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Abstract Sebaceous glands (SG) are exocrine glands that

release their product by holocrine secretion, meaning that

the whole cell becomes a secretion following disruption of

the membrane. SG may be found in association with a hair

follicle, forming the pilosebaceous unit, or as modified SG

at different body sites such as the eyelids (Meibomian

glands) or the preputial glands. Depending on their loca-

tion, SG fulfill a number of functions, including protection

of the skin and fur, thermoregulation, formation of the tear

lipid film, and pheromone-based communication. Accord-

ingly, SG abnormalities are associated with several

diseases such as acne, cicatricial alopecia, and dry eye

disease. An increasing number of genetically modified

laboratory mouse lines develop SG abnormalities, and their

study may provide important clues regarding the molecular

pathways regulating SG development, physiology, and

pathology. Here, we summarize in tabulated form the

available mouse lines with SG abnormalities and, focusing

on selected examples, discuss the insights they provide into

SG biology and pathology. We hope this survey will

become a helpful information source for researchers with a

primary interest in SG but also as for researchers from

unrelated fields that are unexpectedly confronted with a SG

phenotype in newly generated mouse lines.
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Introduction

As in many other fields of biomedical research, genetically

modified laboratory mice became the mainstay of experi-

mental dermatological research [1]. Such mouse lines are

employed to better understand skin development, structure

and function, to identify the molecular basis of a disease, to

study its pathophysiology, and in some cases even to assess

a potential therapeutic approach. Many of the engineered

(=transgenic, knockin, knockout, and their several deriva-

tives), but also a number of spontaneous, radiation-induced

and chemical mutagenesis-induced mutants exhibit various

types and degrees of abnormal cutaneous phenotypes. Such

mutant lines have been once carefully compiled in a highly

influencing but nowadays not fully up-to-date textbook [2].

More recently, a number of review articles focused on

mouse lines with abnormalities in hair follicle morpho-

genesis, cycling, and/or structure [3, 4] or pigmentation [5].

Because mutant mice provide important clues about the

function of gene products, such surveys have proved highly

useful to researches with different interests, ranging from

skin genetics aficionados to investigators from unrelated

fields that are confronted with an unexpected skin pheno-

type in a newly generated or identified mouse line.

The last years witnessed an increased interest in the

sebaceous glands (SG) [6–9]. These tiny exocrine glands,

most commonly found in the dermis in association with a

hair follicle (Fig. 1a), secrete an oily substance with

manifold established or putative functions (see below).

Recent advances in SG research include the identification

of different stem cell pools regulating SG development and

homeostasis [10, 11] novel insights into pathways regu-

lating sebaceous lipogenesis [12–15] and a broadening of

sebum’s functional repertoire [16]. Here, after a brief

introduction to SG physiology and pathology, we

& Marlon R. Schneider

marlon.schneider@lmu.de

1 Institute of Molecular Animal Breeding and Biotechnology,

Gene Center, LMU Munich, Feodor-Lynen-Str. 25,

81377 Munich, Germany

Cell. Mol. Life Sci. (2016) 73:4623–4642

DOI 10.1007/s00018-016-2312-0 Cellular and Molecular Life Sciences

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00018-016-2312-0&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00018-016-2312-0&amp;domain=pdf


summarize in tabulated form the available mouse lines with

SG abnormalities and, by concentrating on selected

examples, discuss the insights they provide into SG biol-

ogy. Importantly, in addition to providing insights into the

role of the targeted gene/protein in sebocyte development

or sebaceous lipogenesis, these mouse lines may be suit-

able for further applications, including pre-clinical studies

assessing the effect of novel compounds in decreasing or

increasing SG activity.

Morphological and functional diversity
of sebaceous glands

SGs are exocrine glands displaying holocrine secretion,

meaning that the whole cell forms a secretory product upon

disruption of the membrane [8, 17]. Sebocytes, the foremost

cell type within SGs, can be distinguished at different stages

of differentiation within the same acinus. Sebocytes in the

peripheral zone are flattened and mitotically active (Fig. 1b,

c). As sebaceous differentiation takes place, these cells

accumulate large numbers of cytoplasmic lipid droplets at

the expense of other cell structures [18] and are gradually

dislodged towards the center of the gland, forming the

maturation zone (Fig. 1b, c). Cell disruption and release of

lipids and cellular debris eventually take place at the center

of the gland, in the necrosis zone (Fig. 1b). Before reaching

the skin surface via the infundibulum [19] the SG product

passes a glandular excretory duct composed of stratified

squamous epithelium. Sebum’s classical function is the

formation of a protective film that waterproofs and lubri-

cates the skin and the hair shafts. However, several other

functions have been proposed for sebum, including antimi-

crobial and antioxidative properties [8, 9]. Native (=freshly

released) human sebum contains squalene, cholesterol, wax

esters, and triglycerides [20]. Triglycerides are partially

hydrolyzed as sebum passes the hair canal, making super-

ficial sebum to contain free fatty acids as well as lower

amounts of mono- and diglycerides. Notably, sebum com-

position is remarkably species and age-specific.
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Fig. 1 Morphology of the

pilosebaceous unit and fine

structure of the sebaceous gland.

a H&E-stained human scalp

hair follicle in sagittal section

showing the different follicular

compartments. b High

magnification image of the

sebaceous gland. The peripheral

(P), maturation (M), and

necrosis (N) zones are indicated.

c Transmission electron

micrograph showing flat,

undifferentiated sebocytes in the

proliferative (P) zone and cells

undergoing sebaceous

differentiation and bearing

numerous lipid droplets (white

spots) in the cytoplasm in the

maturation (M) zone

Reproduced with permission

from [18]
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Sebocytes derive from leucine-rich repeats and

immunoglobulin-like domains 1 (LRIG1)-positive cells

during the morphogenesis of the pilosebaceous unit [21].

The transmembrane protein LRIG1, an inhibitor of the

EGFR/ERBB receptor family, also marks putative SG stem

cells at the isthmus of the HF, which renew the SG and the

infundibular epithelium [10, 11]. Numerous additional

transcription factors and signaling proteins control SG

development, growth, and homeostasis, including MYC,

BLIMP1, and Indian hedgehog [8, 9]. In adults, sebum

production is strongly influenced by steroid and peptide

hormones, growth factors, and neuroendocrine regulators

[8, 9].

