes significantly chan-

ges during about 30 in vitro passages [89]. Epigenetic

changes have also been reported in individual mESC sub-

clones derived from the same cell line and independently

expanded [90].

Altered epigenetic profile of imprinted genes, e.g.

H19, MEST, IGF2R, SNRPN, which during mammalian

development are involved in the regulation of cell

division [91, 92] may confer to ESCs a selective growth

advantage [81].
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DNA and histone methylation

Cytosines methylation changes in CpG dinucleotides may

arise both during the earliest stages of derivation and during

in vitro expansion [76]. The RASSF1, DcR1 and PTPN6

genes, selected for their altered methylation in cancer,

showed methylation modifications in their promoter during

long-term hESCs culture (from 22 to 175 passages) [66].

Variations of DNA methylation levels of the same and of

other genes (CBLN4, GPC3, RASSF1, RalGDS/AF-6 and

glypican 3) were reported in other hESC lines by other

groups, suggesting a high susceptibility of these loci to cul-

ture-induced changes [18, 75]. More recently, high-

resolution techniques brought to light that 20 independent

hESC lines have an almost identical DNA methylation pat-

tern at both single CpG sites and CpG islands, but displayed

high variability when the analysis was extended to global

DNA methylation and transcription. Various genes exhibited

transcriptional variations, while having demethylated pro-

moters, whereas others showed high variability in DNA

methylation of their promoters but expression stability [79].

Aberrant DNA methylation was also reported for few

mESC lines. Abnormal hypermethylation pattern of various

CpG islands was shown to cause dysregulated expression of

genes involved in various processes of differentiation. Also,

a strong correlation between abnormal methylation and

density of H3K27me3 (associated with transcription

repression; [93]) at specific loci was evidenced, H3K27me3

that mediates the recruitment of Dnmts to these specific sites

[94]. Fractions of both h- and m-ESC populations have high

levels of both H3K4me3 (associated with transcription

activation; [93]) and H3K27me3 (bivalent chromatin) at

lineage-specific loci [95], strongly influencing the differen-

tiation potential of the cell line. This heterogeneity

complicates the analysis of the epigenetic regulation in

PSCs, in particular during prolonged culture.

The analysis of DNA methylation in iPSCs is compli-

cated by the difficulty to discriminate between the impact

of the reprogramming process itself, which requires a

global remodeling of the epigenetic status, and the culture

conditions. When compared to ESC line profiles, many loci

or CpG islands resulted hypomethylated, whereas others,

being incompletely reprogrammed, were variable among

different iPSC lines [82]. Interestingly, these differences

are reduced following long-term culture ([40 passages),

suggesting continuous reprogramming of the iPSC popu-

lation [96].

X-chromosome inactivation

X-chromosome inactivation (XCI) is the functional hete-

rochromatinization and silencing of one of the two X

chromosomes in female cells, an event that occurs very

early during mammalian female embryonic development.

The X-inactive specific transcript (XIST) drives X chro-

mosome silencing, regulating the initiation of random XCI

in the inner cell mass of an embryo [97].

Several papers report variable status of XCI in female

hESCs. Numerous hESC lines exhibit different states of XCI,

together with a heterogeneity among cells of the same cell

line [77, 99]. In brief, in all hESC lines analyzed, three dif-

ferent classes of the X inactivation status were identified

(Fig. 1). Cells with both active X chromosomes (Xa) (Class

I) express very low or undetectable XIST RNA. During

differentiation they upregulate XIST and undergo XCI, as

described also for mESCs. These cells easily switch to class

II, in which the expression of the XIST RNA leads to the

random inactivation of one of the two X chromosomes (Xi).

Class II cells may switch to class III where the expression of

XIST is lost, leading to partial reactivation of some Xi-linked

genes [77]. However, XIST is not the sole player involved in

the XCI process. XCI and XIST up-regulation occurs in

combination with trimethylation of H3K27 on the inactive X

[100]. In hESCs, Class I cells show neither H3K27me3 nor

XIST foci, class II cells have H3K27me3 domains in all

XIST? cells, whereas class III cells do not display

H3K27me3 at all. Thus, XIST clouds correlate perfectly with

hypermethylation of H3K27, and loss of XIST in class III

cells always induces the depletion of H3K27me3 on the

inactive X [77]. The X chromosome status was found to be

hyper-variable both in different hESC lines and among

subculture or different culture passages in the same hESC

line [77, 101]. It has been clearly demonstrated that the

transit along the three classes of the X chromosome status

typically occurs with continuous passage and during long-

term culture. Under optimal culture conditions, active X

chromosome status can be stably maintained in female

hESCs for more than 100 passages [98]; however,

Fig. 1 Variations in X chromosome inactivation status in hESC lines

during long-term culture
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suboptimal culture conditions (i.e., 20 % O2 concentration,

harsh freeze–thaw cycles, high level of cell death during

passages) induce XCI instability [102, 103].

During reprogramming of somatic cells to iPSCs, the

acquisition of pluripotency should be coupled with X

chromosome reactivation. As for hESCs, hiPSC showed

variable XCI pattern [82] with non-random X inactivation

in low passage female hiPSCs, suggesting the maintenance

of the X-inactivation pattern of the somatic founder cells

[104, 105] or the presence of two active X chromosomes

[106, 107]. Erosion of the XCI status during culture, due to

loss of both XIST expression and foci with H3K27me3, has

also been reported [105].

The variable pattern of XCI observed in hPSCs is

probably an adaptive response of cells to the suboptimal

in vitro culture conditions. However, the skewed pattern

leads to an altered expression of X-linked genes, event that

dramatically affects the undifferentiated status and the

differentiation potential of the cell lines [102].

To our knowledge, no specific alterations in XCI have

been described in mESC or miPSC lines. Female mESCs

normally have two active X chromosomes (Xa) [108, 109]

likely maintained by the Oct4, Sox2 and Nanog pluripo-

tency regulating factors which bind to intron 1 of Xist and

repress its activity [110, 111].

Mechanisms involved in epigenetic instability

The several enzymes in DNA/histone methylation

(‘‘Box 4’’) and their cofactors [for a review 112] can be

causal to the epigenetic instability. Nevertheless, up to

date, the mechanisms producing aberrant epigenetic pat-

terns observed in PSCs during long-term culture are

unknown. DNA methylation, although critical during dif-

ferentiation, does not appear to be essential for the

maintenance of the undifferentiated status, since the triple

knockout Dnmt1-/-/Dnmt3a-/-/Dnmt3b-/- mESC line

proliferates, maintains pluripotency and retains their ability

to differentiate [113]. It has been suggested that ESCs

maintain stable heterochromatin and chromosomes by an

epigenetic mechanism independent of CpG methylation.

To this regard, previous studies have shown that ESCs have

specific epigenetic regulatory mechanisms, namely hyper-

dynamic architectural chromatin proteins that bind loosely

to chromatin. This state may contribute to maintain chro-

matin in a global open and plastic state [114, 115].

Aberrations of mitochondrial DNA

Human and mouse PSCs possess few and immature mito-

chondria, similar to those found in preimplantation

embryos [116]. The integrity of mitochondrial DNA

(mtDNA) has been scarcely investigated and its alterations

have been described in few hPSC lines. Specifically,

heteroplasmic missense or nonsense point mutations in

NADH dehydrogenases 1, 2 and 4 and in ATPase genes

were found in two out of nine (22 %) late-passage hESC

lines, mutations that impair the proteins function [66].

More recently, large mtDNA deletions (ranged between

4973 and 8876 bp) were identified in 16 hESC lines cul-

tivated from passage 3–334. The deletions observed may

be present since the early passages after derivation and

dispersed over the whole mitochondrial genome. Also,

several mutated mtDNA molecules can be present in a

single hESC line [117].

Homoplasmic and heteroplasmic single base mutations

(substitutions, insertions and deletions) were also identified

in four hiPSC lines reprogrammed from fibroblast of young

and healthy donors [118]. Up to date, no information is

currently available on the mtDNA integrity in mouse ESCs

and iPSCs.

Mechanisms involved in the generation of mtDNA

alterations

mtDNA deletions can arise during the replication phase,

through slipped-strand mispairing between direct homolo-

gous base-pairs [119]. Although mitochondria possess

active repair mechanisms, mtDNA has a high mutation

rate, 100- to 1000-fold higher than nuclear DNA [120],

probably due to the stressor environment of the mito-

chondria. The occurrence of point mutations in mtDNA has

been extensively described, due to a failure of Base Exci-

sion Repair pathway that does not repair the oxidative

DNA lesions [121].