In addition to the hair follicle-associated SG, modified

and enlarged SGs (often termed ‘‘free’’ or ‘‘ectopic’’

glands) are found at distinct non-hairy sites such as the

nipples, around the genitals, in the oral epithelium, or in the

eyelids (Fig. 2). SGs in the latter location are termed

Meibomian glands; they secrete a complex mixture of

lipids (meibum) that upon delivery to the eye surface form

the tear film lipid layer [22]. Another ectopic SG is the

preputial gland. This paired gland is located between the

skin and the abdominal muscles of male rodents, close to

the genital bulb [23–25]. The preputial gland produces a

mixture of lipids containing pheromones that have a role in

territorial marking and in attracting females [23, 26]. The

Harderian gland is located behind the eyeball [27] and is

found in all groups of terrestrial vertebrates [28]. The

pigment and the lipids with porphyrins produced by this

gland reach the surface of the nictitating membrane by a

duct and protect the cornea [28]. They are important for the

grooming of the fur [27] and seem to facilitate the move-

ment of the third eyelid [29].

The SG is also involved in the pathogenesis of diverse

diseases. Meibomian gland dysfunction, for instance, fre-

quently characterized by terminal duct obstruction and/or

qualitative/quantitative changes in the glandular secretion,

may result in alteration of the tear film and eye irritation or

inflammation [30]. More commonly known is the key role

of excessive sebum production in the pathogenesis of acne

vulgaris, the most frequent cutaneous disorder during

adolescence [31, 32]. Finally, SG degeneration is an early

event in many types of cicatricial alopecia in humans and

in some animal models for the disease [33, 34]. The asebia

mouse, for instance, a well-characterized model for pri-

mary cicatricial alopecia and one if the earliest mouse

mutant lines showing SG abnormalities (Table 1), develops

SG atrophy due to a spontaneous mutation in the gene

encoding the enzyme stearoyl coenzyme A desaturase 1

[35]. Consequently, normal desquamation of the hair fol-

licle inner root sheath and hair shaft regression are

prevented, resulting in inflammatory destruction of the hair

follicle [36].

Mouse lines with sebaceous gland abnormalities:
the tables

The mouse lines included in the present tables were gath-

ered with the help of a query at PubMed (http://www.ncbi.

nlm.nih.gov/pubmed) with the search terms: ‘‘mouse’’ and

‘‘sebaceous/sebocyte/Meibomian/preputial/Harderian’’ and

by searching the Mammalian Phenotype browser (http://

www.informatics.jax.org/searches/MP_form.shtml) with

the search terms abnormal SG morphology (including

‘‘absent sebaceous glands’’, ‘‘abnormal skin sebaceous

gland morphology’’, ‘‘enlarged sebaceous glands’’; ‘‘small

sebaceous gland’’, ‘‘sebaceous gland atrophy’’, ‘‘sebaceous

gland hypoplasia’’, ‘‘abnormal SG number’’, ‘‘absent SG’’,

‘‘abnormal sebocyte morphology’’), abnormal preputial

gland morphology (including ‘‘abnormal male preputial

morphology’’, ‘‘squamous metaplasia of the preputial

Hair follicle-associated sebaceous glands
Skin and fur protection, thermoregulation,
hair follicle integrity, antimicrobial activity etc.

Preputial glands
Pheromone-based
comunication

Meibomian glands
Generation of the tear lipid
film, corneal protection

Harderian glands
Thermoregulation, photoprotection,
secretion of pheromones

Fig. 2 Major types of

sebaceous glands and their

localization in mice. See the text

for details and references
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Table 1 Laboratory mouse lines with abnormalities in the hair follicle-associated sebaceous glands

Gene symbol Mutant name
(if applicable)

Type Characteristics/abnormalities References

Soluble factors

Amphiregulin (AREG) AREG tsTg Enlarged SG producing large amounts of sebum [51]

Ectodysplasin A1 Eda tsTg Enlarged SG [61]

iTg Enlarged SG, increased number of sebocytes, excessive
sebum production

[62]

Epigen (EPGN) EPGN itsTg Enlarged SG, increase in the number of cells per gland,
increased sebum production; SG hyperplasia is
dependent on continuous epigen supply

[53]

[52]

Fatty acid-binding protein,
epidermal/fatty acid-binding
protein 5 (FABP5)

Fabp5 fKO Reduced size of SG, reduction in the number of sebocytes,
altered lipid composition

[63]

Neuregulin-3 (NRG-3) Nrg3 tsTg Increased number and size of sebocytes, SG are mis-
positioned and hyperplastic

[64]

Noggin Nog tsTg Hypertrophic SG; pilosebaceous units at the expense of
sweat glands in the footpads

[65]

Nog tsTg Ectopic and increased sebocyte differentiation [66]

Transforming growth factor alpha
(TGFA)

TGFA Tg SG hyperplasia [50]

Receptors

Activin receptor type-1B (ACTR-IB) Acvr1b tsKO Enlarged SG, increased numbers of SG in the skin [67]

Fibroblast growth factor receptor 1
and 2 (FGFR 1 ? 2)

Fgfr1 ? Fgfr2 tsKO Loss of SG [68]

Fibroblast growth factor receptor 2b
(FGFR 2b)

Fgfr2 tsKO SG atrophy; from postnatal day 6 evident differences in
the rate of SG growth between the knockout and control
mice, by 3 months: virtual absence of SG

[69]

Glucocorticoid receptor (GR) Nr3c1 tsTg Hypertrophic SG [70]

Integrin alpha-V or integrin beta-1 ITGAV or
ITGB1

tsTg SG enlargement [71]

Integrin beta-1 Itgb1 tsKO At 7 weeks of age: no identifiable remnants of SG [72]

Leucine-rich repeat-containing G
protein-coupled receptor 5

LGR5 itsTg LGR5 overexpression during embryogenesis: enlarged
SG, increased degradation and accelerated maturation
of sebocytes

[73]

Mutated Smoothened Smo itsTg Ectopic sebocytes, increase in size and number of SG
upon increased hedgehog signaling

[74]

Neurogenic locus notch homolog
protein 1 (notch 1)