Conclusions

Following the derivation of the first hESC line in 1998 [3]

and, in 2006, of iPSCs [4], PSCs have represented a great

promise for future therapeutic and clinical applications.

However, PSCs are prone to genomic and (epi)genetic

instability during in vitro culture [31, 122, 123], a feature

that seriously limits their real potential use. Culture-in-

duced aberrations of specific chromosomes or genes are

almost all unpredictable. Although aberrations of chro-

mosomes 12, 17 and X for hPSCs or 8 and 11 for mPSCs

are recurrent in several different cell lines, as a whole,

aberrations differ among independent cell lines and may

arise at different culture passages. Regarding the effects

that aberrations might have on PSCs, several studies indi-

cate that their stemness is not affected [29, 31, 124–126].

However, upon differentiation, in the presence of specific

abnormalities such as trisomy of chromosome 12,
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transplanted hPSCs increase their tumorigenicity [127].

Similarly, in the presence of trisomy of chromosome 21,

the electrophysiological features of hESCs-derived car-

diomyocytes are impaired [128] or the degeneration of

mESCs-derived neurons is increased [129].

For successful therapeutical applications, the goal is the

generation of Good Manufacturing Practice-grade PSCs.

Two are the levels of intervention that are urgently needed:

(1) to establish protocols that eliminate or minimize

(epi)genetic and chromosome instability during culture, by

acting, for iPSCs, on the reprogramming process itself

(e.g., episomal plasmids, mRNA and microRNA tech-

nologies) and, for all PSCs, on the culture environmental

conditions (e.g., animal feeder- and serum-free culture,

reduction of ROS levels by inducing HIF pathway,

increased levels of CHK1 or nucleoside or vitamin C

supplementation, to reduce replication stress) [130, 131];

promising methods rely on engineered in vitro culture

techniques that result in a downstream improvement of the

karyotype stability [132–135] and quality of cell differen-

tiation [136, 137]. (2) The absence of a safe passage

number makes mandatory the monitoring of the genome

integrity in PSCs, with the establishment of efficient and

systematic methods, beyond the conventional banding

techniques, spectral karyotyping, multicolor fluorescent

in situ hybridization and array-based comparative genomic

hybridization [32]. To this regard, an important contribu-

tion might derive from high-throughput microscopy, which

allows the rapid and automated acquisition of numerous

images, and the exome sequencing technique, the latter a

cost-effective alternative to whole-genome sequencing

[130]. Furthermore, the present review highlights the

urgency for further studies on the mechanisms involved in

determining (epi)genetic and chromosome instability,

exploiting the knowledge acquired earlier on other cell

types.

Box 1

The spindle assembly checkpoint (SAC) [for a review see

138] controls erroneous attachments of chromosomes to the

mitotic spindle, to ensure proper chromosome segregation

[139]. Defects or dysfunction in proteins involved in SAC

lead to chromosome instability (onset of aneuploidies or

deletions) in daughter cells [140, 141].

Similarly, microtubule/kinetochore coupling (attach-

ment of spindle microtubules to the kinetochore) is crucial

for the correct segregation of chromosomes during ana-

phase. Erroneous coupling (monotelic, syntelic or

merotelic attachment) is the most common cause of

genomic instability [142, 143], resulting in chromosome

missegregation, mitotic delay and in aneuploid cell

progeny [144–146]. Merotelic kinetochore attachment is

the most frequent cause of aneuploidy in mitotic cells [147]

and it is the primary described mechanism of chromosome

instability in tumor cells [148]. The chromosomal passen-

ger complex is responsible for the correction of these

anchoring errors and its abolishment induces accumulation

of errors in chromosome anchoring, with the consequent

onset of abnormalities [149–151].

Aberrant centrosome duplication may adversely affect

the maintenance of cell polarity and an abnormal number

of centrosomes lead to multipolar spindles, resulting in

chromosomal segregation abnormalities and aneuploidy of

daughter cells [152, 153]. Several cell cycle kinases oper-

ate during the centriole duplication [154–156]. Among

these, the Polo-like kinase 4 (Plk4) plays a key role in

centrosome cycle [157], a process whose disruption causes

aneuploidy [158, 159].