Notch1 itsTg Enlarged SG [75]

Peroxisome proliferator-activated
receptor gamma

Pparg tsKO Atrophy of SG, dystrophy of SG [76]

Tumor necrosis factor receptor
superfamily member EDAR/
ectodysplasin-A receptor

Edar tsTg Enlarged SG [77]

Vitamin D3 receptor (VDR) Vdr fKO Enlarged SG [78]

Transcription factors

Catenin beta-1/beta-catenin Ctnnb1 itsTg Initial SG duplication, then inhibition of sebocyte
differentiation and loss of SG

[79]

Delta N87betacat (beta- catenin) Ctnnb1 tsTg Development of ectopic SG [80]

CCAAT/enhancer-binding protein
alpha and beta (c/EBP alpha and
c/EBP beta)

Cebpa/Cebpb itsKO Blocked sebocyte differentiation, lack of sebum
production, unusual looking sebocytes

[81]

Homeobox protein BarH-like 2 Barx2 fKO Enlarged SG [82]

Homeobox protein DLX-3 Dlx3 tsKO Enlarged SG [83]

Krüppel-like factor 4 KLF4 itsTg Atrophy of SG at 9 days after Doxycyclin treatment [46]

Delta lymphoid enhancer-binding
factor 1 (LEF-1)

Lef1 itsTg Enlarged and ectopic SG [84]

Delta N lymphoid enhancer-binding
factor 1 (LEF-1)

Lef1 tsTg Development of skin tumors with sebaceous
differentiation

[85]

Lymphoid enhancer-binding factor 1
(LEF-1)

Lef1 tsTg Sebaceous tumors, tumors with differentiated sebocytes [86]
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Table 1 continued

Gene symbol Mutant name
(if applicable)

Type Characteristics/abnormalities References

Myc proto-oncogene protein MYC itsTg Enlarged SG, increase in cell number [48]

itsTg Enlarged SG, increased number of sebocytes, stimulation
of sebaceous differentiation at the expense of hair
differentiation

[45]

itsTg Enlarged SG, increase in the number of differentiated
sebocytes at the expense of hair differentiation

[87]

tsTg Enlarged SG [88]

itsTg Enlarged and disorganized SG [47]

Myc tsKO Impaired SG secretion [49]

PR domain zinc finger protein 1/B
lymphocyte-induced maturation
protein 1 (Blimp-1)

Prdm1 itsKO Increased SG size (in some animals) [89]

itsKO SG enlargement [90]

tsKO Enlarged SG, sebum lipids: increase in cholesterol esters,
triglycerides and cholesterol, increased sebum
production

[91]

Protein C-ets-1/p54 Ets1 iTg In some cases: enlarged SG [92]

Recombining binding protein
suppressor of hairless/RBP-J kappa

Rbpj tsKO Impaired SG differentiation [93]

Trans-acting T-cell-specific
transcription factor GATA-3/GATA-
binding factor 3

Gata3 tsKO Enlarged SG from P7 onwards [94]

Transcription factor A, mitochondrial
(mtTFa)

Tfam tsKO Lack of SG [95]

Transcription factor AP-2-alpha and -
gamma (AP2-alpha and AP2-
gamma)

Tfap2a and
Tfap2c

tsKO Defects in SG differentiation [96]

Transcription factor E2-
alpha/transcription factor 3 (TCF-3)

Tcf3 itsTg Impairment of SG development [97]

Transcription factor SOX-21 Sox21 fKO At P12: enlargement of SG [98]

Transcription factor SOX-9 Sox9 tsKO SG morphogenesis is blocked, absence of SG progenitor
cells

[99]

Transcription factor Sp6/krueppel-like
factor 14

Sp6 fKO Increase in SG size [100]

Tumor protein 63 (p63) Trp63 fKO Absent SG [101]

Delta NP63 Trp63 itsTg Absence of SG (no morphogenesis) [102]

Zinc finger protein GLI1 GLI1 tsTg Differentiation into cells similar to sebaceous glands and
epidermal cysts

[103]

Zinc finger protein GLI2 Gli2 tsTg Prominent SG duct, additional pairs of highly branched
SGs, elongated and enlarged ducts started at p25, at p45
a second pair of SG appears above the existing one;
later: additional SG develop at infundibulum-
epidermal junctions, ectopic SG

[104]

Gli2 tsTg Deficient/rare SG upon suppression of hedgehog signaling [74]

Enzymes

1-Phosphatidylinositol 4,5-
bisphosphate phosphodiesterase
delta-1/phospholipase C-delta-1

Plcd1 fKO Hyperplasia of SG, increased number of sebocytes, skin
tumors with characteristics of interfollicular epidermis
and SG

[105]

Acyl-CoA desaturase 1/stearoyl -CoA
desaturase 1

Scd1 Asebia Spont Absence of SG [37]

fKO Degenerated SG [106]

tsKO SG hypoplasia, depletion of sebaceous lipids, paucity of
lipid- enriched sebocytes/lack of mature sebocytes;
large reduction in sebaceous lipids: reduced wax diester
and triglyceride content

[107]

fKO SG atrophy [108]

Asebia-2J Spont Hypoplasia of SG, skin lipids: reduction in sterol esters
and cholesterol, loss of diol esters

[36]

Flake ENU Reduced production of sebum, impaired clearance of skin
infections

[109]
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Table 1 continued

Gene symbol Mutant name
(if applicable)

Type Characteristics/abnormalities References

Bis (50-adenosyl)-triphosphatase Fhit fKO Sebaceous tumors (Fhit±) [110]

Cathepsin L1 Ctsl nackt Spont SG Hyperplasia [111, 112]

Ceramide synthase 4 (CerS4) Cers4 fKO Enlarged SG with multiple lobules [113]

fKO Altered lipid composition of SG, enlarged SG [114]

Cystathionine beta-synthase Cbs fKO Hyperplastic SG [115]

Diacylglycerol O-acyltransferase 1 Dgat1 fKO Atrophy of SG (differences in fur lipid content in older
mice)

[116]

DNA (cytosine-5)-methyltransferase
1 (Dnmt1)

Dnmt1 tsKO Hyperplastic SG [117]

Elongation of very long-chain fatty
acids protein 3

Elovl3 fKO Hyperplasia of SG, imbalance in the sebum lipid content
(increase in the hydrophobic components)

[118]

Exostosin-1 Ext1 itsKO Hyperplasia of SG, increased sebum production from p55,
4- fold increase in SG number (induced from p20 to
p55), hyperplastic SG with altered morphology
presenting irregular shapes and thickening of the SG
canal

[119]

Fatty acid 2-hydroxylase Fa2h fKO Hyperproliferation of sebocytes, enlarged SG, dilated hair
canals are filled with sebum, altered sebum composition
(reduced amount of wax diesters, increased amount of
wax monoesters, free fatty acids and cholesterol)

[120]

Focal adhesion kinase (FADK) Ptk2 tsKO SG hypoplasia [121]

Gamma secretase Psen1/Psen2 tsKO Failure to form SG [122]

Group 2 secretory phospholipase A2 PLA2G2A tsTg SG hyperplasia [123]

Group 3 secretory phospholipase A2 PLA2G3 Tg SG hyperplasia in mice older than 9 months of age [124]

GTPase HRas (H-RasG12V) Hras KI Lip skin: more SG than in control mice [125]

GTPase KRas (kRas G12d) Kras KI Hyperplasia of SG [126]

GTPase KRas (kRas G12D) Kras KI Enlargement of SG, sebaceous cysts, dysplasia of SG [127]

Histone deacetylases 1 and 2 (HD1
and 2)

Hdac1 and
Hdac2

tsKO SG hyperplasia [128]

Histone deacetylases 1 (HD1) Hdac1 tsKO SG hyperplasia [128]

Lysine-specific demethylase hairless Hr tsTg Delayed SG differentiation [129]

N-lysine methyltransferase KMT5A
(SETD8)

Kmt5a itsKO Loss of SG in adult skin [130]

Ornithine decarboxylase (ODC) Odc1 tsTg Moderate SG hyperplasia [131]

Odc1 tsTg At p 12: Moderate sebaceous cell hyperplasia [132]

Palmitoyltransferase ZDHHC13 Zdhhc13 Spont SG hyperplasia [133]

Phosphatidylinositol 3,4,5-
trisphosphate 3-phosphatase and
dual-specificity protein phosphatase
PTEN

Pten tsKO Enlarged SG, sebaceous carcinomas [134]

Phospholipase A2, membrane
associated/enhancing factor (EF)

Pla2g2a tsTg Enlarged SG (F2, homozygous) [135]

Probable palmitoyltransferase
ZDHHC21

Zdhhc21 Depilated Spont SG hyperplasia with an excess of sebum [136]

Prostaglandin G/H synthase
2/cyclooxygenase 2 (COX-2)

Ptgs2 tsTg Enlargement of SG [42]

Ptgs2 tsTg SG hyperplasia, increased epicutaneous sebum
concentration, enlarged gland duct

[40]

Ptgs2 tsTg SG hyperplasia [41]

Protein kinase C lambda Prkci tsKO Increased number of differentiated SG cells, enhanced SG
differentiation, enlarged SG

[137]

Ras-related C3 botulinum toxin
substrate 1

Rac1 tsKO Lack of SG [138]

tsKO Enlarged SG [139]

itsKO 7 to 9 days after treatment: enlarged and disorganized SG;
early increase in terminally differentiated sebocytes,
followed by progressive sebocyte loss

[140]
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Table 1 continued

Gene symbol Mutant name
(if applicable)

Type Characteristics/abnormalities References

Receptor tyrosine-protein kinase
erbB-2

Erbb2 tsTg Enlargement of SG [141]

Serine palmitoyltransferase 2 Sptlc2 iKO SG atrophy [142]

Serine/threonine-protein kinase ATR Atr iKO SG cell hypertrophy [143]

Serine/threonine-protein kinase B-raf
(B-RafV600E)

Braf KI Reduced numbers and size of SG [144]

Tripeptidyl-peptidase 1 (TPP-1) Tpp1 tsKO Lack of SG [145]

Tumor necrosis factor alpha-induced
protein 3 (TNF alpha-induced protein
3)

Tnfaip3 tsKO Hyperplasia of SG and sebocytes [146]

Tyrosine-protein kinase Fyn ?Focal
adhesion kinase (Fyn-/- ? FAK?/-)

Fyn ? Ptk2 fKO Increased number and size of SG [147]

Others

14-3-3 protein sigma/stratifin Sfn Repeated
epilation
(Er)

Spont Sfn?/ER (heterozygous dominant- negativ):
hyperproliferative SG/enlarged SG

[148]

Acyl-CoA-binding protein (ACBP) Dbi Nm1054 Spont Sebocyte hyperplasia, increased number of sebocytes,
sebaceous lipids with reduced levels of triacylglycerols

[149]

Apolipoprotein C-I (Apo-CI) APOC1 Tg Atrophy of SG, lack of sebum [150]

CD109 antigen Cd109 fKO Hyperplasia of SG, accumulation of sebum [151]

Cell death activator CIDE-A Cidea fKO Sebocytes accumulate smaller lipid droplets, reduced
sebum lipid production

[152]

Corneodesmosin Cdsn itsKO Hypertrophic SG [153]

Disintegrin and metalloproteinase
domain-containing protein 10
(ADAM 10)

Adam10 tsKO Absence of SG, reduced lipid production [154]

itsKO Deletion from P21 on: no significant loss of sebocytes,
decreased lipid production

[154]

Gap junction beta-2 protein
(Cx26-G45E)

GJB2 itsTg Atrophy of SG in animals maintained on doxycycline for
10 weeks

[155]

Gasdermin-A3 Gsdma3 Rim3 Spont Abnormal SG differentiation [156, 157]

Defolliculated
(Dfl)

Spont Sebocytes produce little or no sebum, abnormal
differentiation of SG

[158]

Defolliculated
(Dfl)

Spont Abnormal differentiation of SG, reduced sebum
production

[159]

Finnegan
(Fgn)

ENU Abnormal SG differentiation [160]

Reduced coat
2 (RCo2)

ENU Absent SG [161]

Bare skin
(Bsk)

ENU Absent SG [161]

Rex denuded
(Re den)

ENU Absent SG [161]