Sister chromatid cohesion is the process by which sister

chromatids are paired and held together for alignment on the

metaphase spindle. Cohesin is a chromosomal protein com-

plex which regulates the correct distribution of the chromatid

into the two daughter cells [160]. The lack or altered expres-

sion of cohesins induces premature sister separation or failed

chromosome disjunction at the beginning of anaphase [161,

162], leading to cell death or aneuploidy [42].

Box 2

NAHR is one of the best-characterized recombination-based

mechanisms in primates and it is responsible for recurrent

CNVs. In this process, two regions of DNA with high

sequence similarity are used for the repair of a DNA double

strand break [163]. NAHR is mostly mediated by 10–300 kb

long interspersed low-copy repeats [highly homologous

sequences (95–97 %)] [164, 165] or short microsatellite with

recombination hotspots that facilitate the occurrence of a

misalignment during the strand invasion step [63].

NHEJ, MMBIR, FoSTeS are involved in the generation

of CNVs, particularly in the formation of non-recurrent

variation in copy number of portions of DNA [166]. NHEJ,

together with HR, is one of the major mechanisms used by

eukaryotic cells to repair DSBs [167], but some authors

proposed this mechanism to explain chromosome dupli-

cation [168, 169]. MMBIR is involved in repairing single

double-strand ends when portions of single-stranded DNA

are present and share microhomology with the 30 single-

strand end from the collapsed fork [63]. Similarly, the

replication-based mechanism FoSTeS acts when a repli-

cation fork stalls for the presence of a DNA lesion,

allowing the lagging strand to detach and move to a region

of micro-homology on a neighboring replication fork

[170].
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Box 3

Repetitive DNA regions are more prone than others to

accumulate DNA replication errors and the failure of

some key MMR genes (MLH1, MSH2, MSH6 and PMS2)

or the minor accuracy of the process cause the accumu-

lation of unrepaired mitotic errors. A replication slippage

of the DNA polymerase occurs through five main steps:

(1) DNA polymerase tackles a direct repeat during the

DNA replication process; (2) DNA polymerase arrests and

is, for a short time, released from the template strand; (3)

the newly synthesized strand detaches from the template

strand and pairs with another direct repeat upstream,

forming a loop; (4) DNA polymerase, returning on the

template strand, restarts with the normal replication pro-

cess, but during the course of reassembling, the

polymerase slips and repeats the insertion of dNTPs that

were previously added. This faulty event causes the

insertion of new nucleotides. Usually, MMR proteins

recognize the temporary insertion–deletion loop, but when

they do not work properly, this loop results in frame-shift

mutations [171–173].

Box 4

The principal molecules involved in cytosines methylation

are the DNA methyltransferases (Dnmt). Dnmt1, Dnmt3a,

Dnmt3b and Dnmt3L are a family of proteins implicated in

the maintenance of the correct DNA methylation status.

Dnmt1, localizing to DNA replication foci and showing a

strong affinity for hemi-methylated DNA, plays a major

role in the maintenance of methylation in dividing cells

[174, 175]. Dnmt3a and Dnmt3b, working on unmethylated

as well as on hemi-methylated substrates, possess a de

novo methylation activity [176, 177]. Dnmt3L (Dnmt3-

like) methyltransferase is a regulator of DNA methylation,

it lacks the catalytic functional domains and stimulates de

novo methylation by Dnmt3a and Dnmt3b [178, 179]. In

mESCs, Dnmt3a and Dnmt3b proteins are physically

associated and act synergistically to methylate the pro-

moters of pluripotency genes (i.e., Oct4, Nanog) during

differentiation processes [180].

Covalent histone tails modifications govern the confor-

mation of the chromatin and influence the gene transcription

by promoting or restricting the recruitment of gene regula-

tory proteins [181]. Histones can be methylated on lysine

(K) and arginine (R) residues and H3 and H4 histone tails are

the main targets of methylation [for a review, 112]. Several

histone-modifying enzymes including lysine or arginine

methyltransferases, serine-threonine kinases, and acetyl-

transferases are involved in this process [93].
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8. González F, Boué S, Izpisúa Belmonte JC (2011) Methods for

making induced pluripotent stem cells: reprogramming à la
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