ENU Absence of SG [162]

Golgi pH regulator Gpr89 tsKO Enlargement of SG at 1 month after birth [163]

Insulin-induced gene 1 and 2 protein
(INSIG-1 and 2)

Insig1 and
Insig2

tsKO Enlarged SG [164]

Keratin, type I cytoskeletal
10/keratin-10 (K10)

Krt10 fKO SG started to enlarge at the age of four weeks due to a
stronger turnover of sebocytes, increased sebum
production

[165]

Keratin, type I cytoskeletal 25 Krt25 Rex Spont Enlargement of SG [166]

ENU M100573, enlargement of SG [166]

Keratin, type II cytoskeletal 71 Krt71 Caracul
Rinshoken

Spont Enlarged SG [167]

Long-chain fatty acid transport
protein 4/Fatty acid transport protein
4 (FATP4)

Slc27a4 Wrinkle-free Spont Dystrophic SG, sebum: reduced level of type II diester
wax

[168]
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Table 1 continued

Gene symbol Mutant name
(if applicable)

Type Characteristics/abnormalities References

Mothers against decapentaplegic
homolog 4/SMAD family member 4
(SMAD 4)

Smad4 tsKO Enlarged SG, increased sebocyte differentiation [169]

tsKO Enlarged SG [170]

tsKO Enlarged SG, sebaceous adenoma [171]

tsKO One squamous papilloma accompanied by sebaceous
hyperplasia

[172]

Mothers against decapentaplegic
homolog 7

Smad7 itsTg Accelerated SG morphogenesis, rapid growth of SG,
hypertrophic enlarged SG, premature SG development

[173]

Mothers against decapentaplegic
homolog 7 and E3 ubiquitin-protein
ligase SMURF2

Smad7 and
SMURF2

itsTg Hypertrophic SG (more than in Smad7 alone) [173]

Myelin protein zero-like protein 3
(predicted)

Mpzl3 Rough Coat
(rc)

spont SG hypertrophy, sebocyte hyperplasia [174]

Nuclear receptor coactivator 1 Ncoa1 fKO Heterozygous: enlarged SG [175]

Perilipin-2 Plin2 fKO Reduced size of SG, glands contain fewer cells, reduced
proliferation

[12]

Prelamin-A/C (LMNA C1824T) LMNA itsTg Disorganized SG, alterations of SG [176]

LMNA itsTg Initial hyperplasia is followed by hypoplasia of SG [177]

Lmna Disheveled
hair and ear
(Dhe)

Spont Hypoplastic SG [178]

KI Reduced numbers of SG [179]

LMNA itsTg Displaced and hyperplastic SG, enlarged and abnormal
differentiation

[180]

Protein Mpv17 (Mpv-17) Mpv17 fKO 2-year-old mice: reduction in number and size of SG [181]

Retinoblastoma-like protein 1 (p107)
and retinoblastoma- like protein 2
(p130)

Rbl1 and Rbl2 fKO Hyperplastic SG [182]

RING finger LIM domain-binding
protein

Rlim tsTg Enlarged SG [183]

Sonic hedgehog protein (SHH) Shh itsTg Enlarged SG in the Tabby backround [184]

fKO Failure to produce SG [185]

SV40 large T antigen (SV40T) SV40 Tag tsTg Enlarged SG [186]

Telomeric repeat-binding factor 1 Terf1 tsKO Absence of SG [187]

TNF receptor-associated factor 6 Traf6 fKO Impairment of SG [188]

Unknown

Alopecia-1 ENU Lack of SG, at two weeks of age SG are rarely found [189]

Alopecia-2 ENU Lack of SG, at two weeks of age SG are rarely found [189]

Bareskin (Bsk) ENU SG consisted of rudimentary buds, cells at site of SG were
undergoing abnormal cornification rather than
sebaceous differentiation

[2]

Curly bare
(cub)

Spont Enlarged SG [190]

Hairless Spont SG hypertrophy (2 months after birth), atrophy (after
1 year of age)

[191]

Hairless-Rhino Spont SG hypertrophy (2 months after birth), atrophy (after
1 year of age)

[191]

Harlequin
Ichthyosis
(ichq)

Spont Small, immature SG [192]

Rhino Spont SG hypertrophy (2 months after birth), atrophy after
1 year of age

[191]

Rough-fur
(ruf)

ENU Enlarged SG, lipid droplets are denser,
irregular shape of SG

[193]

Soft coat (soc) Spont SG Hyperplasia [2]
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Table 1 continued

Gene symbol Mutant name
(if applicable)

Type Characteristics/abnormalities References

Uncovered
(Uncv)

Spont SG hyperplasia [194]

Spont spontaneous, Tg transgen, i induced, ts tissue specific, fKO full knockout, KI knockin, SG sebaceous gland, PG preputial gland, MG Meibomian
gland, HG Harderian gland

Table 2 Laboratory mouse lines with abnormalities in Meibomian glands

Gene

symbol

Mutant name

(if applicable)

Type Characteristics/abnormalities References

Soluble factors

Noggin Nog tsTg Formation of pilosebaceous units at the expense of

MG/suppression of the induction of MG

[65]

Transforming growth factor alpha

(TGFA)

TGFA itsTg Abnormal MG morphogenesis, atrophy, and anomalies

with a variation of severity

[54]

Tgfa fKO Absence/hypoplasia of MG [55]

Receptors

Epidermal growth factor receptor Egfr tsKO Hypoplastic MG [195]

Glucocorticoid receptor (GR) Nr3c1 tsTg Lack of MG [70]

Neurogenic locus notch homolog

protein 1 (Notch1)

Notch1 tsKO MG dysfunction, abnormal morphology of MG, lack of

lipids

[196]

Tumor necrosis factor receptor

superfamily member EDAR/

ectodysplasin-A receptor

Edar tsTg Enlarged MG [77]

Transcription factors

CCAAT/enhancer-binding

protein alpha and beta (c/EBP

alpha and c/EBP beta)

Cebpa

and

Cebpb

itsKO Reduced lobule size and diminished numbers of

differentiated meibocytes with clear vacuolated

cytoplasm

[81]

Homeobox protein BarH-like 2 Barx2 fKO Defects in MG development and structure [197]

Krueppel-like factor 5 Klf5 tsKO Malformed MG with disorganized acini, lipid

accumulation in the meibomian ducts

[198]

Myc proto-oncogene protein MYC itsTg Enlarged MG [45]

NF-kappaB super-repressor IkBaDN KI Lack of MG [199]

PR domain zinc finger protein 1/B

lymphocyte-induced maturation

protein 1 (Blimp-1)

Prdm1 tsKO Enlarged MG [91]

Transcription factor AP-1/proto-

oncogene c-jun

Jun tsKO Hypoplastic MG [195]

Transcription factor SOX-9 Sox9 tsKO Reduced number of MG, 40 % fewer glands in the upper

and the lower eyelids, most MG had fewer acini

[200]

Twist-related protein 2 Twist2 fKO Absent/hypoplastic MG [201]

Enzymes

Acetyl-CoA acetyltransferase,

mitochondrial

Acat1 fKO Atrophy of Meibomian gland [202]

Acyl-CoA desaturase 1/Stearoyl-

CoA desaturase 1

Scd1 Asebia-2J Spont Small MG, rudimentary duct and glandular structures [36]

fKO Atrophy of MG, lack of foamy appearance due to

depletion of meibum lipids

[108]

Histone deacetylases 1 and 2

(HD1 and 2)

Hdac1

and

Hdac2

tsKO MG hyperplasia [128]

Genetically modified laboratory mice with sebaceous glands abnormalities 4631

123



gland’’), abnormal Harderian gland morphology (including

‘‘abnormal Harderian gland development’’, ‘‘abnormal

Harderian gland pigmentation’’, ‘‘abnormal Harderian

gland size’’, ‘‘absent Harderian gland’’), and abnormal

Meibomian gland morphology (including ‘‘abnormal Mei-

bomian gland acinus morphology’’, ‘‘abnormal Meibomian

gland development’’, ‘‘absent Meibomian gland’’, ‘‘en-

larged Meibomian gland’’, ‘‘Meibomian gland atrophy’’,

‘‘Meibomian gland cyst’’, ‘‘small Meibomian gland’’). For

reasons of clarity and comprehensibility, we present the

mouse lines in four tables, depending on whether they

show abnormalities in skin SG (Table 1), Meibomian

glands (Table 2), preputial glands (Table 3), or Harderian

glands (Table 4). In each table, the genes and gene prod-

ucts responsible for the SG abnormalities are grouped in

categories (‘‘soluble factors’’, ‘‘receptors’’, ‘‘transcription

factors’’, ‘‘enzymes’’, ‘‘adhesion molecules’’, ‘‘others’’ and

‘‘unknown’’). After indicating whether there is a classical,

mostly spontaneous mouse mutation for the gene in ques-

tion, we list the type of genetic modification, provide a

summary of the SG phenotype, and indicate the relevant

publication. Although we made every effort to include all

known mouse lines with a SG phenotype, we cannot

exclude having missed important lines. We apologize for

Table 2 continued

Gene

symbol

Mutant name

(if applicable)

Type Characteristics/abnormalities References

Mitogen-activated protein kinase

kinase kinase 1

Map3k1 fKO Hypoplastic MG [195]

Superoxide dismutase (Cu–Zn) Sod1 fKO MG alterations including increase in periglandular

inflammatory infiltrates, decrease in MG glandular

acinar density, increase in periglandular fibrosis

[203]

Others

14-3-3 protein sigma/stratifin Sfn Repeated

epilation

(Er)

Spont MG atrophy and reduced lipid content in aged

heterozygotes

[204]

Apolipoprotein C-I (Apo-CI) APOC1 Tg MG atrophy [150]

Basigin (CD147) Bsg fKO MG malformation, impaired meibocyte function,

secretory acini of MG were poorly developed, small

MG, cells in secretory acini failed to produce lipids

[205]

Cell death activator CIDE-A Cidea fKO Meibocytes accumulate a larger number of smaller-size

lipid droplets

[152]

Gasdermin-A3 Gsdma3 Defolliculated

(Dfl)

Spont Decreased lipid production [158]

Insulin-induced gene 1 and 2

protein (INSIG-1 and 2)

Insig1 and

Insig2

tsKO Abnormalities in MG [164]

Long-chain fatty acid transport

protein 4/Fatty acid transport

protein 4 (FATP4)

Slc27a4 Wrinkle-free Spont Abnormal development of MG (dystrophic MG),

defective meibocyte differentiation

[168]

TNF receptor-associated factor 6 Traf6 fKO Impairment of MG development [188]

Unknown

ARMGD n.r. MG atrophy [206]

crinkled Chem. Absence of MG [207]

Rhino

(hrrhhrrh)

Spont Progressive loss or atrophy of MG [208]

Rhino hrrh Loss of acini and atrophy of MG [2]

Tabby Spont Lack of MG [209]

Tabby Spont Lack of MG [2]

Waved with

open eyelids

2 (woe2)

Spont Absence of MG [210]

Waved with

open eyes

(woe)

Spont Absence of MG [211]

Spont spontaneous, Tg transgen, i induced, ts tissue specific, fKO full knockout, KI knockin, SG sebaceous gland, PG preputial gland, MG

meibomian gland, HG Harderian Gland, n.r. not reported, chem. chemically
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Table 3 Laboratory mouse lines with abnormalities in the preputial glands

Gene symbol Mutant name

(if applicable)

Type Characteristics/abnormalities References

Receptors

Glucocorticoid receptor (GR) Nr3c1 tsTg Underdeveloped PG [70]

Gonadotropin-releasing hormone receptor

(GnRH-R)

Gnrhr fKO Reduced size of PG [212]

KiSS-1 receptor (KiSS-1R)/G protein-

coupled receptor 54

Kiss1r fKO Lacked preputial separation, small PG [213]

fKO Reduced development of PG [214]

fKO PG were frequently not identifiable [215]

GKirKO mouse tsKO Failure to exhibit PG separation [216]

Transcription factors

Catenin beta-1/beta-catenin Ctnnb1 KI Keratinized squamos metaplasia of PG [217]

Ctnnb1 KI Hyperplasia and squamous metaplasia of

PG

[218]

CCAAT/enhancer-binding protein alpha

and beta (c/EBP alpha and c/EBP beta)

Cebpa/Cebpb itsKO Atrophy of PG lobules and decreased

numbers of finely vacuolated sebocytes

[81]

Helix-loop-helix protein 2 (HEN-2) Nhlh2 fKO Absent or reduced PG [219]

Homeobox protein Hox-D13 Hoxd13 Synpolydactyly

homolog

(spdh)

Spont Lack of PG [24]

Digit in Y and

carpe

(‘‘Dyc’’)

Spont Absent PG [220]

PR domain zinc finger protein 1/B

lymphocyte-induced maturation protein

1 (Blimp-1)

Prdm1 tsKO Enlarged PG [91]

Transcription factor GATA-5/GATA-

binding factor 5

Gata5 fKO Hypoplastic clitoral glands [221]

Enzymes

Cathepsin L1 Ctsl Nackt Spont Furunculosis and abscesses of PG (mouse

maintained non-SPF)

[112]

Ornithine decarboxylase (ODC) ODC1 tsTg Abnormal PG, increased amount of

glandular tissue, thicker ducts,

metaplastic change

[222]

Others

Adenomatous polyposis coli protein

(APC1638T)

Apc KI Absence of PG [23]

Autophagy protein 5 Atg5 tsKO Aberrant differentiation of PG [223]

DNA cross-link repair 1A protein/SNM1

homolog A

Dclre1a fKO Frequent infection of PG [224]

DNA repair protein RAD51 homolog 3 Rad51c tsKO Increased keratinization of preputial

sebocytes

[225]

DNA repair protein RAD51 homolog

3 ? cellular tumor antigen p53

Rad51c ? Trp53 tsKO Increased incidence of PG tumors [225]

Gasdermin-A3 Gsdma3 Defolliculated

(Dfl)

Spont Decreased PG lipid production [158]

GTPase KRas and catenin beta-1 Kras and Ctnnb1 KI Keratinized squamos metaplasia of PG [217]

Metastasis-suppressor KiSS-1 Kiss1 fKO Lacked preputial separation, small PG [213]

fKO Poor PG development [226]

SV40 large T antigen (SV40T) SV40 Tag tsTg Small PG [186]

Protein mab-21-like 1 Mab21l1 fKO Reduction in overall size of PG [227]

TNF receptor-associated factor 6 Traf6 fKO Impairment of PG [188]
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Table 3 continued

Gene symbol Mutant name

(if applicable)

Type Characteristics/abnormalities References

Uveal autoantigen with coiled-coil

domains and ankyrin repeats/nuclear

membrane-binding protein (nucling)

Uaca fKO PG swelling and pathological alterations

including keratinization, inflammation

and granulomatous lesions

[228]

fKO High prevalence of PG abscess, frequent

inflammatory lesions of PG in some

males younger than 1 year

[229]

Unknown

Diabetes Spont Small PG [230]

Downless Spont Absent PG [2]

Mesenchymal

dysplasia

(mes)

Spont Small PG [231]

Spont spontaneous, Tg transgen, i induced, ts tissue specific, fKO full knockout, KI knockin, SG sebaceous gland, PG preputial gland, MG

Meibomian gland, HG Harderian Gland

Table 4 Laboratory mouse lines with abnormalities in the Harderian glands

Gene

symbol

Mutant name (if

applicable)

Type Characteristics/abnormalities References

Soluble factors

Fibroblast growth factor 10 (FGF-10) Fgf10

(rat)

tsTg Ectopic HG in cornea [232]

Fgf10 fKO Lack of HG [232]

Fgf10 fKO Absent HG epithelium [233]

Fgf10 Aey17 ENU HG atrophy (gland replaced by

fibrotic pigmented mass)

[234]

Receptors

Proto-oncogene tyrosine-protein kinase receptor Ret Ret tsTg HG tumors with hyperplastic

and dysplastic lesions

[235]

Receptor tyrosine-protein kinase erbB-2/proto-

oncogene Neu

Erbb2/

Neu

(rat)

tsTg HG tumors [236]

Receptor tyrosine-protein kinase erbB-2/tyrosine

kinase-type cell surface receptor HER2

ERBB2/

HER2

tsTg HG enlargement [29]

Retinoid acid receptor alpha (RAR alpha) Rara fKO HG agenesis [237]

Retinoid acid receptor (RAR gamma) Rarg fKO Monolateral or bilateral absence

of the HG epithelium

[238]

Retinoid acid receptor (RAR alpha/gamma) Rara/Rarg fKO Agenesis of the HG [239]

Retinoid acid receptor (RAR beta/gamma) Rarb/Rarg fKO Agenesis of the HG [239]

Rarb/Rarg fKO Unilateral or bilateral absence

of HG

[240]

Transcription factors

Catenin beta-1/beta-catenin Ctnnb1 KI Squamos metaplasia with

keratinization of the

glandular epithelium of HG

[241]

Homeobox protein BarH-like 2 Barx2 fKO Absence of the HG [197]

Microphthalmia-associated transcription factor Mitf Spont No melanocytes in HG [242]

NF-kappaB super-repressor IkBaDN KI Lack of HG [199]

Transcription factor SOX-10 Sox10 tsKO No evidence of secretory acini

in HG

[200]

Transcription factor SOX-9 Sox9 tsKO Epithelial component of HG is

absent

[200]
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any unintended omission and would be grateful for input in

this regard from our readers.

While it would go beyond the scope of the present

review to analyze in detail the phenotype and the signifi-

cance of each mouse line, glancing through the

table immediately reveals some gene products that seem to

be of special importance for the SG. A classic model for

studying the SG is a mouse line named asebia. Gates and

Karasek described in 1965 a spontaneous mouse mutation

that is characterized by impaired sebum production due to

the absence of SG [37]. Several groups investigated this

line in detail [35]. Another enzyme whose expression

influences the SG is cyclooxygenase 2 (COX2), also known

as prostaglandin endoperoxide H synthase 2. This enzyme

uses arachidonic acid to produce prostaglandin H2 [38, 39].

Transgenic mice with overexpression of COX2 in the skin

Table 4 continued

Gene

symbol

Mutant name (if

applicable)

Type Characteristics/abnormalities References

Enzymes

Acyl-CoA desaturase 1/stearoyl-CoA desaturase 1 Scd1 tsKO HG atrophy [107]

Aldehyde dehydrogenase family 1 member A3/

retinaldehyde dehydrogenase 3 (RALDH-3)

Aldh1a3 fKO HG agenesis [243]

GTPase HRas/c-Ha-ras HRAS rasH2 Tg HG adenoma [244]

Tg Some mice developed HG

adenocarcinomas

[245]

GTPase KRas Kras KI Hyperplastic HG [246]

GTPase NRas Nras tsTg Hyperplasia, degeneration and

destruction of HG

[247]

Nras tsTg HG tumors and HG hypertrophy [248]

Proto-oncogene serine/threonine-protein kinase mos Mos Tg HG hyperplasia in one line [249]

Retinal dehydrogenase 1 (RALDH 1) and Aldehyde

dehydrogenase family 1 member A3/retinaldehyde

dehydrogenase 3 (RALDH-3)

Aldh1a3

and

Aldh1a1

fKO Agenesis of HG [250]

Serine/threonine-protein phosphatase 2A catalytic

subunit alpha isoform (PP2A-alpha)

PPP2CA tsTg SG hypoplasia [251]

Others

Acyl-CoA-binding protein (ACBP) Dbi fKO Enlarged HG, hypertrophy of

acinar cells, vesicles and

lumen contain more lipid

[27]

Dickkopf-related protein 2 (Dkk-2) Dkk2 fKO HG hypoplasia [195]

Human F8B F8 Tg HG tumors [252]

Neurogenic locus notch homolog protein 4 (Notch

4)/one of three chains: Transforming protein Int-3

Notch4/

Int3

tsTg HG hyperplasia [253]

Transforming growth factor beta regulator 1/nuclear

interactor of ARF and Mdm2

Tbrg1 fKO HG adenoma [254]

v-Ha-ras Hras tsTg Benign hyperplasia of HG [255]

Hras tsTg Hyperplasia of individual HG [256]

Hras tsTg Bilateral hyperplasia of HG [257]

v-Ha-ras and c-myc Hras and

Myc

tsTg Benign hyperplasia of HG [255]

v-Ha-ras/cyclin-dependent kinase inhibitor 1A

(P21)

Hras/

Cdkn1a

tsTg HG hyperplasia [258]

Unknown

Ichthyosis (ic) Spont Absent HG [259]

Ocular retardation (or) Spont Hypertrophy of HG [260]

White-footed mice

(two inbred lines:

GS109A, GS16A1)

Spont Harderian adenocarcinomas [261]

Spont spontaneous, Tg transgen, i induced, ts tissue specific, fKO full knockout, KI knockin, SG sebaceous gland, PG preputial gland, MG

Meibomian gland, HG Harderian gland
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show enlarged SG [40–42], with increased sebum accu-

mulation and SG duct enlargement. These changes support

the observation that COX2 inhibits apoptosis [43] and leads

to the enlargement of the SG. Another protein whose

overexpression increases the size of the SG is the tran-

scription factor myc [44], whose overexpression enhances

proliferation and differentiation of the sebocytes at the

expense of the hair differentiation [45]. Several groups

developed mice with overexpression of myc and observed

enlargement of the SG as a consequence [45–49]. Finally,

several ligands of the epidermal growth factor receptor

(EGFR) influence SG size and sebaceous lipogenesis:

Overexpression of transforming growth factor alpha [50],

amphiregulin [51], or epigen [52, 53] resulted in enlarged

SGs. Mice with inducible expression of transforming

growth factor alpha in the eyelid resulted in atrophic MG

due to malformation of the eyelid [54]. Conversely,

transforming growth factor alpha-deficient mice have

hypoplastic MG [55].

Conclusions and outlook

During the compilation of these annotated tables, it became

evident that the description and analysis of SG abnormal-

ities differ substantially depending on the laboratory

involved. As many reports come from groups whose pri-

mary interest is not the SG, the phenotype description is

often vague or superficial. For instance, SG enlargement is

frequently reported without distinguishing whether it arises

from hyperplasia, hypertrophy, or a combination of both

events. In addition, dissimilarities in genetic background

(different inbreed strains, mixed backgrounds) and envi-

ronmental differences (nutrition, pathogen status) may

result in substantial variations in histological and clinical

aspects of the SG abnormality. Finally, the fact that no SG

abnormality was reported for a specific mouse line should

not lead to the assumption that that such abnormality is not

present, as mild changes in SG structure and function may

not result in a readily detectable phenotype. These limita-

tions should be kept in mind when consulting the

tables provided here.

Genetically modified mouse lines, in association with

sebocyte cell culture models [56] significantly contributed

to our understanding of SG development, physiology, and

pathology. Until now, regulatory sequences of genes

encoding keratins or other structural proteins have been

used for targeting genes in the epithelial compartment of

the skin, including the sebocytes [1]. This approach has the

disadvantage that various cell types in the epidermis and in

the pilosebaceous unit are targeted concomitantly, poten-

tially causing unspecific phenotypes and side effects. In

this regard, the recent report of a mouse line allowing

sebocyte-specific gene targeting [57] will allow more pre-

cise studies on several aspects of SG biology. We also

anticipate that the availability of the CRISPR/Cas9 tech-

nology, a novel tool allowing efficient and reliable targeted

changes in the genome [58], will further increase the

number of genetically modified mouse lines, including

those with a SG phenotype. As a detailed guide for SG

analysis is now available [59] we also expect future studies

to provide a more professional description of the SG

alterations.

Although considerable progress has been made in

understanding SG biology and pathology, several pathways

and processes remain poorly characterized. For instance,

while a role for specific enzymes in sebaceous lipogenesis

has been demonstrated, our knowledge in this area (par-

ticularly in comparison to adipocytes) remains

unsatisfactory. Thus, future studies should focus on the

systematic characterization of the role played by enzymes

as elongases and desaturases [60] in sebum synthesis as

well as their regulation. Another worthwhile field for future

research is defining the SG stem cells and studying how

sebaceous differentiation takes place. Finally, a better

understanding of the molecular processes underlying

holocrine secretion, in particular the role played by apop-

totic pathways, may reveal novel targets for treating SG-

associated diseases.
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